2020届全国大联考高三2月联考文科数学试题(带答案解析)
2020年2月全国大联考高三2月联考文科数学试卷
21.(本小题满分 12 分) 已知函数 f (x) = a(1− x) + 2ln x (a∈R)在定义域上满足 f (x) ≤0 恒成立. (1)求实数 a 的值;
(2)令 g(x) = x f (x) + ax 在 (a,+ ) 上的最小值为 m ,求证: −11 f (m) −10 .
答案 C B C A D D A D D B C B
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.2
14.2 5
三、解答题:共 70 分.
15.-5
16. 3 4
17.解:(1)∵ a1+2,2a2,a3+1 成等差数列, ∴ 4a2=a1+2+a3+1= a1+a3+3, 即 4a1q=a1+a1q2+3,① 由 S3=4a2-1 可得 a1+a1q+a1q2=4a1q-1,即 a1-3a1q+a1q2+1=0,② 联立①②及 q>1 解得 a1=1,q=2,
一项是符合题目要求的。
1.设集合 A={x|x2≤x},B={x||x|≥1},则 A∩B=
A.
B. [0,1]
C.{1}
D. (−,+ )
2.已知 i 为虚数单位,复数 z 满足 z(1+i)=2i,则 z=
A.2
B.1+i
C.-1+i
D.1-i
3.自改革开放以来,我国综合国力显著提升,人民生活水平有了极大提高,也在不断追求
秘密★网络公布前 [网络公布时间:2020 年 2 月 6 日 15:00]
2020年高考文科数学全国卷2-答案
2020年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学答案解析一、选择题1.【答案】D【解析】解绝对值不等式化简集合A B ,的表示,再根据集合交集的定义进行求解即可. 因为{}{}321012A x x x Z =<∈=--,,,,,,{}{}111B x x x Z x x x x Z =>∈=><-∈,或,, 所以{}22A B =-,.故选:D .【考点】绝对值不等式的解法,集合交集的定义2.【答案】A【解析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.()()()()2422221i [1i ]12i i 2i 4-=-=-+=-=- 故选:A .【考点】复数的乘方运算性质3.【答案】C【解析】根据原位大三和弦满足34k j j i -=-=,,原位小三和弦满足43k j j i -=-=,,从1i =开始,利用列举法即可解出.根据题意可知,原位大三和弦满足:34k j j i -=-=,.∴158i j k ===,,;269i j k ===,,;3710i j k ===,,;4811i j k ===,,;5912i j k ===,,.原位小三和弦满足:43k j j i -=-=,.∴148i j k ===,,;259i j k ===,,;3610i j k ===,,;4711i j k ===,,;5812i j k ===,,.故个数之和为10.故选:C .【考点】列举法的应用4.【答案】B【解析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为50016001200900+-=, 故需要志愿者9001850=名. 故选:B【考点】函数模型的简单应用5.【答案】D【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 由已知可得:11cos601122a b a b ︒==⨯⨯=. A :因为215(2)221022a b b a b b +=+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +=+=⨯+=≠,所以本选项不符合题意; C :因213(2)221022a b b a b b -=-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -=-=⨯-=,所以本选项符合题意. 故选:D .【考点】平面向量数量积的定义和运算性质,两平面向量数量积为零则这两个平面向量互相垂直6.【答案】B【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.设等比数列的公比为q ,由53641224a a a a -=-=,可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)12221112n nn n n n n a q a a q S q ----=====---,, 因此1121222n n n n n S a ---==-. 故选:B .【考点】等比数列的通项公式的基本量计算,等比数列前n 项和公式的应用7.【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值.模拟程序的运行过程0,0k a ==第1次循环,2011011a k =⨯+==+=,,210>为否第2次循环,2113112a k =⨯+==+=,,310>为否第3次循环,2317213a k =⨯+==+=,,710>为否第4次循环,27115314a k =⨯+==+=,,1510>为是退出循环输出4k =.故选:C .【考点】求循环框图的输出值8.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为()0a a a >,,,可得圆的半径为a ,写出圆的标准方程,利用点()21,在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.由于圆上的点()21,在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()11,或()55,,圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=.故选:B .【考点】圆心到直线距离的计算9.【答案】B 【解析】因为2222:1(00)x y C a b a b-=>,>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE △的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案.2222:1(00)x y C a b a b-=>,> ∴双曲线的渐近线方程是b y x a=± 直线x a =与双曲线()2222:100x y C a b a b-=>>,的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x a b y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b , 联立x a b y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线()2222:100x y C a b a b-=>>, ∴其焦距为28c ==当且仅当a b ==∴C 的焦距的最小值:8故选:B .【考点】求双曲线焦距的最值问题10.【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在()0+∞,上单调递增,在()0-∞,上单调递增, 而331y x x-==在()0+∞,上单调递减,在()0-∞,上单调递减, 所以函数()331f x x x =-在()0+∞,上单调递增,在()0-∞,上单调递增. 故选:A .【考点】利用函数的解析式研究函数的性质11.【答案】C【解析】根据球O 的表面积和ABC △的面积可求得球O 的半径R 和ABC △外接圆半径r ,由球的性质可知所求距离d =.设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴,解得:3a =,2233r ∴=∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解12.【答案】A【解析】将不等式变为2323x x y y ----<,根据()23t t f t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2233x y x y ----<得:2323x x y y ----<,令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误; x y -与1的大小不确定,故CD 无法确定.故选:A .【考点】对数式的大小的判断问题二、填空题 13.【答案】19【解析】直接利用余弦的二倍角公式进行运算求解即可.22281cos212sin 12()1399x x =-=-⨯-=-=. 故答案为:19. 【考点】余弦的二倍角公式的应用14.【答案】25【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案.{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=即:()2252d d -++-+=整理可得:66d =解得:1d = 根据等差数列前n 项和公式:*1(1)2n n n S na d n N -=+∈, 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【考点】求等差数列的前n 项和15.【答案】8【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可. 不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大, 此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩, 因此2z x y =+的最大值为:2238+⨯=.故答案为:8.【考点】线性规划的应用,数形结合思想16.【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【考点】空间中线面关系有关命题真假的判断三、解答题17.【答案】(1)3A π=(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【解析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; 因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到a b c ,,关系, 再根据勾股定理或正弦定理即可证出. 因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【考点】诱导公式和平方关系的应用18.【答案】(1)12000(2)0.94(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【解析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可; 样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=;(2)利用公式20()()i i x x y y r --=∑ 样本()i i x y ,的相关系数为20()()0.943i i x x y y r --===≈∑ (3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样 先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取19.【答案】(1)12(2)1C :2211612x y +=,2C :28y x =.【解析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设A C ,在第一象限,运用代入法求出A B C D ,,,点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; 解:(1)因为椭圆1C 的右焦点坐标为:()c 0F ,,所以抛物线2C 的方程为24y cx =,其中c = 不妨设A C ,在第一象限,因为椭圆1C 的方程为:22221x y a b+=, 所以当x c =时,有222221c y b y a b a +=⇒=±,因此A B ,的纵坐标分别为2b a ,2b a-; 又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⇒=±,所以C D ,的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫=- ⎪⎝⎭,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为ABC △,(20)c -,,(0),(0),,2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =. 【考点】椭圆的离心率,椭圆和抛物线的标准方程,椭圆的四个顶点的坐标,抛物线的准线方程 20.【答案】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)24【解析】(1)由M N ,分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1//MN AA ,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN平面11EB C F NP = //AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心. ∴1111sin606sin60333ON AC ==⨯⨯=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F 平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC △中EF AP BC AM = 即323AP BC EF AM ⨯=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⨯=四边形 111113B EBC F EB C F V S h -∴=四边形,h 为M 到PN 的距离sin 603MH ==,∴1243243V =⨯⨯=.【考点】证明线线平行和面面垂直,求四棱锥的体积21.【答案】(1)1c -≥;(2)()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间 【解析】(1)不等式()2f x x c +≤转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;函数()f x 的定义域为:()0+∞,()()()2202ln 120f x x c f x x c x x c +⇒--⇒+--*≤≤≤,设()()2ln 120h x x x c x =+-->,则有()()2122x h x x x-'=-=, 当1x >时,()()0h x x h '<,单调递减,当01x <<时,()()0h x h x '>,单调递增, 所以当1x =时,函数()h x 有最大值,即()()max 12ln11211h c x h c ==+-⨯-=--,要想不等式()*在()0+∞,上恒成立, 只需()max 0101h x c c ⇒--⇒-≤≤≥;(2)对函数()g x 求导,把导函数()g x '分子构成一个新函数()m x ,再求导得到()m x ',根据()m x '的正负,判断()m x 的单调性,进而确定()g x '的正负性,最后求出函数()g x 的单调性.()()()()2ln 12ln 12ln ln 0x a x a g x x a x ax x a +---==≠-->且 因此()()()22ln ln x a x x x a g x a x x --+'=-,设()()2ln ln m x x a x x x a =--+,则有()()2ln ln m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间. 【考点】利用导数研究不等式恒成立问题,利用导数判断含参函数的单调性22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 的【解析】(1)分别消去参数θ和t 即可得到所求普通方程;由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用问题23.【答案】(1)31122x x x ⎧⎫⎨⎬⎩⎭≤或≥ (2)(][),13,-∞-+∞【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为31122x x x ⎧⎫⎨⎬⎩⎭≤或≥. (2)利用绝对值三角不等式可得到()()21f x a -≥,由此构造不等式求得结果.()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-≥(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a -≤或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值的问题。
全国大联考2020届高三2月联考文科数学(PDF版) - 副本
f
(x)
=
lfo(gx2
x, x + 3),x
1,则 1,
f
(−2)
=________.
14.已知向量 a,b 的夹角为 45º,若 a=(1,1),|b|=2,则|2a+b|=________.
15.设
x,y
满足约束条件
x x
+ −
y y
−a1,,且
z=x+ay
的最大值为
7,则
a=________.
最新最快试题发布平台
C.充要条件
D.既不充分也不必要条件
5.某公司的班车分别在 8:00,8:30 时刻发车,小明在 7:50 至 8:30 之间到达发车站乘坐班 车,且到达发车站的时刻是随机的,则他等车时间不超过 15 分钟的概率是( )
A. 1 3
B. 3 8
C. 2 3
D. 5 8
6.下列函数中,其图像与函数 y = ln x 的图像关于 (2,0) 对称的是( )
(1)求椭圆的方程;
(2)求证:M 点在直线 x = 4 上.
20.(本小题满分 12 分) 如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为直角梯形,AD∥BC,∠ADC=90°,平面
PAD⊥底面 ABCD,Q 为 AD 的中点,M 是棱 PC 的中点,PA=PD=2,BC= 1AD=1, 2
∴ 4a2=a1+2+a3+1= a1+a3+3,
库
源 即 4a1q=a1+a1q2+3,①
由 S3=4a2-1 可得 a1+a1q+a1q2=4a1q-1,即 a1-3a1q+a1q2+1=0,②
2020年全国2卷 文科数学真题(pdf版含解析)
2020年全国2卷文科数学真题(解析版)一、选择题:(每小题5分,共60分.)1.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A.∅B.{–3,–2,2,3)C.{–2,0,2}D.{–2,2}【答案】D【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.考点:集合的运算2.(1–i )4=()A.–4B.4C.–4iD.4i【答案】A 【详解】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.考点:复数的运算3.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【答案】C【详解】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===.原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===.故个数之和为10.故选:C .考点:数列的运算4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名 B.18名C.24名D.32名【答案】B【详解】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.故选:B考点:统计与概率5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a –2bD.2a –b【答案】D【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯= .A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠ ,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠ ,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠ ,所以本选项不符合题意;D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-= ,所以本选项符合题意.故选:D.考点:向量的运算6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =()A.2n –1B.2–21–nC.2–2n –1D.21–n –1【答案】B【详解】设公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n n n n nn n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.考点:数列基本量的运算7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为()A.2B.3C.4D.5【答案】C【详解】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值模拟程序的运行过程0,0k a ==第1次循环,2011a =⨯+=,011k =+=,210>为否第2次循环,2113a =⨯+=,112k =+=,310>为否第3次循环,2317a =⨯+=,213k =+=,710>为否第4次循环,27115a =⨯+=,314k =+=,1510>为是退出循环输出4k =.故选:C.考点:算法的运算8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A.5 B.25 C.355D.55【答案】B【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线230x y --=的距离均为2555d -==;所以,圆心到直线230x y --=的距离为5.故选:B.考点:圆的方程与点线距问题9.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B【详解】 2222:1(0,0)x y C a b a b-=>>∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩故(,)D a b 联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩故(,)E a b -∴||2ED b=∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =当且仅当a b ==取等号∴C 的焦距的最小值:8故选:B.考点:双曲线的性质10.设函数331()f x x x=-,则()f x ()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【答案】A【详解】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-,所以函数()f x 为奇函数.又因为函数3y x =在()0,+¥上单调递增,在(),0-¥上单调递增,而331y x x-==在()0,+¥上单调递减,在(),0-¥上单调递减,所以函数()331f x x x=-在()0,+¥上单调递增,在(),0-¥上单调递增.故选:A .考点:函数的奇偶性与单调性11.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.B.32C.1D.2【答案】C【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为21393224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.考点:外接圆与球12.若2233x y x y ---<-,则()A.ln(1)0y x -+>B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.考点:构造新函数,单调性;二、填空题:本题共4小题,每小题5分,共20分.13.若2sin 3x =-,则cos 2x =__________.【答案】19【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=.故答案为:19.考点:三角函数给值求值14.记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【答案】25【详解】设公差d ,可得1152a d a d +++=整理可得:66d =解得:1d =∴()1010(101)1022045252S ⨯-=-+=-+=故答案为:25.考点:等差数列基本量计算15.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.【答案】8【详解】不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩,因此2z x y =+的最大值为:2238+⨯=.故答案为:8.考点:线性规划16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.考点:空间点线面的位置关系三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若3b c a -=,证明:△ABC 是直角三角形.【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.考点:解三角形18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i i x x =-=∑(,2021)9000i i y y =-=∑(,201)800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((=1.414.【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i i x y的相关系数为20()220.943iix x y y r --=≈∑(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.考点:变量间的相关性19.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2ba-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±,所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.考点:椭圆与抛物线20.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMN EF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP=//AO NP ∴又 //NO AP ∴6AO NP == O 为111A B C △的中心.∴1111sin 606sin 6033ON A C =︒=⨯⨯︒=故:ON AP ==,则3AM AP ==,平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F又 在等边ABC 中EF APBC AM=即2AP BC EF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN的距离sin 603MH =︒=,∴1243243V =⨯⨯=.考点:立体几何的平行与垂直证明,点面距问题21.已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.【详解】(1)函数()f x 的定义域为:(0,)+∞()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x-'=-=,当1x >时,()0,()h x h x '<单调递减,当01x <<时,()0,()h x h x '>单调递增,所以当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-;(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.考点:导数中恒成立问题,单调性分类讨论(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.考点:极坐标与参数方程[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式4)(≥x f 的解集;(2)若4)(≥x f ,求a 的取值范围.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .考点:绝对值不等式的解法,绝对值三角不等式。
全国大联考2020届高三2月联考文科数学--高考
(2) 由题意可知从第
1 组选取的人数为5
0.1 2 人,设为 0.1 0.15
A1,A2,
从第
2 组选取的人数为5 0.15 3人,设为 0.1 0.15
B1,B2,B3.
从这 5 人中随机抽取 2 人的所有情况有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),
由于 f (1)=0 ,所以当 x 1 时, f (x) f (1) 0 ,不合题意.
a( x 2 ) 当 a 0 时, f (x) a ,
x
∴ 当0 x 2 时, f (x) 0 ;当 x 2 时, f (x) 0 ,
a
a
所以 f (x) 在(0,2) 上单调递增, f (x) 在( 2, ) 上单调递减,
19.
1
解:(1)因为离心率为
c
,所以
1
2
a2
因为 A2 的横坐标为 2,所以 a 2,c 1,b a2 c2 3 ,
因此椭圆的方程为 x2 y2 1; 43
(2)设 P(x1, y1),Q(x2 , y2 ), R(x2 , y2 )
20· LK2· QG
由3x2 4 y2 12 与 x my 4 联立,得(3m2 4) y2 24my 36 0
第 1 组:200×0.010×10=20 人,第 2 组:200×0.015×10=30 人,
第 3 组:200×0.035×10=70 人,第 4 组:200×0.030×10=60 人,
第 5 组:2000.010×10=20 人,
∴ 青少年组有 20+30+70=120 人,中老年组有 200-120=80 人, ∵ 参与调查者中关注此问题的约占 80%,即有 200×(1-80%)=40 人不关心民生问 题,
2020届高三联考试卷及答案(数学文科)
2020届高三第二次联考试卷文科数学本卷分第Ⅰ卷(选择题、填空题)和第Ⅱ卷解答题两部分,满分150分. 考试用时间120分钟. 注意事项:1.答第I 卷前,考生务必将自己的姓名、班级用蓝、黑墨水钢笔签字笔写在答卷上; 2.第I 卷每小题得出答案后,请将答案填写在答题卷相应表格指定位置上. 答在第Ⅰ卷上不得分;3.考试结束,考生只需将第Ⅱ卷(含答卷)交回. 参考公式: 锥体的体积公式13V Sh =, 其中S 是锥体的底面积, h 是锥体的高.第Ⅰ卷(选择题、填空题共70分)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设全集{}{}R,(3)0,1U A x x x B x x ==+<=<-, 则下图中阴影部分表示的集合为 ( )A. {}0x x >B. {}30x x -<<C. {}31x x -<<-D. {}1x x <-2. 已知正方形ABCD 的边长为1, 则AB BC AC ++u u u r u u u r u u u r=( )A. 0B. 2C.2 D. 223. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km , 灯塔A 在观察站C 的北偏东20o, 灯塔B 在观察站C 的南偏东40o,则灯塔A 与灯塔B 的距离为 ( )km A. a B.a 2 C. a 2 D. a 34. 曲线x x x f ln )(=在点1=x 处的切线方程为( )A. 22+=x yB. 22-=x yC. 1-=x yD. 1+=x y5. 设函数22(,2]()log (2,)x x f x x x ⎧∈-∞=⎨∈+∞⎩, 则满足()4f x =的x 的值是 ( )A. 2B. 16C. 2或16D. 2-或166. 设向量311(sin ,),(,cos ),432a xb x ==r r 且//a b r r , 则锐角x 为( ) A. 6π B. 4π C. 3πD. π125 7. 已知等差数列{}n a 中, 315,a a 是方程2610x x --=的两根, 则7891011a a a a a ++++等于( )A. 18B. 18-C. 15D. 128. 已知函数sin()y A x m ωϕ=++的最大值是4, 最小值是0, 最小正周期是2π, 直线3x π=是其图象的一条对称轴, 则下面各式中符合条件的解析式是( )A. 4sin(4)6y x π=+ B. 2sin(2)23y x π=++ C. 2sin(4)23y x π=++ D. 2sin(4)26y x π=++ 9. 若函数)(x f y =的图象如右下图所示, 则函数)1(x f y -=的图象大致为 ( )10. 已知0a >且21,()x a f x x a ≠=- , 当(1,1)x ∈- 时均有1()2f x < , 则实数a 的取值范围是( )A. [)∞+⎥⎦⎤ ⎝⎛,,221 0YB. (]4,11,41 Y ⎪⎭⎫⎢⎣⎡C. (]2 11,21, Y ⎪⎭⎫⎢⎣⎡ D. [)∞+⎥⎦⎤⎝⎛, 441,0Y 二、填空题(共4小题,每小题5分,满分20分) 11. 函数5||4)(--=x x x f 的定义域为_____ ________.12. 若()f n 为21n +的各位数字之和()n *∈N , 如: 因为2141197,19717+=++=, 所以(14)17f =. 记1()()f n f n =,21()(())f n f f n =, …,1()(())k k f n f f n += (k *∈N ), 则2008(8)f = .13. 如下图是由大小相同的长方体木块堆成的几何体的三视图, 则此几何体共由____ _____块木块堆成.14. 对于函数x x x f cos sin )(+=, 给出下列四个命题:① 存在)2,0(πα∈, 使34)(=αf ; 俯视图侧视图正视图D.C.A. B.② 存在)2,0(πα∈, 使)3()(αα+=+x f x f 恒成立;③ 存在R ϕ∈, 使函数)(ϕ+x f 的图象关于y 轴对称; ④ 函数f (x )的图象关于点)0,43(π对称;⑤ 若0,2x π⎡⎤∈⎢⎥⎣⎦, 则()f x ∈. 其中正确命题的序号是 .2020年文科数学答题卷二、填空题(共4小题,每小题5分,满分20分)11. 12.13. 14.第Ⅱ卷(解答题共80分)三、解答题(共6小题,满分80分) 15. (本小题满分14分)已知向量(cos ,sin )=r a αα, (cos ,sin )=rb ββ, -=r r a b .(Ⅰ) 求cos()αβ-的值; (Ⅱ) 若0πα<<, 0πβ-<<, 且5sin β=-, 求sin α.班 姓 学号 考16. (本小题满分12分)已知函数32()(4)3(6)f x x m x mx n =+--+-在定义域内是奇函数. (1) 求m , n 的值;(2) 求()f x 在区间[3,2]-上的极值和最值.17. (本小题满分14分)已知点集{}(,)L x y y ==⋅u u r r m n , 其中(22,1),(1,12)x b b =-=+u u r rm n 为向量, 点列(,)n n n P a b 在点集L 中, 1P 为L 的轨迹与y 轴的交点, 已知数列{}n a 为等差数列, 且公差为1, *N n ∈.(1) 求数列{}n a , {}n b 的通项公式;(2) 求1n n OP OP +⋅u u u r u u u u u r 的最小值;(3) 设1(2)n n n n c n n a P P +=≥⋅u u u u u u r , 求234n c c c c ++++L 的值.18. (本小题满分14分)(1) 如图1, 在三棱锥A BCD -中, ,M N 分别是ABC ∆和ACD ∆的重心, 求证://MN BD .(2) 如图2, 在三棱锥S ABC -的侧棱,,SA SB SC 上分别取,,A B C '''三点, 使12SA SA '=, 13SB SB '=, 14SC SC '=, 过,,A B C '''三点作截面将棱锥分成上、下两部分, 求这两部分的体积比. 学号 考室19. (本小题满分12分)某西部山区的某种特产由于运输的原因, 长期只能在当地销售. 当地政府通过投资对该项特产的销售进行扶持, 已知每投入x 万元, 可获得纯利润100)40(16012+--=x P 万元 (已扣除投资, 下同). 当地政府拟在新的十年发展规划中加快发展此特产的销售, 其规划方案为: 在未来10年内对该项目每年都投入60万元的销售投资, 其中在前5年中, 每年都从60万元中拨出30万元用于修建一条公路. 公路5年建成, 通车前该特产只能在当地销售; 公路通车后的5年中, 该特产既在本地销售, 也在外地销售, 在外地销售的投资收益为: 每投入x 万元, 可获纯利润)60(2119)60(1601592x x Q -+--=万元. 问仅从这10年的累积利润看, 该规划方案是否可行?20.(本小题满分14分)已知函数()22xx af x =-, 将()y f x =的图象向右平移两个单位, 得到()yg x =的图象.(1) 求函数()y g x =的解析式;(2) 若函数()y h x =与函数()y g x =的图象关于直线1y =对称, 求函数()y h x =的解析式;(3) 设1()()(),F x f x h x a=+ 设()F x 的最小值为m . 是否存在实数a , 使2m >若存在, 求出a 的取值范围, 若不存在, 说明理由.室2020年联考文科数学答案一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的) CDDCC BCDAC二、填空题(共4小题,每小题5分,满分20分)11. {x |45x x ≥≠且} 12. 11 13. 5 14. ①③④⑤ 三、解答题(共6小题,满分80分)15. 解:(Ⅰ)(cos ,sin )=r Q a αα, (cos ,sin )=rb ββ, ()cos cos ,sin sin ∴-=--r rαβαβa b . ………………………………………………… (2)5-=r r Q a b ,5=, …………………… (4) 即 ()422cos 5αβ--=, ()3cos 5αβ∴-=. (7)(Ⅱ)0,0,022ππαβαβπ<<-<<∴<-<Q , (8)()3cos 5αβ-=Q ,()4sin .5αβ∴-= (9)5sin 13β=-Q ,12cos 13β∴=, (10)()sin sin ∴=-+⎡⎤⎣⎦ααββ ……………………………………………………………… (12)()()sin cos cos sin =-+-αββαββ ………………………………………………… (13)412353351351365⎛⎫=⋅+⋅-= ⎪⎝⎭. ………………………………………………………………………… (14) 16. 解: (1) 依题意得()()f x f x -=-, (1)即3232()(4)()3()(6)(4)3(6)x m x m x n x m x mx n -+----+-=---+--, ……………… (2)∴22(4)2(6)0m x n -+-=, ……………………………………………………………………… (3) 故4m =,6n =. ……………………………………………………………………………………(4)(2)由(1)得3()12f x x x =-, ………………………………………………………………………(5)∴2()3123(2)(2)f x x x x '=-=-+, …………………………………………………… (6)当(3,2)x ∈--时, ()0f x '>, ()f x 单调递增; 当(2,2)x ∈-时, ()0f x '<, ()f x 单调递减;……………………………………………………………………………………………… (8)所以当2x =-时,()f x 有极大值16. (9)(3)9f -=Q , (2)16f =-, ……………………………………………………………………… (10) max ()(2)16f x f ∴=-=,min ()(2)16f x f ∴==-. (12)17.解:(1)由y =⋅u u r r m n,(22,1),(1,12)x b b =-=+u u r rm n , 得:12+=x y (2)即 :L 12+=x y Q 1P 为L 的轨迹与y 轴的交点, 1(0,1)P ∴ 则 110,1a b == (3)Q数列{}n a 为等差数列, 且公差为1, 1 (N )n a n n *∴=-∈, ………………………………… (4) 代入12+=x y , 得:2 1 (N )n b n n *=-∈ (5)(2) (1,21)n P n n --Q , 1(,21)n P n n +∴+,221121(1,21)(,21)515()1020n n OP OP n n n n n n n +∴⋅=--⋅+=--=--u u u r u u u u u r (8)Nn *∈Q , 所以当1n =时,1n n OP OP +⋅u u u r u u u u u r有最小值, 为3. (9)(3) 当2≥n 时, )12,1(--n n P n ,得:11),n n n a P P n +⋅=-u u u u u u r…………………………………(10)111(1)1n C n n n n===---, (12)23111111(1)()()12231n C C C n n n∴+++=-+-++-=--L L L . …………………… (14)18. 解: (1) 连结AM , 延长交BC 于P ; 连结AN , 延长交CD 于Q , 连结PQ . (1),M N Q 分别是ABC ∆和ACD ∆的重心,23AM AN AP AQ ∴==. ...................................................... (3) //MN PQ ∴, 且,P Q 分别是,BC CD 的中点. ..................... (5) ∴//PQ BD , (6)由公理4知: //MN BD . (7)(2) 解:sin 1sin 12SB C SBC S SB SC B SC S SB SC B SC ''∆∆''''⋅∠==''⋅∠, ……………………… (10) 设点A '到平面SBC 的距离为h ', A 点到平面SBC 的距离为h .12SA SA '=Q , 12h h '∴=. …………………………………………… (12) 1131243SB C S A B C A SB C S ABC A SBCSBC S h V V V V S h ''∆''''''----∆'⋅===⋅. .................................... (13) 故三棱锥被分成的两部分的体积比为1:23. (14)19. 解: 在实施规划前, 由题设100)40(16012+--=x P (万元), 知每年只须投入40万, 即可获得最大利润100万元. 则10年的总利润为W 1=100×10=1000(万元). …………………………………………… (3) 实施规划后的前5年中, 由题设100)40(16012+--=x P 知, 每年投入30万元时, 有最大利润8795max =P (万元). ………………………………………………………………………………………………………… (5) 前5年的利润和为8397558795=⨯(万元). (6)设在公路通车的后5年中, 每年用x 万元投资于本地的销售, 而用剩下的(60-x )万元于外地区的销售投资, ………………………………………………………………………………………………………… (7) 则其总利润为5)2119160159(5]100)40(1601[222⨯+-+⨯+--=x x x W 4950)30(52+--=x . ……………………………… (9) 当x =30时,W 2|max =4950(万元). (10)AB CD M NQPSC'B'A'CBA从而10年的总利润为495083975+(万元). (11)1000495083975>+Θ,∴该规划方案有极大实施价值. …………………………………………… (12) 20. 解: (1) 由题设,()g x (2)f x =-2222x x a--=-. (2)(2) 设点(,)x y 在()y h x =的图象上, 点11(,)x y 在()y g x =的图象上, 且与点(,)x y 关于直线1y =对称, 则112x xy y=⎧⎨=-⎩, (4)2(),2()y g x y g x ∴-=∴=-, 即22()222x x ah x --=-+. (6)(3)由题设,21()2xx F x a =-+22222x x a ---+=111()2(41)242x x a a -+-+ ………………… (7) 0a ≠Q① 当0a <时, 有114a -0<, 410a -<, 而2x0>, 12x 0>,()2F x ∴<, 这与()F x 的最小值2m >+矛盾; …………………………………………… (8) ② 当104a <≤时, 有114a -0>, 410a -≤, 此时()F x 在R 上是增函数, 故不存在最小值;……………………………………………………………………………………………………… (9) ③ 当4a ≥时, 有114a -0≤, 410a ->, 此时()F x 在R 上是减函数, 故不存在最小值;……………………………………………………………………………………………………… (10) ④当144a <<时, 有114a -0>,410a ->,()2F x ≥, (11)当且仅当2x=时取得等号,()F x 取最小值m=2. (12)又2m >+及144a <<, 得(4)(41)744144a a a a --⎧>⎪⎪⎨⎪<<⎪⎩ …………………………………………… (13) 1212,21244a a a ⎧<<⎪⎪∴<<⎨⎪<<⎪⎩. (14)。
2020年高考文科数学全国2卷(word版,含答案)
1.【ID:4005113】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,.故选:D.2.【ID:4005114】()A.B.C.D.【答案】A【解析】解:.故选:A.3.【ID:4005115】如图,将钢琴上的个键依次记为,,,.设.若且,则称,,为原位大三和弦;若且,则称,,为原位小三和弦.用个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.B.C.D.【答案】C【解析】解:若且,则,,为原位大三和弦,即有,,;,,;,,;,,;,,,共个;若且,则,,为原位小三和弦,可得,,;,,;,,;,,;,,,共个,总计个.故选:C.4.【ID:4002671】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压份订单未配货,预计第二天的新订单超过份的概率为.志愿者每人每天能完成份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于,则至少需要志愿者()A. 名B. 名C. 名D. 名【答案】B【解析】解:第二天的新订单超过份的概率为,就按份计算,第二天完成积压订单及当日订单的配货的概率不小于就按份计算,因为公司可以完成配货份订单,则至少需要志愿者为名,故选:B.5.【ID:4005117】已知单位向量,的夹角为,则在下列向量中,与垂直的是()A.B.C.D.【答案】D【解析】解:单位向量,,对于A,,所以与不垂直;对于B,,所以与不垂直;对于C,,所以与不垂直;对于D,,所以与垂直.故选:D.6.【ID:4005118】记为等比数列的前项和,若,,则()A.B.C.D.【答案】B【解析】解:设等比数列的公比为,,,,,,,,,,故选:B.7.【ID:4005119】执行如图的程序框图,若输入的,,则输出的为()A.B.C.D.【答案】C【解析】解:模拟程序的运行,可得,,执行循环体,,;执行循环体,,;执行循环体,,;执行循环体,,;此时,满足判断框内的条件,退出循环,输出的值为.故选:C.8.【ID:4002673】若过点的圆与两坐标轴都相切,则圆心到直线的距离为()A.B.C.D.【答案】B【解析】解:由题意可得所求的圆在第一象限,设圆心为,则半径为,.故圆的方程为,再把点代入,求得或,故要求的圆的方程为或.故所求圆的圆心为或;故圆心到直线的距离或;故选:B.9.【ID:4002676】设为坐标原点,直线与双曲线:的两条渐近线分别交于,两点,若的面积为,则的焦距的最小值为()A.B.C.D.【答案】B【解析】解:由题意可得双曲线的渐近线方程为,分别将,代入可得,即,,则,,当且仅当时取等号,的焦距的最小值为,故选:B.10.【ID:4005120】设函数,则()A. 是奇函数,且在单调递增B. 是奇函数,且在单调递减C. 是偶函数,且在单调递增D. 是偶函数,且在单调递减【答案】A【解析】解:因为,则,即为奇函数,根据幂函数的性质可知,在为增函数,故在为减函数,在为增函数,所以当时,单调递增,故选:A.11.【ID:4002678】已知是面积为的等边三角形,且其顶点都在球的球面上,若球的表面积为,则到平面的距离为()A.B.C.D.【答案】C【解析】解:由题意可知图形如图:是面积为的等边三角形,可得,,可得:,球的表面积为,外接球的半径为:,解得,所以到平面的距离为:.故选:C.12.【ID:4002679】若,则()A.B.C.D.【答案】A【解析】解:由,可得,令,则在上单调递增,且,所以,即,由于,故,故选:A.13.【ID:4005121】若,则________.【答案】【解析】解:,.故答案为:.14.【ID:4005122】记为等差数列的前项和.若,,则________.【答案】【解析】解:因为等差数列中,,,所以,,即,则.故答案为:.15.【ID:4005123】若,满足约束条件,则的最大值是________.【答案】【解析】解:作出不等式组对应的平面区域如图:由得,平移直线由图象可知当直线经过点时,直线的截距最大,此时最大,由,解得,此时,故答案为:.16.【ID:4002684】设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中所有真命题的序号是________.①②③④【答案】①③④【解析】解:设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,:过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,:若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,:若直线平面,直线平面,则.由线面垂直的定义可知,此命题为真命题;由复合命题的真假可判断①为真命题,②为假命题,③为真命题,④为真命题,故真命题的序号是:①③④,故答案为:①③④,17. 的内角,,的对边分别为,,,已知.(1)【ID:4005124】求.【答案】【解析】解:由已知得,即.所以,,由于,故.(2)【ID:4005125】若,证明:是直角三角形.【答案】见解析【解析】解:由正弦定理及已知条件可得.由知,所以,即,.由于,故,从而是直角三角形.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,.(1)【ID:4002687】求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数).【答案】【解析】由已知得样本平均数为,,该地区这种野生动物数量的估计值为.(2)【ID:4002688】求样本的相关系数(精确到).【答案】【解析】.(3)【ID:4002689】根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.【答案】见解析【解析】分层抽样.根据植被覆盖面积分层再随机抽样.理由:由于植被覆盖面积差异较大,即总体由差异明显的几个部分组成,分层抽样有利于保持样本结构与总体结构的一致性,提高样本代表性.19. 已知椭圆:的右焦点与抛物线的焦点重合,的中心与的顶点重合.过且与轴垂直的直线交于、两点,交于,两点,且.(1)【ID:4005126】求的离心率.【答案】【解析】解:解法一:右焦点与右焦点与重合,设抛物线方程为,则,设抛物线方程为.在椭圆中,当时,,解得:,,在抛物线中,当时,,,又,,①又,②联立①②可得:,解得:或(舍去),的离心率.解法二:由已知可设的方程为,其中.不妨设,在第一象限,由题设得,的纵坐标分别为,;,的纵坐标分别为,,故,.由已知得,即,解得(舍去),,所以的离心率为.(2)【ID:4005127】若的四个顶点到的准线距离之和为,求与的标准方程.【答案】,【解析】解:由知,,故:.所以的四个顶点坐标分别为,,,,的准线方程为.由已知得,即,所以的标准方程为,的标准方程为.20. 如图,已知三棱柱的底面是正三角形,侧面是矩形,,分别为,的中点,为上一点,过和的平面交于,交于.(1)【ID:4005128】证明:,且平面平面.【答案】见解析【解析】解:解法一:三棱柱,故,由矩形,为中点,为中点,.平行四边形,.矩形,.平行四边形,矩形,.等边中,为中点,.,面.又,面.又面,面面.解法二:因为,分别为,的中点,所以,又由已知得,故.因为是正三角形,所以.又,故平面.所以平面平面.(2)【ID:4005129】设为的中心,若,平面,且,求四棱锥的体积.【答案】【解析】解:平面,平面,平面平面,设,又,故四边形是平行四边形,所以,,,,因为平面,所以四棱锥的顶点到底面的距离等于点到底面的距离.作,垂足为,则由知,平面,故.故面的面积为,所以四棱锥的体积为.21. 已知函数.(1)【ID:4005130】若,求的取值范围.【答案】【解析】解:设,则,其定义域为,.当时,;当时,.所以在区间单调递增,在单调递减,从而当时,取得最大值,所以.故当且仅当,即时,.所以的取值范围为.(2)【ID:4005131】设,讨论函数的单调性.【答案】在,单调递减.【解析】解:,,.取得,,则由知,当时,即,故当时,,从而.所以在,单调递减.22. 已知曲线,的参数方程分别为:(为参数),:(为参数).(1)【ID:4002697】将,的参放方程化为普通方程.【答案】:,,,:【解析】解::,,,由的参数方程得,,则:.(2)【ID:4002698】以坐标原点为极点,轴正半轴为极轴建立极坐标系,设,的交点为.求圆心在极轴上,且经过极点和的圆的极坐标方程.【答案】【解析】解:,,,设,,满足题意,则,即,,:,即,极坐标方程为,即.23. 已知函数.(1)【ID:4002699】当时,求不等式的解集.【答案】【解析】当时,,不等式的解集为.(2)【ID:4002700】若,求的取值范围.【答案】【解析】,,当时,等号成立,,,,,.。
2020年普通高等学校招生全国统一考试数学试题 文(全国卷2,含答案)
绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=A B U A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110 B.15 C.310D.2512.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为 A.5 B.22 C.23 D.33二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。
2020年普通高等学校招生全国统一考试文科数学(全国II卷)(含答案)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B =A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-2.41i =-()A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.104.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2a b +B.2a b +C.2a b -D.2a b-6.记n S 为等比数列{n a }的前n 项和.若5a -3a =12, 6a -4a =24,则n n S a =A .2n -1B . 2-2t n -C. 2-n-12D .t-n 2-17.执行右面的程序框图,若输入的k=0,a=0,则输出的k 为:B. 3C. 4D. 58. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A 9.设O 为坐标原点,直线x a =与双曲线C :2222x 1y a b-=(a>0,b>0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .3210.设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC 的等边三角形,且其顶点都在球 的球面上,若球 的表面积为16π,则 到平面ABC 的距离为A B .32C .1D 12.若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<二、填空题:本题共4小题,每小题5分,共20分。
2020年全国普通高等学校招生统一考试文科数学试卷 全国Ⅱ卷(含答案)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=,B=,则= A.B. C. D.2. A.-4 B.4 C.-4i D.4i3.如图,将钢琴上的12个键依次记为,,…,.设.若且,则称,,为原位大三和弦;若且,则称,,为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 A.5 B.8 C.10 D.154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊{}3,x x x Z <∈{}1,x x x Z >∈A B ∅{}3,2,2,3--{}2,0,2-{}2,2-41i =-()1a 2a 12a 112i j k ≤<<≤3k j -=4j i -=i a j a k a 4k j -=3j i -=i a j a k a跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A. 10名 B. 18名 C. 24名 D. 32名5.已知单位向量,的夹角为60°,则在下列向量中,与垂直的是 A. B. C. D.6.记为等比数列{}的前项和. 若-=12, - =24,则= A .-1 B . 2- C. 2- D .-17. 执行右面的程序框图,若输入的k=0,a=0,则输出的k 为: A. 2 B. 3 C. 4 D. 5a b b 2a b +2a b +2a b -2a b -n S n a n 5a 3a 6a 4a nnS a 2n 2t n -n-12t-n 28. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为A . B. C. D.9.设O 为坐标原点,直线与双曲线C :(a>0,b>0)的两条渐近线分别交于D ,E 两点,若的面积为8,则C 的焦距的最小值为 A .4 B .8 C .16 D .3210.设函数,则 A.是奇函数,且在(0,+)单调递增 B.是奇函数,且在(0,+)单调递减 C.是偶函数,且在(0,+)单调递增 D.是偶函数,且在(0,+)单调递减230x y --=5253545x a =2222x 1y a b-=ODE ∆331()f x x x =-()f x ∞∞∞∞11.已知△ABC的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 AB .C .1D12. 若,则 A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
2020年全国普通高等学校招生统一考试文科数学试卷 全国Ⅱ卷(含答案)
2020年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B = A. ∅ B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-2. 41i =-()A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A. 10名 B.18名 C .24 D.32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是 A. 2a b + B .2a b + C.2a b - D.2a b -6.记n S 为等比数列{n a }的前n 项和. 若5a -3a =12, 6a -4a =24,则nnS a = A .2n -1 B . 2-2t n - C. 2-n-12 D .t-n 2-17. 执行右面的程序框图,若输入的k=0,a=0,则输出的k 为:A. 2B. 3C. 4D. 58. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 459.设O 为坐标原点,直线x a =与双曲线C :2222x 1y a b-=(a>0,b>0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为 A .4 B .8 C .16 D .32 10.设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增 B.是奇函数,且在(0,+∞)单调递减 C.是偶函数,且在(0,+∞)单调递增 D.是偶函数,且在(0,+∞)单调递减11.已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32C .1D .312. 若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.下列函数中,其图象与函数 的图象关于 对称的是()
A. B.
C. D.
7.我国古代木匠精于钻研,技艺精湛,常常设计出巧夺天工的建筑.在一座宫殿中,有一件特别的“柱脚”的三视图如图所示,则其体积为()
A. B. C. D.
8.将函数 的图象向右平移 个单位,再向上平移1个单位,所得图象经过点 ,则 的最小值为()
(1)请求出 点轨迹 的直角坐标方程;
(2)设点 的极坐标为 若直线 经过点 且与曲线 交于点 ,弦 的中点为 ,求 的取值范围.
23.已知 , .
(1)若关于 的不等式 对任意实数 都成立,求实数 的最小值;
(2)求证: .
参考答案
1.C
【解析】
【分析】
将集合 , 化简,利用交集的定义域,即可得到答案.
(1)求椭圆的方程;
(2)求证: 点在直线 上.
20.如图,在四棱锥 中,底面 为直角梯形, ,平面 底面 , 为 的中点, 是棱 的的中点 .
(1)求证:平面 平面 ;
(2)求四面体 的体积.
21.已知函数 在定义域上满足 恒成立.
(1)求实数 的值;
(2)令 在 上的最小值为 ,求证: .
22.在平面直角坐标系 , .以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 ,点 为 上的动点, 为 的中点.
4.A
【解析】
【分析】
首先将 化简可得 ,然后根据充分条件和必要条件即可得到答案
【详解】
由 得 ,
因为 在 上单调递增,所以 ,而 ,所以 ,
故充分性成立;
而当 时, 且 ,
故必要性不成立.
故选:A.
【点睛】
本题主要考查充分条件和必要条件的判定,属于基础题.
5.D
【解析】
【分析】
先求出小明等车时间不超过15分钟的时间长度,然后根据几何概型的概率计算公式即可求得答案.
附:
0.150
0.100
0.050
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
, .
19.已知椭圆 的离心率为 ,左右端点为 ,其中 的横坐标为2.过点 的直线交椭圆于 两点, 在 的左侧,且 ,点 关于 轴的对称点为 ,射线 与 交于点 .
(1)求 ;
(2)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,并再从这5人中随机抽取2人接受现场访谈,求这两人恰好属于不同组别的概率;
(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的中老年人有10人,问是否有 的把握认为是否关注民生与年龄有关?
A. B. C. D.
9.已知双曲线 的在、右焦点分别 ,过 作 的切线,交双曲线右支于点 ,若 ,则双曲线的离心率为()
A.2B.3C. D.
10.有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为()
A.2B. C.4D.
11.已知在平面直角坐标系 中, 为坐标原点, , ,若平面内点 满足 ,则 的最大值为()
【详解】
因为 ,
或 ,
所以 或 .
故选:C.
【点睛】
本题主要考查集合的交集运算,同时考查一元二次不等式的解法及绝对值不等式的解法,属于基础题.
2.B
【解析】
【分析】
将 化为 ,再利用复数的代数形式的乘除法运算化简,即可得到答案.
【详解】
因为 ,所以 .
故选:B.
【点睛】
本题主要考查复数的除法运算,属于基础题.
A.7B.6C.5D.4
12.已知函数 存在两个极值点 , , ,则 的最小值为()
A. B. C. D.
13.已知函数 则 _____.
14.已知向量 的夹角为 ,若 , ,则 ______.
15.设 满足约束条件 且 的最大值为7,则 _____.
16.已知 的内角 所对边分别为 ,且 ,则 的最大值为______.
A.2013年——2019年空气净化器的销售量逐年在增加
B.2017年销售量的同比增长率最低
C.与2018年相比,2019年空气净化器的销售量几乎没有增长
D.有连续三年的销售增长率超过
4.“ ”是“ ”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
5.某公司的班车分别在8:00,8:30时刻发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过15分钟的概率是()
对C,根据空气净化器的销量的条形图可以发现:与2018年相比,2019年空气净化器的销售量增长明显,
只是同比增长率较2018年略有下降,故C错误;
对D,根据同比增长率的折线图可以发现:2014年、2015年、2016年连续三年的销售增长率超过 ,故D正确.
故选:C.
【点睛】
本题主要考查条形统计图和折线统计图,同时考查数据处理和分析能力,属于基础题.
3.C
【解析】
【分析】
根据统计图的空气净化器的销量的条形图和同比增长率的折线图,分别判断个选项的正误,即可得到答案.
【详解】
对A,根据空气净化器的销量的条形图可以发现:2013年到2019年空气净化器的销售量逐年在增加,故A正确;
对B,根据同比增长率的折线图可以发现:2017年销售量的同比增长率最低,故B正确;
2020届全国大联考高三2月联考
文科数学试题
1.设集合 , ,则 ()
A. B. C. D.
2.已知 为虚数单位,复数 满足 ,则 ()
A.2B. C. D.
3.自改革开放以来,我国综合国力显著提升,人民生活水平有了极大提高,也在不断追求美好生活.某研究所统计了自2013年至2019年来空气净化器的销量情况,绘制了如图的统计图.观察统计图,下列说法中不正确的是()
17.设等比数列 的公比为 , 是 的前 项和,已知 , , 成等差数列,且 , .
(1)求 的通项公式;
(2)记数列 的前 项和为 ,若 成立,求 .
18.第十三届全国人大第二次会议于2019年3月5日在北京开幕.为广泛了解民意,某人大代表利用网站进行民意调查.数据调查显示,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占 .现从参与调查者中随机选出200人,并将这200人按年龄分组,第1组 ,第2组 ,第3组 ,第4组 ,第5组 ,得到的频率分布直方图如图所示.