小升初奥数讲义习题 第4讲 高斯求和、新定义
奥数之高斯求和
承上题
解:项数=(995-104)÷11+1 =891÷11+1 =82
总和=(104+)×82÷2 =1099×82÷2 =45059
课堂练习
1、时钟在1点钟时敲1下,2点钟敲2下,3点钟敲3下, 依次类推,从1至12点钟共敲了几下?
2、丹丹学英语单词,第一天学会了6个单词,以后每天 都比前一天多学会了1个,最后一天学会了26个。丹丹 在这些天中共学会了多少个单词?
例3:求所有加6以后被11整除的三 位数的和。
分析:加“6以后被11整数的三位数,”换一 个说法,也就是“被11除余5的三位数。” 在这些数中最小的三位数是104,最大 的三位数是995,而且相邻两数都相差11, 即这些三位数依次是104、115、 126······995。 显然,它们成等差数列,故可利用等差 数列求和公式求和。
研究目标
若干个数按照一定的顺序规律排列起来就 是一个数列。
如果在这个数列中,任意两个相邻的数 之间的差都相等,我们就把这个数列称为 等差数列。其中第一个数称为首项,最后 一个数称为末项。相邻两个数之间的差称 为公差,这列数中数的个数称为项数。
等差数列求和公式
等差数列的和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1) 首项=末项-公差×(项数+1) 公差=(末项-首项)÷(项数-1)
2、100以内所有加5后是6的倍数的数的和是多少? 3、6个连续偶数的和是1998,这6个数是多少? 4、计算 (7+9+11+······+25)-(5+7+9+······+23) 19971997+9971997+971997+71997+1997+997+97+9 5、有一堆粗细均匀的圆木,最上面有4根,每一层都比上
小学奥数——高斯求和专项讲解
张淑平版权作品 侵权必究
跟 找规律求和:
张
1+2+3=6=2×3
老
1+2+3+4+5=15=3×5
师
1+2+3+4+5+6+7=28=4×7
学
小
1+3+5=9=3×3
学
1+3+5+7+9=25=5×5
奥
1+3+5+7+9+11+13=49=7×7
数
规律:等差数列的和=中间数×项数
张淑平版权作品 侵权必究
师
示
举例: 1,3,5,7,9……
学
小 公差d=__2___ 首项a1=__1____
学 a1=1 a2=a1+d a3=a1+2d a4=a1+3d
奥
a10=a1+_9_×__d a20=_a_1_+19__×__d
数
a100=a1+9_9_×__d an=_a_1_+_9_9_×__d
张淑平版权作品 侵权必究
数 =50
=100 × 50÷2 =5000÷2
=2500
张淑平版权作品 侵权必究
跟 例题解析:
张
(3)电影院的第1排有10个座位,以
老
后每排比前一排多一个座位,电影
师
院共20排,一共有多少个座位?
学
a1=10, d=1 ,n=20
小
学
an=a1+(n-1)d
=10+(20-1)×1
S=(a1+an) ×n ÷2 =(10+29)× 20÷2
四年级奥数《高斯求和》答案及解析
高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+ (31)分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数《高斯求和》答案及解析教学内容
高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数-高斯求和
高斯求和一、高斯求和相关定义:若干个数按一定顺序规律排列起来就是一个数列。
如果这个数列中任意两个相邻的数之间的差都相等,我们就把这个数列称为等差数列。
其中第一个数称为首项,最后一个数称为末项。
相邻两个数之间的差称为公差,这数列中数的个数称为项数。
求和公式为: 等差数列的和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)二、例题例1.计算10987654321+++++++++练习 (1) 1917531+++++ (2) 求50以内所有偶数的和。
例2.建筑工地上堆着一些钢管(如图),求这些钢管一共有多少根?练习(1)图中一共有多少个三角形?(2)下图是一垛电线杆的侧面示意图,试计算一下图中共有多少根电线杆?例3.下面一列数是按照一定规律排列的:3,7,11,15,...,95,99.请问:(1)这列数中的第20个数是多少?(2)39是这列数中的第几项?练习:(1)自1开始,每隔三个数数一数,得到数列1,4,7,10......问第100个数是多少?(2)某饭店的餐桌都是能做4人的正方形,如图①所示。
当团体客人在10人以上时,饭店允许客人将餐桌拼成一长条,如图②所示,但每张桌子不能呢个有空位。
问如果团体客人是22人,那么需要几张桌子?例4.计算11+21+31+41+51+61+71+81+91练习:(1)计算:11+13+15+17+19+21+23(2)明明用棋子摆了一个五层图形,每两层棋子的个数相差5,最内层用了18个棋子。
问一共用了多少个棋子?例5.求首项为5,末项为155,公差是3的等差数列的和。
练习:一个有17项的等差数列,末项为117,公差为7,求这个等差数列的和是多少?例6.如图所示,如果用3根火柴摆成一个等边三角形,用这样的方法,按图中所示铺满一个大的等边三角形,如果这个大的等边三角形的底边是10根火柴,那么一共放多少根火柴?练习:如图所示是一个五边形点阵,中心是一个点为第一层,第二层每边两个点,第三层每边三个点,第四层每边四个点,一次类推,如果这个五边形点阵共有100层,那么点阵中一共有多少个点?三、课后练习1、下面数列中,哪些是等差数列?如果是,请指明公差;如果不是,说明理由。
四年级数学上册高斯求和讲解
四年级数学上册高斯求和讲解德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
小学奥数题讲解:高斯求和(等差数列)
德国数学家⾼斯幼年时代聪明过⼈,上学时,有⼀天⽼师出了⼀道题让同学们计算: 1+2+3+4+…+99+100=? ⽼师出完题后,全班同学都在埋头计算,⼩⾼斯却很快算出答案等于5050。
⾼斯为什么算得⼜快⼜准呢?原来⼩⾼斯通过细⼼观察发现: 1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,⼩⾼斯把这道题巧算为 (1+100)×100÷2=5050。
⼩⾼斯使⽤的这种求和⽅法,真是聪明极了,简单快捷,并且⼴泛地适⽤于“等差数列”的求和问题。
若⼲个数排成⼀列称为数列,数列中的每⼀个数称为⼀项,其中第⼀项称为⾸项,最后⼀项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是⾸项为1,末项为100,公差为1的等差数列;(2)是⾸项为1,末项为99,公差为2的等差数列;(3)是⾸项为8,末项为71,公差为7的等差数列。
由⾼斯的巧算⽅法,得到等差数列的求和公式: 和=(⾸项+末项)×项数÷2。
例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,⾸项是1,末项是1999,共有1999个数。
由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。
注意:利⽤等差数列求和公式之前,⼀定要判断题⽬中的各个加数是否构成等差数列。
例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,⾸项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利⽤等差数列求和公式时,有时项数并不是⼀⽬了然的,这时就需要先求出项数。
小学奥数题_高斯求和
《小学奥数教程:高斯求和》专项突破(附答案详解)奥校小学数学竞赛教研中心一、单选题1.在关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要()A. 7天B. 8天C. 9天D. 10天2.现在有100个苹果要分给学生,保证每个学生最少分得一个苹果,并且每个学生分得的苹果数都不相同,则最多可以分给()个同学。
A. 11B. 12C. 13D. 143.小猫咪咪第一天逮了1只老鼠,以后每天逮的老鼠都比前一天多1只,咪咪10天一共逮了()只老鼠.A. 45B. 50C. 55D. 604.你一定知道“少年高斯”速算的故事吧!那么1+2+3+4+…+999的结果是()A. 100000B. 499000C. 499500D. 5000005.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要用()杯子.A. 100B. 500C. 1000D. 5050二、判断题6.1+2+3+…+2006的和是奇数..三、填空题7.小明在计算器上从1开始,按自然数的顺序做连加练习.当他加到某一数时,结果是1991,后来发现中间漏加了一个数,那么,漏加的那个数是________.8.1+3+5+7+9+11+13+15=________²9.一本书,小红第一天读了3页,以后每天都比前一天多读1页,5天后,小红一共读了________页。
10.一堆钢管的最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有________根。
11.91+92+93+94+95=93×________=________12.1+2+3+4+5+6+7+8+9……+99=________。
13.学校有一只大钟,一时敲1下,2时敲2下……12时敲12下.你知道它一昼夜一共敲________下14.填上合适的数981+982+983+984+985+986+987=984×________=________15.雅雅家住平安街,礼礼向她打听:“雅雅,你家门牌是几号?”“我住的那条街的各家门牌号从1开始,除我家外,其余各家门牌号加起来恰好等于10000.”雅雅回答说.那么雅雅家住________ 号.16.1+3+5+7+…+97+99=________ =________ 2.17.1+2+3+4+5+6+7+…+99=________.18.计算:9+17+25+…+177=________.19.100以内的偶数和是________ .20.已知2+4+6+8+…+100=2550,那么1+3+5+7+9+…+101=________.21.1﹣64的自然数中去掉其中两个数,剩下62个数的和是2012,去掉的那两个数共有________ 种可能.22.有40块糖,把它分成4份,且后一份比前一份依次多2块,那么最少一份有________ 块.23.9个连续自然数的和是2007,其中最小的自然数是________ .24.1+2+3+4+5…+2007+2008的和是________ (奇数或偶数).25.已知:则:1+2+3+…+99+100+99+98+…+3+2+1=________.26.自然数1、2、3…14、15的和是120,这15个自然数的平均数是________ .27.把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是________ .28.1+3+5+…+99=________.29.用100个盒子装杯子,每个盒子装的个数都不相同,并且盒子不空,那么至少有________ 个杯子.30.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________ .31.27个连续自然数的和是1998,其中最小的自然数是________ .四、计算题32.33.想一想,算一算。
高斯求和--小升初专项训练 学生版
高斯求和第一关已知首项、末项和项数,求和【知识点】高斯求和公式:S n =a 1+a n 2×n 1.计算:1+3+5+7+⋯+192.计算:110+111+112+⋯+1263.计算:4+8+12+16+20+⋯+2012+20164.100以内的偶数和是多少?5.计算:1-2+3-4+⋯+97-98+996.计算:(2+4+6+⋯+200)-(1+3+5+⋯+199)7.计算:(1+3+5+⋯+2009+2011)-(2+4+6+⋯+2008+2010)8.计算:1930+1830+⋯+130-39150-38150-⋯-11509.计算(2003+2005+2007+2009+2011+2013+2015)÷710.下面算式中的★表示相同的数,求★1×★+2×★+3×★+4×★+⋯+11×★+12×★+13×★=200211.计算:(1+1.56)+(2+1.56×2)+(3+1.56×3)+⋯+(99+1.56×99)+(100+1.56×100)12.计算:(100+99×1)+(99+99×2)+(98+99×3)+⋯+(2+99×99)+(1+99×100)13.计算:1 2+23+13+34+24+14+45+35+25+15+⋯+1920+1820+⋯+12014.计算:1 2+13+⋯+12016+23+24+⋯+22016+34+35+⋯+32016+⋯+20142015+2014 2016+ 2015201615.如果将若干自然数按下表排列,那么这个表中所有自然数的总和是多少?16.加工一架梯子,扶杆长为4米,上下横档的长分别为0.35米、0.62米,中间还有7根横档,横档平行且间距均匀.制这架梯子共需多少米的毛竹?(损耗与接头均不计,结果保留一位小数)17.在通往城堡的笔直的道路上,将军这样安排了100个哨兵,他们从城堡门口开始,依次排在相邻两名哨兵之间的距离均为1米.请问,哨兵中任意两人的距离的总和为多少米?18.周长不超过100(包括100),且边长为自然数的所有正方形的周长之和是多少?19.观鸟协会组织会员到湖边观鸟,会员们发现在一棵大树上:第1分钟飞来1只鸟,第2分钟飞来2只鸟,第3分钟飞走3只鸟,第4分钟飞来4只鸟,第5分钟飞来5只鸟,第6分钟又飞走6只鸟,⋯,照此规律请你算出第66分钟时树上共有多少只鸟?20.在1-100这100个自然数中,所有不能被6整除的数的和为多少?21.我们知道:9=3×3,16=4×4,这里9、16叫做“完全平方数”,在前300个自然数中,去掉所有的“完全平方数”,剩下的自然数的和是多少?22.求:1~999这些连续自然数所有数字之和是多少?23.数1,2,3,4,⋯,10000按下列方式排列:任取其中一数,并划去该数所在的行与列.这样做了100次以后,求所取出的100个数的和?第二关已知首项、公差及项数,求和【知识点】高斯求和公式:S n=a1+a n2×n高斯求和其它相关公式:末项=首项+(项数-1)×公差,项数=(末项-首项)÷公差+1,首项=末项-(项数-1)×公差1.求首项是34,公差是5的等差数列的前50项的和.2.计算:2+4+6+8+⋯前198项的和3.计算:17+22+27+32+⋯前100项的和4.计算:131+140+149+158+⋯前98项的和5.小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完.这本书共有多少页?6.一个剧院,第一排有20个座位,以后每排总比前一排多2个座位,一共是25排.这个剧院共有多少个座位?7.同学们做广播操,一共排了8排,第一排有4人,以后每排比前一排多1人,一共有多少人做广播操?8.一堆木料,最上面一层有4根,最下面一层有20根,每相邻两层之间相差2根,这堆木料共有多少根?9.果果从小学三年级开始每年的植树节时都植树,三年级时植了2棵,以后每年都比前一年多植树2棵.那么,果果高中毕业时一共植树多少棵?10.有一串数:1,12,22,13,23,33,14,24,34,44,15,25,35,45,55,⋯它前2004个数的和是多少?11.1995003这个数,最多可以拆成多少个不同的非零自然数相加的和?第三关【知识点】高斯求和公式:S n=a1+a n2×n高斯求和其它相关公式:末项=首项+(项数-1)×公差,项数=(末项-首项)÷公差+1,首项=末项-(项数-1)×公差1.计算:1+2+⋯+8+9+10+9+8+⋯+2+12.一个时钟只有在整点时才敲出响声,凌晨1时敲1下,凌晨2时敲2下⋯中午12时敲12下,下午1时敲1下,下午2时敲2下⋯夜里12时敲12下,那么一昼夜该时钟共要敲多少下?3.1+2+3+4+5+6+7+8+9+⋯+99+100+99+98+⋯+4+3+2+14.在一根绳子上串了价格不同的一些珠子共31个,其中正中间那一个最贵,从某一端算起,后一个珠子比前一个贵3元.直至到中间那个为止;若从另一端算起,后一个珠子比前一个贵4元,直至到中间那个为止.这串珠子总价值为2260元,那么中间的那一颗珠子价值多少元?5.张教授连续做实验若干小时.开始和结束时,墙上的挂钟都正在报时,他做完实验后大约16分钟,钟面上时针与分针重合.已知这个挂钟只在整点报时(几点就报几下,如下午1点敲1下),整个实验过程中挂钟共敲了39下.问:(1)张教授的实验一共做了多少小时?(2)他做完实验时,挂钟敲了多少下?第四关【知识点】高斯求和公式:S n=a1+a n2×n高斯求和其它相关公式:末项=首项+(项数-1)×公差,项数=(末项-首项)÷公差+1,首项=末项-(项数-1)×公差1.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?2.小明读一本书.第一天读了8页,第二天读了11页,以后每天都比前一天多读3页,最后一天他读了32页,正好读完.这本书有多少页?3.一个堆放铅笔的V形架的最下层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支.这个V形架上共放了多少支铅笔?4.一群小猴上山摘野果,第一只小猴摘了1个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依此类推,后面的小猴都比他前面的小猴多摘了1个野果,最后,每只小猴分得8个野果,这群小猴一共有多少只?5.小明往一个大池里扔石子,第一次扔1个石子,第二次扔2个石子,第三次扔3个石子,第四次扔4个石子⋯,他准备扔到大池的石子总数被106除,余数是0止,那么小明应扔多少次?第五关【知识点】1.小明在计算器上从1开始,按自然数的顺序做连加练习,当他加到某数时,结果是2014,后来发现中间有个数多加了一次,多加的那个数是多少?2.王涛将连续的自然数1,2,3,⋯逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是多少?3.小强练习加法计算,他从1加到某个数时,和是1993,但他发现计算时少加了一个数,小强少加了的那个数是多少?4.从15开始的若干个连续自然数,如果去掉其中一个,剩下的数的平均数是311217,则去掉的自然数是多少?第六关【知识点】高斯求和公式:S n=a1+a n2×n高斯求和其它相关公式:末项=首项+(项数-1)×公差,项数=(末项-首项)÷公差+1,首项=末项-(项数-1)×公差1.蜗牛每小时都比前1小时多爬0.1米,第10个小时蜗牛爬了1.9米,第1小时蜗牛爬了多少米?2.27个连续自然数的和是1998,其中最小的自然数是多少?。
三年级奥数高斯求和PPT教案
1+2+3+4+5+6+7+8+9+10
=(1+10+3+4+5+……+99 =?
分析与解:这串加数1,2, 3,…,99是等差数列,首项是1, 末项是99,共有99个数。由等差 数列求和公式可得
11+12+13+14+……+27+28+29
例5: 50+58+66+74+82+90+98 =?
分析与解:这串加数50,58, 66,74, 82,90,98是公差为8 的等差数列,首项是50,末项是 98,共有7个数。由等差数列求 和公式可得
50+58+66+74+82+90+98
=(50+98第)8页/共×9页 7÷2
小高斯使用的这种求和方法真是聪明极了简单小高斯使用的这种求和方法真是聪明极了简单快捷并且广泛地适用于等差数列的求和问题
三年级奥数高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时, 有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却 很快算出答案等于5050。高斯为什么算得又快又准 呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都 相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单 快捷,并且广泛地适用于“等差数列”的求和问题。
高斯小学奥数六年级下册含答案第04讲_曲线形问题综合提高
第四讲 曲线形问题综合提高本讲知识点汇总:一、 基本曲线形计算1. 圆:2ππC r d =⨯⨯=⨯;222ππ44πd C S r =⨯==. 2. 扇形:2π360nl r =⨯⨯⨯; 2π3602n l r S r ⨯=⨯⨯=. 3. 圆柱体:V S h =⨯底.4. 圆锥体:13V S h =⨯⨯底.二、 曲线形计算技巧:1. 割补法2. 平移、旋转3. 重叠(容斥)例1. (1)如图1,有一个长是10、宽是6的长方形,那么两个阴影部分的面积之差为多少?(π取3.14)(2)如图2,三角形ABC 是直角三角形,AB 长40厘米,以AB 为直径做半圆,阴影部分①比阴影部分②的面积小28平方厘米.求AC 的长度.(π取3.14)「分析」(1)阴影是不规则图形,无法直接求出面积,需要进行割补整体法求解;(2)阴影分别加上空白部分均会变成规则图形直接求出面积.练习1、如图,扇形AOB 的圆心角是90度,半径是2,C 是弧AB 的中点.求两个阴影部分的面积差.(π取3.14)例2. (1)如下左图,两个相同的直角扇形放在一起,重叠部分恰好是一个长方形,且长和宽分别为15和5.那么阴影部分的面积是多少?(π取3.14)(2)如下右图,以直角三角形ABC 的三条边为直径做半圆,已知6AB =,8AC =,那么,图中阴影部分的面积是多少?(π取3.14)「分析」(1)正方形的对角线刚好是扇形的半径;(2)这道题目可能会用到勾股定理.BC图1图2练习2、(1)如下左图,三角形ABC 是等腰直角三角形,以AC 为直径画半圆,以BC 为半径画扇形.已知10ACBC ==,那么阴影部分的面积是多少?(π取3.14)(2)如下右图,由一个长方形与两个直角扇形构成,其中阴影部分的面积是多少?(π取3.14)例3. 如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为10米的正方形,绳长是20米,那么小狗的活动范围能有多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3)「分析」首先画出小狗活动范围的图形,然后根据每块扇形的半径求出面积.练习3、如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为2米的等边三角形,绳长是3米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计,π取3)狗A 狗例4.一个半径为1的圆绕着边长为4的正方形滚动一周又回到原来的位置,扫过的面积是多少?(π取3.14)「分析」注意拐角处扇形的半径.练习4、一个半径为1的圆绕着边长为4的正六边形滚动一周又回到原来的位置,扫过的面积是多少?(π取3.14)例5.面上有7个大小相同的圆,位置如图所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?(π取3.14)「分析」这道题目较难,需要进行巧妙的割补求解.例6.(1)如下左图,将对角线长度为6的正方形,按照如图所示的方式旋转一周,那么得到的旋转体的体积是多少?(π取3.14)(2)如下右图,将上底是2,下底是4,高是4的梯形,按照图中所示的方式旋转一周,那么得到的旋转体的体积是多少?(π取3.14)「分析」求出必要数据,结合公式即可得出答案.作业1. 如下图所示,如果正方形的边长为2,那么阴影部分的面积为多少?(π取3.14)2. 在下图中大圆的面积为30,三个小圆完全相同,那么图中阴影部分的面积为多少?3. 如图,阴影部分的面积是多少?(π取3.14)4. 一个半径为1的圆绕着边长为4的等边三角形滚动一周又回到原来的位置时,扫过的面积是多少?(π取近似值3.14)5. 如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为4米的等边三角形,绳长是6米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计,π取3)4狗第四讲 曲线形问题综合提高例7. 答案:(1)18.5;(2)32.8.解答:(1)大块“阴影+空白”刚好构成直角扇形,小块“阴影+空白”刚好构成长方形,所以直角扇形与长方形的面积差即是两块阴影面积的差21106018.54π⨯⨯-=. (2)“阴影①+空白”刚好构成半圆,“阴影②+空白”刚好等于直角三角形,半圆面积为21206282π⨯⨯=,所以,直角三角形面积为62828656+=,另一条直角边32.8AC =.例8. 答案:242.5;24.解答:(1)两个直角扇形面积之和减去长方形面积即为阴影面积: ()221515752242.52π⨯⨯+-⨯=.例9. 答案:1050.解答:狗的活动范围如图,分为A 、B 、C 三部分, 求面积得:22312010350105042πππ⨯⨯+⨯⨯==平方米.例10. 答案:44.56.解答:四个半径为2的直角扇形+四个相同的长方形 即为该圆扫过的面积,212424444.564π⨯⨯⨯+⨯⨯=.例11. 答案:20.解答:阴影包括中间的一个圆和周围六个花瓣状的小小图形.这个图形可以割补成一个顶角60°的扇形,因此六个这样的图形面积和正好等于一个圆;阴影部分的面积等于两个圆的面积,为20.例12. 答案:56.52;879275. 解答:(1)可以把得到的立体图形看做两个锥体,体积为2133256.523π⨯⨯⨯⨯=;可以把得到的立体图形看做两个锥体体积之差,体积为: 2211879248243375ππ⨯⨯⨯-⨯⨯⨯=. 练习:练习1、答案:0.简答:两个阴影分别加上下部的空白部分可得到扇形和半圆,而扇形和半圆面积相等,所以,面积之差是0.练习2、答案:28.5;12.765.简答:(1)半圆+圆心角是45度的扇形面积之和减去直角三角形面积:22111510101028.5282ππ⨯⨯+⨯⨯-⨯⨯=;(2)阴影面积为两个直角扇形面积之和减去长方形面积,2211521012.76544ππ⨯⨯+⨯⨯-=.练习3、答案:24.5.简答:解法同例3,首先画出小狗活动的范围图,然后把活动范围分成几个扇形来求解,2230024031=24.5360360ππ⨯⨯+⨯⨯.练习4、答案:60.56.简答:圆所扫过的面积可以分成6个长方形和6个扇形,面积之和为24262=60.56π⨯⨯+⨯.作业1.答案:0.86.简答:正方形的面积是4,圆的面积是3.14,所以,阴影的面积是0.86.2.答案:20.简答:大圆的半径是小圆的三倍,所以,大圆的面积是小圆面积的9倍,那么,阴影面积是整个面积的三分之二,即阴影面积为20.3.答案:4.56.简答:阴影面积为两个半圆的面积之和减去直角形的面积,两个半圆的面积之和为12.56,直角三角形的面积是8,所以,阴影面积为4.56.4.答案:36.56.简答:扫过的面积为三个相同的长方形,加三个相同的圆心角为120度的扇形,长方形总面积2×4×3=24,扇形总面积为12.56,所以,扫过的整个面积是36.56.5.答案:98.简答:活动范围由三个扇形构成,最大的扇形面积为半径是6的圆的四分之三,即90,两个小扇形的面积之和为18,总面积为98.。
最新四年级奥数《高斯求和》答案及解析
高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
高斯求和公式原理
高斯求和公式原理高斯求和公式,这可是数学世界里的一个神奇小法宝!咱们今天就来好好聊聊它的原理。
话说我之前有一次监考数学考试,发现好多孩子在一道涉及求和的题目上抓耳挠腮。
那时候我就在想,要是他们能真正理解高斯求和公式的原理,或许就不会这么苦恼啦。
先来说说什么是高斯求和公式。
它的表达式是:(首项 + 末项)×项数 ÷ 2 。
这个公式看似简单,但其背后的原理可不简单哦!咱们来举个例子,假设要计算 1 到 100 的所有整数的和。
按照常规的方法,咱们得一个一个加起来,1 + 2 + 3 + 4 +……+ 99 + 100,这得多累啊!但高斯同学就很聪明,他发现了一个巧妙的方法。
他把这 100 个数首尾两两配对相加,1 + 100 = 101,2 + 99 = 101,3 + 98 = 101……以此类推,一直到 50 + 51 = 101 。
这样一共能配成 50 对,每对的和都是 101 。
所以,总和就是 101×50 = 5050 。
这其实就揭示了高斯求和公式的核心原理。
首项和末项相加,得到的和在整个数列中具有一定的代表性。
而项数除以 2 ,就是因为我们把数列两两配对了。
再比如说,计算 1 到 50 的和。
首项是 1 ,末项是 50 ,项数是 50 。
那么根据公式就是(1 + 50)× 50 ÷ 2 = 1275 。
在实际的学习和生活中,高斯求和公式的应用可广泛啦!比如说,咱们要计算一堆整齐摆放的书的总数,如果知道最上面一本书是第一本,最下面一本是最后一本,而且清楚一共有多少层,那就可以轻松用高斯求和公式算出总数。
又比如,统计一段时间内做某项任务的总次数。
假如从第一天开始,到第 n 天结束,每天的次数都有规律,也能借助这个公式迅速得出总数。
总之,高斯求和公式就像是一把神奇的钥匙,能帮我们轻松打开很多求和问题的大门。
希望同学们在学习数学的过程中,都能像高斯同学那样,多观察、多思考,发现数学中的奇妙之处,让数学变得不再那么可怕,而是充满乐趣和惊喜!回想起那次监考,我真心希望孩子们能早点掌握这些巧妙的方法,不再被数学难题困扰,能够在数学的海洋里畅游,享受探索和发现的快乐!。
小升初奥数讲义习题第4讲高斯求和新定义
高斯乞降、新定义一、高斯乞降德国有名数学家高斯幼年时代聪慧过人,上学时,有一天老师出了一道题让同学们计算:1+ 2+ 3+ 4++99+100=?老师出完题后,全班同学都在用心计算,小高斯却很快算出答案等于5050。
高斯为何算得又快又准呢?和 =(首项 +末项)×项数 ÷2;(项数 =(末项 -首项)÷公差 +1)例 1、1+2+3++1999=11+ 12+ 13++31=3+ 7+ 11++99=例 2、在下列图中,每个最小的等边三角形的面积是12 平方厘米,边长是 1 根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?贯通融会、数一数图中各有多少个三角形。
例 3、求100之内除以3余2的全部数的和。
贯通融会、在全部的两位数中,十位数比个位数大的数共有多少个?例 4、盒子里放有三只乒乓球,一位魔术师第一次从盒子里取出一只球,将它变为 3 只球后放回盒子里;第二次又从盒子里取出二只球,将每只球各变为 3 只球后放回盒子里第十次从盒子里取出十只球,将每只球各变为3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?贯通融会、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一日夜敲打多少次?【稳固练习】1、计算下列图中,共有多少个长方形。
2、奥数 6 班开学第一天每两位同学相互握手一次,全班10 人,共握手多少次?二、定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此以外,还会有什么其他运算吗?定义新运算是一种人为的、暂时性的运算形式,它使用的是一些特别的运算符号,如:* 、△、⊙等,这是与四则运算中的“+、-、 ×、 ÷”不一样的。
例 1、关于随意数a,b,定义运算“*:”a*b=a×b-a-b。
求12*4的值。
四年级奥数 高斯求和
高斯求和
姓名:
等差数列的和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
末项=首项+公差×(项数-1)
首项=末项-公差×(项数-1)
一、
(1)计算1+2+3+……+99的和
(3)第一行放了1颗糖果,第二行放了2颗糖果,第三行放了3颗糖果,以此类推,第四十行放了40颗糖果,那么,第一行到第四十行一共放了多少颗糖果?
二、
(1)计算3+7+11+……+43+47的和
(2)计算5+10+15+……+90+95+100的和
(3)美羊羊学做蛋糕,第一天做了5个蛋糕,以后每天都比前一天多做2个,最后一天做了25个蛋糕,美羊羊这些天中一共做了多少个蛋糕?
三、
(1)有一列数按如下规律排列:5、9、13、17……这列数中前24个数的和是多少?
(2)小明练习写毛笔字,第一天写了8个大字,以后每天都比前一天多写3个,小明30天一共写了多少个毛笔字?
(3)有一堆粗细均匀的圆木,最上面有33根,每一层都比上一层多1根,一共堆了15层,这堆圆木一共有多少根?
四、
(1)(7=9+11+……+25)-(5+7+9+……+23)的结果
(2)(1+3+5+……+2013)-(2+4+6+……+2014)的结果
(3)1+2-3+4+5-6+7+8-9+……+58+59-60
五、
(1)100以内所有加5后是6的倍数的数的和是多少?
(2)在1到400中,.所有不是9的倍数的数的和是多少?
(3)计算所有被7除余数是1的三位数的和?。
小学奥数高斯求和例题汇总
小学奥数高斯求和例题汇总奥数奥数,四年级奥数。
下面,就来看四年级奥数精讲:高斯求和!例1 :1+2+3+…+2022=?分析与解:这串加数1,2,3,…,2022是等差数列,首项是1,末项是2022,共有2022个数。
由等差数列求和公式可得原式=(1+2022)×2022÷2=2022000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 :11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。
例3 :3+7+11+…+99=?分析与解:3,7,11,…,99是公差为4的等差数列,项数=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。
例4 :求首项是25,公差是3的等差数列的前40项的和。
分析与解:末项=25+3×(40-1)=142,和=(25+142)×40÷2=3340。
利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。
高斯求和习题及答案
高斯求和习题若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5,…,100(2)1,3,5,7,9,…,99(3)8,15,22,29,36,…,71末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1等差数列的和=(首项+末项)×项数÷2例1、求等差数列3,7,11,15,19,…的第10项和第25项。
例2、在等差数列2,5,8,11,14,…中,101是第几项例3、在5和61之间插入七个数后,使它成为一个等差数列,写出这个数列。
例4、1+2+3+4+…+1999例5、3+7+11+…+99练习:1、计算下面各题。
(1)3+10+17+24+…+101(2)17+19+21+…+392、求首项是5,末项是93,公差是4的等差数列的和。
3、求首项是13,公差是5的等差数列的前30项的和。
4、已知等差数列2,5,8,11,14,…(1)这个数列的第13项是多少(2)47是其中的第几项5、已知等差数列的第1项是12,第6项是27,求公差。
6、如果一个数列的第4项为21,第6项为33,求它的第9项。
7、求首项是5,末项是93,公差是4的等差数列的和。
8、已知等差数列6,13,20,27…,问这个数列前30项的和是多少9、①7+10+13+…+37+40②2000-3-6-9-…-51-5410、一个剧场设置了22排座位,第一排有36个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位答案:例1、39,99 例2、34例3、5,12,19,26,33,40,47,54,61例4、1999000 例5、1275练习1(1)780 (2)3362、11273、25654、(1)38(2)165、516、11277、3225 8、(1)282 (2)1487 9、1254。
小学四年级奥数ppt:高斯求和
例3 3+7+11+…+99=?
分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。
1~100正好可以分成这样的50对数,每对数的和都相
等。于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
数列
小高斯使用的这种求和方法,真是聪明极了,简单快捷, 并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为
一项,其中第一项称为首项,最后一项称为末项。后项与
原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判
断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?
分析与解:这串加数11,12,13,…,31是等差数列,首 项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,
分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:
由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。 解:(1)最大三角形面积为
(1+3+5+…+15)×12 =[(1+15)×8÷2]×12 =768(厘米2)。
2)火柴棍的数目为 3+6+9+…+24
例4 求首项是25,公差是3的等差数 列的前40项的和。
高斯小学奥数六年级上册含答案第04讲 对应计数
80
5.(1)有8个鸡蛋,每天至少吃1个,一共吃了5天,有多少种不同的吃法?35
(2)有8个鸡蛋,每天至少吃2个,一共吃了3天,有多少种不同的吃法?6
(注:这8个鸡蛋看作完全相同)
第四讲 对应计数
例题:
Hale Waihona Puke 例题1.答案:171;2312.现在有12道竞赛题,卡莉娅要在今天、明天、后天这三天内按顺序做完,但每一天可以做很多道题也可以一道不做.共有多少种安排做题的方案?91
3.阿呆在玩PSP格斗游戏,游戏采用的是五局三胜制(阿呆VS电脑),谁先胜三场谁就获得胜利.如果最后阿呆获胜,那么一共有多少种可能的比赛过程?(只考虑每场比赛的胜负)10
例5.常昊与古力两人进行围棋“棋圣”冠军争霸赛,谁先胜4局即获得比赛的胜利.请问:比赛过程一共有多少种不同的方式?
「分析」由对称性,只需求出常昊获胜的比赛过程有多少种.比赛最多进行7场,其中常昊一定胜4场.如果我们按比赛先后顺序给每场比赛编号,那么常昊胜的4场比赛编号,就决定了整个比赛流程.而常昊获胜的比赛可以是哪4场呢?
例题2. 答案:861
详解:本题相当于把40个苹果放入3个盘子里,每个盘子都允许为空.因此共有40个苹果和2块隔板.方法数等于 .
例题3.答案:336个
详解:如右图所示,每个 的长方形内都包含了4个不同的“L”型.因此只要求出图中有几个 小长方形即可.利用几何计数(五年级上册第9讲)的知识不难得知, 的长方形(包括横的和竖的)共有 个,所以共有“L”型 个.
如果要把三堆小球分别装入颜色为红、黄、蓝的三个袋子里,又有多少种装法呢?其实,所谓装入红、黄、蓝三个袋子,就是把球分成三堆,因此答案也是28.这样我们就把“小球装袋”问题转化成“小球插板”问题来求解了,这种方法我们称之为“插板法”.
四年级奥数培优《高斯求和(一)》
高斯求和(一)约翰·卡尔·弗里德里希·高斯德国著名数学家、物理学家、天文学家、大地测量学家。
是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
高斯和阿基米德、牛顿并列为世界三大数学家。
一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
一、例题精讲例1.观察下面三组数据,你发现了什么?(1)1、 2、 3、 4、 5、 6、 7、 8、 9、 10(2)2、 4、 6、 8、 10、 12、14、 16(3)101、 98、 95、 92、 89、 86、 83(4)6、 6、 6、 6、 6、 6、 6例2.等差数列的初步认识我们把第一个数称为(首项),最后一项称为(末项)相邻两个数的差相等,所以这个差叫(公差)。
数列(1)的公差是(),数列(2)的公差是(),数列(3)的公差是(),数列(4)的公差是(),因为相邻两数的差都(),这样的数列就是等差数列。
数列中数的个数称为(项数),数列(3)的项数是()个。
例3.下列数列不是等差数列的是()。
A. 7、 8、 7、 8、 7、 8、 7、 8、 7B. 0、 5、 10、 15、 20、 25、 30、 35C. 50、 48、 46、 44、 42、 40、 38例4.花园里的玫瑰花如下图排列,请你快速算出花的数量?例5.通过例4的学习,我们小结等差数列求和的公式是:请你利用公式计算:(1)2+4+6+8+10+12+14+16+18=(2)25+21+17+13+9+5+1=例6.在下图中,每个小等边三角形的边长是1根火柴棒,面积是15平方厘米。
(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴摆成?二、课堂小测7. 5+9+13+17+21+25+29+33+378. 5+9+13+17+21+29+33+379. 3+6+9+12+15+18+21+24+22+20+18+16+14+12+10+810. 将正方形叠成山形(如图),叠1层一共用1个正方形,叠2层一共用4个正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯求和、新定义
一、高斯求和
德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?
和=(首项+末项)×项数÷2;(项数=(末项-首项)÷公差+1)
例1、1+2+3+...+1999=11+12+13+...+31=3+7+11+ (99)
例2、在下图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?
举一反三、数一数图中各有多少个三角形。
例3、求100以内除以3余2的所有数的和。
举一反三、在所有的两位数中,十位数比个位数大的数共有多少个?
例4、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?
举一反三、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一昼夜敲打多少次?
【巩固练习】
1、计算下图中,共有多少个长方形。
2、奥数6班开学第一天每两位同学互相握手一次,全班10人,共握手多少次?
二、定义新运算
我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
例1、对于任意数a ,b ,定义运算“*”:a*b=a×b-a-b 。
求12*4的值。
举一反三、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
例题2、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么
7*4=________;210*2=________;4*4=________。
举一反三、如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x ※3=54中,x =________。
例题3、规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果
A ⨯=⑧
⑦⑥1
1-1,那么,A 是几?
举一反三、设a ⊙b=4a -2b+ab 2,求x ⊙(4⊙1)=52中的未知数x 。
【巩固练习】
1、对任意两个整数x 和y 定于新运算,“*”:x*y = (其中m 是一个确定的整数)。
如果1*2=1,
那么3*12=________。
2、如果2*1=21,3*2=331,4*3=444
1,那么(6*3)÷(2*6)=________。
3、规定a ◎b 表示a 与b 的积与a 除以b 所得的商的和,求8◎2的值。
4、已知a ※b=(a+b )-(a-b ),求9※2的值。
真题练习:
(2018湘郡培粹):
1、用*表示一种新运算符号,含义是x*y=
))(1(11A y x xy +++。
已知2*1=3
2,则2004*2005的值是 。
2、对于两个数A 、B ,规定A*B=A ×B ÷2,求5*6= 。
(2017麓山国际):
3、自然数1,2,3,4……,998,999的和是 。
4、设a 、b 是两个自然数,规定a △b=4b-(a+b )÷2,则3△(4△6)= 。
5、一把钥匙只能打开一把锁,现有7把钥匙和7把锁,但不知道哪把钥匙开哪把锁,最多要试 次才能配好全部的钥匙和锁。
(2017广益中学):
6、规定A#B=A ×B+A-B ,那么5#6= 。
7、观察图形规律,第8个图形一共有 个小三角形组成。