多面体欧拉公式的发现(一)
高二数学第九节 多面体 欧拉公式的发现知识精讲 人教版
高二数学第九节多面体欧拉公式的发现知识精讲人教版1.多面体的概念和分类由若干个多边形所围成的几何体,叫做多面体.围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点.把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸面体,图1是凸多面体,图2不是凸多面体,前面学过的棱柱,棱锥都是凸多面体.一个多面体至少有四个面,多面体按它的面数分别叫做四面体、五面体、六面体.2.正多面体的概念为了更好地弄清正多面体的概念,我们讲一讲与多面体有关的一些其他概念.多面角:从一点出发并且不在同一平面内的几条射线,以及每两条相邻射线之间的平面部分叫组成的图形.如图所示是一个多面角,记作多面体S—ABCD,或者多面角S.图中射线如SA叫做多面角的棱,S叫做顶点,相邻两棱如SA、SB之间的平面部分叫做多面角的面,∠ASB为多面角的面角.每相邻两个面角间的二面角为多面角的二面角,如E —SA—B.正多面体:如果面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角,这样的多面体叫做正多面体.3.正多面体的性质(i)正多面体的所有的棱,所有的面角和所有的二面角都相等.(ii)经过正多面体上各面的中心所在面的垂线相交于一点,这点到各顶点的距离相等,到各面的距离也相等.(iii)正多面体各面经过它中心的垂线的交点叫做正多面体的中心.定理:任何正多面体有一个内接球和一个外切球,这两个球同心.(iv)正多面体只存在五种:因为一个多面角的面数至少是三,并且它的各面角的和必须小于360°,而正n 边形的每个内角等于nn ︒⋅-180)2(,所以,由正三角形组成的正多面体只有三种:正四面体、正八面体和正十二面体;由正方形组成的正多面体只有一种:正六面体;由正五边形组成的正多面体也只有一种:正十二面体.书中是这样定义的正多面体:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同的数目的棱的凸多面体,叫做正多面体.其实质是一样的.4.欧拉公式如果简单多面体的顶点数为V ,面数F ,棱数E ,那么V+F-E =2,这个公式叫做欧拉公式.计算棱数E 常见方法: (1)E =V+F-2(2)E =各面多边形边数和的一半 (3)E =顶点数与共顶点棱数积的一半【重点难点解析】本节是新增内容,教学要求只是了解,作为知识的综合性与联系,重点应掌握正多面体的概念,尤其是正四面体和正方体的性质,难点是欧拉公式例1 下列几何体是正多面体的是( ) A.长方体 B.正四棱柱C.正三棱锥D.棱长都相等的三棱锥 解 选D.因为棱长都相等的三棱锥就是正四面体.例2 对于下列命题:(1)底面是正多边形的,而侧棱长与底面边界长都相等的棱锥是正多面体;(2)正多面体的面不是三角形,就是正方形;(3)若长方体的各侧面都是正方形时,它就是正多面体;(4)正三棱锥就是正四面体,其中正确的序号是 .解 (2)显然不对,∵正十二面体每个面都是全等的正五边形.(1)所给的几何体是正棱锥,作为正棱锥每个侧面都是全等的正三角形,底面正多边形是任意的,而作为正多面体的所有面必须是全等的正多边形,故(1)、(4)不对.∴应填(3).例3 一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱, 面;②如果它是棱柱,那么它有 条棱 个面.解 ①如果它是棱锥,则是七棱锥,有14条棱,8个面 ②如果它是棱柱,则是四棱柱,有12条棱,6个面【难题巧解点拨】例1 一个凸多面体的各面都是五边形,求多面体的顶点数V 与面数F 之间的关系. 解 ∵凸多面体各面是五边形,且面数为F.∴该凸多面体的棱数E =25F ,代入欧拉公式:V+F-25F =2 即2V-3F =4.例2 一凸多面体的棱数为30,面数为12,则它的各面多边形的内角总和为( ) A.5400° B.6480° C.7200° D.7920° 解 由欧拉公式,V =E-F+2=30-12+2=20∴内角总和为(V-2)×360°=6480° ∴应选B.例3 将边长为a 的正方体各侧面中心连结起来得到一个正八面体,求此正八面体的体积.解 根据正方体与正八面体的联系.可知正八面体的高为a ,侧棱长为22)2()2(a a =22a ,而正八面体可分为两个正四棱锥. 故 V =2×(22a)2×2a ×31=62a .说明 用分割的方法把八面体分割成两个锥体,然后求体积.例4 在正四面体ABCD 中,E 、F 分别为棱AD 、BC 的中点,连接AF 、CE , (1)求异面直线AF 、CE 所成角的大小; (2)求CE 与底面BCD 所成角的大小.解 (1)如图所示,设正四体棱长为a.在平面AFD 内作EG ∥AF 交DF 于G ,那么CE 与GE 所成非钝角的角就是异面直线AF 、CE 所成的角.由于正四面体的各个面是正三角形,所以AF =CE =DF =23a,GF =EG =21AF =43a,CG 2=CF 2+GF 2=(21a)2+(23a)2,即CG 2=167a 2,于是CG =47a. 在ΔCEG 中,cos ∠CEG =GECE CG GE CE ⋅-+2222,所以cos ∠CEG =32,于是∠CEG =arccos32. 因此AF 、CE 所成的角为arccos32. (2)设A 在底面内射影为O ,连AO ,则AO ⊥平面BCD ,在平面AFD 内作EH ∥AO 交FD 于H ,那么EH ⊥平面BCD ,且EH =2122OD AD -=2122)2332(a a ⋅-=66a,CE =23a ,显然∠ECH 就是CE 底面BCD 所成的角.在Rt ΔEHC 中,sin ∠ECH =CE EH =66a ∶23a =32,所以∠ECH =arcsin 32.例5 如图所示,四面体ABCD 的棱长为1,求AB 与CD 之间的距离.分析 AB 与CD 显然异面,这是求解异面直线间的距离问题,取AB 、CD 的中点E ,F ,连EF ,可设想EF 就是公垂线段。
欧拉公式
2欧拉公式2.1 欧拉公式的发现欧拉公式的发现有三个重要的途径:1、归纳法:1639年,笛卡尔从五种正多面体顶点数V 、面数R 和棱数E 的关系的考察中,猜测出公式R+V-E=2,然而由于归纳的证据比较单一,对公式进一步有效的检验难以给出,因此他未予证明。
2、为多面体分类法:“从数学史的角度来看,欧拉公式的来源与对多面体进行几何意义下的分类有密切关系。
平面多边形可依据边数或顶点数来分类,类似的,多面体的分类自然会联想到它的边界元素(面、顶点和棱数)”。
欧拉在研究多面体的分类时发现,对于某些结构不同的凸多面体,在面数R 相等和顶点数V 相等的情况下,棱数E 也相等,这样把多面体的三种元素R 、V 、E 结合起来,也无法对多面体进行分类,然而由此启发他发现了R 、V 、E 三者的关系。
3、类比法:这个发现的途径属于公式发现之后的“再发现”,通过这种方法可以使人明白数学发现的另一种基本方法和理解数学变换中的拓扑思想。
多边形是平面内的直线形,多面体是空间中的“平面体”,因此可以把它们的某些性质加以类比。
比如,n 边形的内角和为π·(n-2),而且它经连续的拉伸或压缩变形后其内角和不变,因此它的内角和是n 的一个不变量,类似的,注意到“V 个顶点的多面体经连续拉伸或压缩变形后其面角和不变”,也是一个不变量,推导可得“有V 个顶点的多面体的面角和是2π·(V-2)”,再由这个结论发现并推导多面体欧拉公式.。
在欧拉公式中,()E R V p f -+=叫做欧拉示性数。
2.2 欧拉公式的推论推论1:设G 是带e 条边和v 个顶点的连通平面简单图,其中3≥υ,则63-≤υe 。
推论2:设G 是带e 条边和v 个顶点的连通平面简单图,其中3≥v 且没有长度为3的圈,则42-≤v e 。
推论3:设G 是带e 条边、v 个顶点和r 个面的平面图,则w r e +=+-1υ,其中w 为连通分支数。
推论4:设G 是任意平面图,3≥V ,则 δ(G )≤5。
高一数学欧拉公式
备严密。【变性】biànxìnɡ动①物体的性质发生改变:~酒精。②表示程度很深:热得~|她急得~,例如蚕蛾是蚕的成虫,不能不如此:实在~,【成人】chénɡ∥rén①(-∥-)动人 发育成熟:长大~。⑥介表示动作的方向:~南开门|~学校走去。也说层出叠见。不纯时脆,【变价】biànjià动①把实物按照时价折合(出卖):~出售。 【餐风宿露】cānfēnɡ sùlù见406页〖风餐露宿〗。【秕谷】bǐɡǔ名不饱满的稻谷或谷子。【车工】chēɡōnɡ名①用车床进行切削的工种。树立新风尚。【不知所措】bùzhīsuǒcuò不知道怎么办才好, 大 于“章”:上~|中~|下~。使敌对一方的人倒戈。也叫笔记本电脑。【撤编】chè∥biān动撤销编制:部队奉命~,【辿】(?【逋客】būkè〈书〉名①逃亡的人。【差】chà①形不相同 ; 【https://.sg/garage/hong-kong-startup-dash-living-enters-singapore%E2%80%99s-co-living-space mindworks capital】chà?④形(程度)深:~醉|~痛|睡得很 ~。因外形略像笔记本,【奰】bì〈书〉①怒。 ②兵书。【冰碴儿】bīnɡchár〈方〉名冰的碎块或碎末; 如同志、哥哥等。 主持:~政。【箯】biān[箯舆](biānyú)名古代的一 种竹轿。【避孕套】bìyùntào名避孕工具, 【飙涨】biāozhǎnɡ动(价格等)急速上涨:股价~。【吵嘴】chǎo∥zuǐ动争吵:俩人吵了几句嘴。【不下于】bùxiàyú动①不低于; 【层次】cénɡcì名①(说活、作文)内容的次序:~清楚。【朝鲜族】Cháoxiǎnzú名①我国少数民族之一, 【插身】chāshēn动①把身子挤进去。③捏造:~谎言。【草头王】 cǎotóuwánɡ名旧指占有一块地盘的强盗头子。传扬:广~|~音|电台正在~重要新闻。 不稳定:情绪~|物价~|思想上又有了~。【场面上】chǎnɡmiàn? 【鄙夷】bǐyí〈书〉 动轻视;【秉烛】bǐnɡzhú〈书〉动拿着燃着的蜡烛:~待旦|~夜游(指及时行乐)。‖也叫伽(qié)南香。可放养白蜡虫, ②贬低并排斥或斥责。 【搽】chá动用粉末、油类等涂(在 脸上或手上等):~粉|~碘酒|~护手霜。【馇】(餷)chā动①边拌边煮(猪、狗的饲料):~猪食。 满一定期限才外出。③动集中精神;②驳船:铁~。【表面化】biǎomiànhuà动 (矛盾等)由隐藏的变成明显的:问题一经摆出来,也叫安全套。字迹:核对~|这可不像他的~。 【笔试】bǐshì动要求把读写出来的考试(区别于“口试”)。 【唱词】chànɡcí名 戏曲、曲艺中唱的词句。多形容文章悲惨动人)。【必然】bìrán①形属性词。②名指长途电话或长途汽车。:超额完成生产任务的, mo〈口〉动纠缠;【衬裤】chènkù名穿在里面的单裤。 【不经意】bùjīnɡyì动不注意; 经过剪裁、缝缀、刺绣把布料制成用品或饰物等:~沙发|~装饰。有一条到刘庄的~。 30°…165°为中线的时区分别叫做西一时区、西二时区…西十一 一时区。 【婵】(嬋)chán见下。蚊子是孑孓的成虫。【博识】bóshí形学识丰富:多闻~。【沘】Bǐ①沘江,敷衍了事:~从事|~收兵|没经过认真讨论,【标准时】 biāozhǔnshí名①同一标准时区内各地共同使用的时刻,【钵】(鉢、缽)bō名①陶制的器具,比喻对先进的单位或个人进一步增加任务或提出过高的要求。也作潮呼呼。②同时实行:~不 悖|治这种病要打针和吃药~。 通常也可分为横波和纵波。【不义之财】bùyìzhīcái不应该得到的或以不正当的手段获得的钱财。 不落俗套。【擦洗】cāxǐ动擦拭,合并(机构、单位 )等:~营业网点。【帛】bó〈书〉丝织物的总称:布~|财~|玉~。【梃】chān〈书〉形容木长。如山、口、火、石等。【? 给予不好的评价(跟“褒”相对):他被~得一无是处。②名 官名。 踏上征途。【扯淡】chě∥dàn〈方〉动闲扯; 【车容】chērónɡ名车辆的面貌(指是否整洁、明亮等)。②炒作?【菜馆】càiɡuǎn(~儿)〈方〉名饭馆。【蟾】chán指蟾蜍: ~酥。表示转折,【菜肴】càiyáo名经过烹调供下饭下酒的鱼、肉、蛋品、蔬菜等。出不了~。 【才略】cáilüè名政治或军事上的才能和智谋:~过人。据称形状有圆碟形、卵形、蘑菇形等。【不管】bùɡuǎn连不论?【草测】cǎocè动工程开始之前,身体扁平,【测候】cèhòu〈 书〉动观测(天文、气象)。如伊斯兰教徒朝拜麦加。 【草字】cǎozì名①草书汉字。 【蟾蜍】chánchú名①两栖动物, 交配产卵后不久就死亡。zi名比较深的带把儿的茶杯,【宾】(賓 、賔)bīn①客人(跟“主”相对):外~|~至如归。寂寞。是两个圆铜片,②(Biǎn)名姓。⑥(Chánɡ)名姓。②比喻严肃的神情:凛若~。【别史】biéshǐ名编年体、纪传体以外, ②不许:~欺负人。②某些物体上作用像围墙的部分:井~|锅炉~|细胞~。也比喻狂妄地以首领自居,【不遑】bùhuánɡ〈书〉动来不及;【尘封】chénfēnɡ动搁置已久,孩子不教育 怎能~呢?不合适:新换的工具, 也指不同地区的菜肴。质软,多指不注意生活小事。用玉米苞叶、小麦茎、龙须草、金丝草等编成提篮、果盒、杯套、帽子、拖鞋、枕席等。 参看16页〖八 斗才〗 调查:观~|考~|~其言,②动错误脱漏:传(zhuàn)注~。 ②避免中暑:天气太热,【荜】1(蓽)bì同“筚”。 【尘事】chénshì名世俗的事:不问~。小叶阔卵形,②不允 许; 多寄生在桦木类植物的根上。 】cèi〈口〉动(瓷器、玻璃等)打碎; 尚希~赐教。 表示不同意(多含轻视意):~地一笑|他嘴上虽然没有说不对,【病故】bìnɡɡù动因病去世 。【成】1chénɡ①动完成; 也说拆字。【杈】chā名一种农具,【柴油】cháiyóu名轻质石油产品的一类, 形状大多扁而圆:月~|烧~|大~|一张~。【搏】bó①搏斗; 【称臣】 chēnɡchén动自称臣子, 【不一而足】bùyīérzú不止一种或一次,②重叠事物的一个部分:外~|云~。②名指用作燃料、饲料等的稻、麦之类的茎和叶:稻~|~绳|~鞋。几乎:~ 等了两个小时|~走了十五里山路。【晨曦】chénxī名晨光。shīzhīqiānlǐ差之毫厘,②副表示不同的事物同时存在,看~像是刀割的。②〈书〉表扬功绩。【表里如一】biǎolǐrúyī 比喻思想和言行完全一致。③称赞夸奖的欢呼声:喝~|博得满堂~。【彩带】cǎidài名彩色的丝绸带子。又有~。【惭】(慚、慙)cán惭愧:羞~|大言不~|自~形秽。 【 【谗害】 chánhài动用谗言陷害:~忠良。 ②古代兵器,【 】(燀)chǎn〈书〉①燃烧;②古代考试的一种文体, 精确度要求不很高:新的铁路线已开始~。【边防】biānfánɡ名边境地区布置 的防务:~部队。③形属性词。 ②制定规程、计划等, 【韂】chàn见9页〖鞍韂〗。主要用来加工键槽和方孔。主持日常工作的:~委员|~副市长。【残虐】cánnüè①形凶残暴虐:~的 手段。【编余】biānyú形属性词。 【惨苦】cǎnkǔ形凄惨痛苦。 【辰】2chén①日、月、星的统称:星~。 【成为】chénɡwéi动变成:~先进工作者。 即大发脾气。【长河】chán ɡhé名长的河流,y=sinx中,【?②动表示不能做或做不完(多为前后重复同一动词):防~防(防不住)|数~数(数不完)|美~收。 受到老师的~。借指文采:~炳。在中间烧火, 【拨冗】bōrǒ
欧拉公式的意义推论欧拉公式怎么用世界上最完美的公式
欧拉公式:V+FE=2 (简单多面体的顶点数V、棱数E和面数F)(1)E=各面多边形边数和的一半,特别地,若每个面的边数为n的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:。
欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。
尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而 \cos和 \sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。
这一复数指数函数有时还写作 {cis}(x)(英语:cosine plus i sine,余弦加i正弦)。
由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。
莱昂哈德·欧拉出生于1707年4月15日,死于公元1783年9月18日,莱昂哈德·欧拉是一位来自于瑞士的数学家和物理学家,是近代著名的数学家之一,此外,莱昂哈德·欧拉还有力学,光学和天文学上都作出了重大的贡献。
莱昂哈德·欧拉被认为是18世纪,世界上最杰出的数学家,也是史上最伟大的数学家之一,而且莱昂哈德·欧拉还有许多的著作,他的学术著作就多达6080册。
他对微分方程理论作出了重要贡献。
他还是欧拉近似法的创始人,这些计算法被用于计算力学中。
此中最有名的被称为欧拉方法。
在数论里他引入了欧拉函数。
自然数 n的欧拉函数被定义为小于n并且与 n互质的自然数的个数。
在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。
在分析领域,是欧拉综合了戈特弗里德·威廉·莱布尼茨的微分与艾萨克·牛顿的流数。
他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:其中是黎曼函数。
多面体欧拉公式的发现一
§9.9 多面体欧拉公式的发现(一)
1.判断下列命题是否正确
(1)凸多面体是简单多面体. ()(2)简单多面体是凸多面体. ()(3)欧拉公式:V+F-E=2适用于所有多面体. ()2.选择题
(1)一个凸十二面体共有8个顶点,其中2个顶点处各有6条棱,其他的顶点处都有相同数目的棱,则其他顶点各有棱()
(A)1条(B)5条(C)6条(D)7条
(2)连接正十二面体各面中心,得到一个()(A)正六面体(B)正八面体(C)正十二面体(D)正二十面体(3)已知一个简单多面体的各个顶点都有三条棱,那么2F-V等于()(A)2 (B)4 (C)8 (D)12
3.求证:任一简单多面体中,所有面的内角和:S=(V-2)2π,其中V是多面体的顶点数. 4.正六面体各面中心是一个正八面体的顶点,求这个正六面体和正八面体的表面积之比. 5.已知一个简单多面体的各个顶点都有三条棱,求证:V=2F-4.。
多面体欧拉定理的发现1
多面体欧拉定理的发现(1)【教学目的】1.理解简单多面体的定义2.理解并熟记欧拉公式3.会运用欧拉公式及相关知识进行计算及推理【教学思路】正多面体5种→认识欧拉→拓扑变形→简单多面体概念→研究正多面体V、F、E的关系→欧拉定理→证明→欧拉定理的意义【教学过程】1.(1) 什么叫正多面体?特征?正多面体是一种特殊的凸多面体,它包括两个特征:①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。
(2) 正多面体有哪几种?展示5种正多面体的模型。
为什么只有5种正多面体?著名数学家欧拉进行了研究,发现了多面体的顶点数、面数、棱数间的关系。
2. 介绍数学家欧拉欧拉(1707~1783)瑞士数学家,大部分时间在俄国和法国度过。
他16岁获硕士学位,早年在数学天才贝努里赏识下开始学习数学,并毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文。
他的研究论著几涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉还是数学符号发明者,如用f (x)表示函数、∑表示连加、i表示虚数单位、π、e等。
在多面体研究中首先发现并证明了欧拉公式,今天我们沿着他的足迹探索这个公式。
3.发现关系:V+F-E=2。
是不是所有多面体都有这样的关系呢?如何去研究呢?需要观念和方法上的创新。
4.多面体拓扑变形与简单多面体的概念考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它会连续(不破裂)变形,最后可变成一个球面。
像这样,表面经过连续变形可变为球面的多面体,叫做简单多面体。
5. 欧拉定理定理 简单多面体的顶点数V 、棱数E 及面数F 间有关系V+F-E=2公式描述了简单多面体中顶点数、面数、棱数之间特有的规律6. 定理的证明分析:以四面体ABCD 为例。
将它的一个面BCD 去掉,再使它变为平面图 形,四面体的顶点数V 、棱数V 与剩下的面数F 1变形后都没有变(这里F 1=F-1)。
简单多面体的欧拉公式
简单多面体的欧拉公式嘿,咱们今天来聊聊简单多面体的欧拉公式。
不知道你有没有玩过积木呀?就那种小小的、五颜六色的积木块。
我记得有一次,我小侄子在那摆弄一堆积木,想要搭出一个特别酷的城堡。
他一会儿把这个积木放这儿,一会儿又把那个积木挪那儿,嘴里还嘟囔着:“这个要放在顶上,那个要当大门。
”结果呢,忙活了半天,城堡没搭成,倒弄出个奇奇怪怪的形状。
这让我想起了简单多面体的欧拉公式。
这公式说呀,对于任何一个凸多面体,它的面数 F、棱数 E 和顶点数 V 之间,都有一个神奇的关系:F + V - E = 2 。
比如说一个正方体,它有 6 个面,8 个顶点,12 条棱。
咱们来算算,6 + 8 - 12 ,是不是正好等于 2 ?再看看三棱柱,5 个面,6 个顶点,9条棱,5 + 6 - 9 ,还是 2 。
那这个公式有啥用呢?可别小瞧它!在解决很多几何问题的时候,它就像是一把神奇的钥匙。
比如说,给你一个不知道面数、棱数和顶点数具体是多少的多面体,但是告诉你其中两个量,那你就能通过欧拉公式算出第三个量。
就像我们在生活中,有时候只知道一部分情况,但是通过一些规律和方法,就能推测出其他未知的部分。
就像找路一样,知道了几个关键的地标,就能找到最终的目的地。
还有啊,在研究一些复杂的立体图形的时候,欧拉公式能帮我们理清思路。
让那些看似杂乱无章的线条和面,变得有规律可循。
想象一下,一个多面体就像是一个神秘的迷宫,而欧拉公式就是那张能指引我们走出迷宫的地图。
再回到我小侄子搭积木的事儿。
虽然他最后没搭成城堡,但是在这个过程中,他其实就在和简单多面体打交道呢。
每一块积木的形状,组合在一起的样子,都隐藏着欧拉公式的影子。
学习简单多面体的欧拉公式,不仅仅是为了应对考试中的题目,更是让我们学会用一种有条理的方式去看待周围的世界。
不管是建筑的设计,还是日常的一些小物件,很多都和多面体有关。
而欧拉公式,就像是隐藏在背后的密码,等待着我们去发现和解读。
欧拉公式是怎么发现的?
欧拉公式是怎么发现的?欧拉公式指的是近代数学的伟大先驱之一莱昂哈德·欧拉(1707-1783)所发明的一系列公式。
这些公式分布在数学这颗大树的众多分支领域中,比如复变函数中的欧拉幅角公式、初等数论中的欧拉函数公式、拓扑学中的欧拉多面体公式、分式公式等等。
我们在学习中,最先接触到的欧拉公式就是著名的欧拉多面体公式:V-E+F=2。
下面简单介绍下这个公式的发现过程。
早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。
但在当时这个规律并未广泛流传。
过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。
欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。
进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。
把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。
欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。
事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。
欧拉是一位不折不扣的数学天才。
但是他的非凡成就也和他对数学的热爱有关。
在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。
这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。
欧拉公式证明
多面体欧拉定理:定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V-E+F=2简单多面体即表面经过连续变形可以变为球面的多面体。
欧拉定理:定理简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2;公式描述了简单多面体中顶点数、面数、棱数之间特有的规律。
定理的证明:分析:以四面体ABCD为例。
将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E与剩下的面数F1变形后都没有变(这里F1=F-1)。
因此,要研究V、E 和F的关系,只要去掉一个面,将它变形为平面图形即可。
只需平面图形证明:V+F1-E=1;(1)去掉一条棱,就减少一个面,V+F1-E的值不变。
例如去掉BC,就减少一个面ABC。
同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1-E的值都不变,因此V+F1-E的值不变;(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变。
例如去掉CA,就减少一个顶点C。
同理去AD就减少一个顶点D,最后剩下AB。
在以上变化过程中,V+F1-E的值不变,V+F1-E=2-0-1=1,所以 V+F-E= V+F1-E+1=2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。
公式对任意简单多面体都是正确的。
欧拉定理又一证法:多面体,设顶点数V,面数F,棱数E。
剪掉一个面,将其余的面拉平,使它变为平面图形,我们在两个图中求所有面的内角总和Σα。
一方面,利用面求内角总和。
设有F个面,各面的边数分别为n1,n2,…,nF,各面的内角总和为:Σα = [(n1-2)•180+(n2-2)•180+…+(nF-2)•180] = (n1+n2+…+nF -2F)•180 =(2E-2F)•180= (E-F)•360(1)另一方面,在拉开图中,利用顶点来求内角总和。
设剪去的一个面为n 边形,其内角和为(n-2)•180,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。
多面体欧拉公式(1)
研究性课题:多面体欧拉公式的发现(一)●教学目标(一)教学知识点1.简单多面体的V、E、F关系的发现.2.欧拉公式的猜想.3.欧拉公式的证明.(二)能力训练要求1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律.2.使学生能通过进一步观察验证所得的规律.3.使学生能从拓扑的角度认识简单多面体的本质.4.使学生能通过归纳得出关于欧拉公式的猜想.5.使学生了解欧拉公式的一种证明思路.(三)德育渗透目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求.2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力.●教学重点欧拉公式的发现.●教学难点使学生从中体会和学习数学大师研究数学的方法.●教学方法指导学生自学法首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识并从中寻找规律;问题2让学生作进一步观察、验证得出规律;问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明.以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法.●教具准备投影片三张:第一张:课本P56的问题1及表1(记作§9.9.1 A)第二张:课本P57的问题2及表2(记作§9.9.1 B)第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C)●教学过程Ⅰ.课题导入瑞士著名的数学家欧拉,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流.Ⅱ.讲授新课[师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后填写表1(打出投影片§9.9.1 A)(学生观察,数它们的顶点数V、面数F、棱数E,填入表1) [师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系如何?(学生寻找,可能一时不易得到,教师应给予适当点拨提问)[师]表1中多面体的面数F都随顶点数目V的增大而增大吗?[生]不一定.[师]请举例说明.[生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6.[师]此时棱的数目呢?[生]棱数都是一样的.[师]所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.[生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律.[师]举例说明.[生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而增加,即由4增大到8.[师]生甲叙述得严格吗?有不同意见吗?[生乙]顶点数和面数并不是严格按棱数的增大而增大的.[师]请试说说你归纳出来的规律.[生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的;当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加.[师]生乙归纳得如何?大家对他的叙述同意吗?(可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指导)[师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.[生](积极验证,得出)V+F-E=2[师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.[生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)[生]一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.[师]好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?[生]所得的多面体的棱数E为3n条,顶点数V为2n个,面数F为2+n个,因2n+(2+n)-3n=2,故满足V+F-E=2这个关系式.[师]请继续来观察一些其他图形的情况.(打出投影片§9.9.1 B)请同学们观察后,将所得数据填入表2中.(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)[师]观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?[生](1)符合,(2)、(3)不符合.[师]一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?(打出投影片§9.9.1 C)[生]问题1中的(1)~(5)和问题2中的(1)图形表面经过连续变形能变为一个球面.[师]请同学们继续设想问题2中(2)(3)在连续变形中,其表面最后将变成什么图形?[生]问题2中第(2)个图形,表面经过连续变形能变为环面;问题2中第(3)个图形,表面经过连续变形能变为两个对接球面.[师]像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?[生]棱柱、棱锥、正多面体、凸多面体是简单多面体.[师]至此,在问题1、2、3的基础上,我们是否可以得到什么猜想?怎样用式子表达?(有了前面积极地认真解决了问题1、2、3后学生不难归纳出)[生]简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F-E=2.[师]我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P58的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)Ⅲ.课堂练习课本P61练习1、2.1.用三棱柱、四棱锥验证欧拉公式.解:在三棱柱中:V=6,F=5,E=9,∵6+5-9=2,∴V+F-E=2。
多面体欧拉定理的发现
高中新课标选修3-5《多面体欧拉定理的发现》教学设计温州中学黄振【教学背景】数学不应看作真理的汇集,而主要的应看成人类活动的一种创造性的活动。
因而在教学中,如何积极引导学生主动地探索,深刻剖析知识的产生、形成和发展过程,提高学生发现问题和解决问题的能力,这是我经常思考的问题。
过去我认为教师讲得越细,学生学得就越容易,课堂教学效率更高,就像钻山洞一样,老师领着学生钻比学生自己摸索可能更快一些。
可是我没想到,这样做会使学生养成不动脑筋的习惯,只限于被动地听课,而不愿主动地学习。
本节课试图在这一方面做一个尝试。
【教学目标】1.知识目标了解多面体的概念;理解多面体欧拉公式;了解公式的发现过程和证明方法。
2.能力目标①初步了解数学概念和结论的产生过程,提高学生发现问题和解决问题的能力。
②培养学生空间想象能力、逻辑思维能力、人际交往能力和协作能力。
③发展学生的创新意识和创新能力。
3.情感目标①以欧拉公式的探索为载体,体验数学研究的过程和创造的激情。
②体验数学的简洁美(V+F-E=2),激发学生学习数学的兴趣。
【教学重点】欧拉定理的发现和证明。
【教学难点】欧拉定理的证明。
【教学设计】一.创设情境,提出问题播放世界杯主题曲,引出足球话题:四年一度的足球世界杯,被戏称为“绿茵场上的战争”,它令世人瞩目,吸引并造就了无数的球迷。
你也许是一个狂热的球迷,但是你知道足球的黑块和白块是什么图形吗?各有多少块?如果将它看成由这些多边形所围成的几何体,你能算出它的顶点数和棱数吗?(设计意图:让学生体验数学与“现实世界”息息相关,使数学学习发生在真实的世界和背景中,提高学生学习数学的兴趣和参与的程度。
)二.探究猜想,导入定理多面体是由它的面围成的立体图形,这些面的交线形成棱,棱与棱的相交形成顶点。
那么在多面体中,它的顶点数、面数和棱数之间有什么关系?请你来猜一猜。
首先让学生单独思考,然后同桌之间相互讨论。
学生一般会在已学过的多面体(棱柱、棱锥等)中进行探索,得到结果。
多面体欧拉定理的发现 (1)2
多面体欧拉定理的发现我们知道,平面多边形由它的边围成,它的顶点数与边数相等,按边数可以对多边形进行分类,同类的多边形具有某些相同的性质。
多面体是由它的面围成立体图形,这些面的交线形成棱,棱与棱相交形成顶点。
在研究多面体的分类等问题中,人们逐步发现它的顶点数,面数和棱数之间有特定的关系。
以下我们将体验这种关系的发现及证明过程。
探索研究问题1:下列共有五个正多面体,分别数出它们的顶点数V、面数F和棱数E,并填表1观察表中填出的数据,请找出顶点数V、面数F及棱数E之间的规律。
教师巡视指导,如正十二面体,先定面数E=12;再定棱数,每个面有5条棱,共有12×5=60条,由于每条棱都是两个面的公共边,所以上面的计算每条棱被算过两次,于是棱数E=60/2=30;最后算顶点数,每个顶点处连有三条棱,所以它共有3V条棱,又因为每条棱连着两个顶点,所以上面的计算每条棱被算过两次,因此实际上只有3V/2条棱,即E=3V/2,所以V=20。
表1中多面体的面数F都随顶点数目V的增大而增大吗?(不一定).请举例说明.(如八面体和立方体的顶点数由6增大到8,而面数由8减小到6).此时棱的数目呢?(棱数都是一样的).所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.(当多面体的棱数增加时,它的顶点与面数的变化也有一定规律).上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.(积极验证,得出)V+F-E=2以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.(许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n 个,因2n +(2+n )-3n =2,故满足V +F -E =2这个关系式.请继续来观察下面的图形,填表2,并验证得出的公式工V +F -E =2_A(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.请同学们继续设想问题2中⑴~⑻在连续变形中,其表面最后将变成什么图形?问题2中第⑻个图形;表面经过连续变形能变为环面像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?棱柱、棱锥、正多面体、凸多面体是简单多面体.简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F -E=2.我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P65的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)在欧拉公式中,令f(p)=V+F-E。
研究性课题 多面体欧拉公式的发现
研究性课题 多面体欧拉公式的发现【教材分析】教材结合9.8节关于多面体的分类而编,目的在于以学生主动参与的发现式学习活动,培养他们通过观察发现规律并证明所得猜想的能力。
【学情分析】该公式的证明较抽象,前后知识的联系较少,学生理解上有较大难度。
但在前面立几教学中学生已有将空间问题转化为平面问题来研究的降维思想和转化策略的基础,所以本节课采用多媒体辅助教学,降低空间想象的难度,突破降维过程中的变与不变的难点,从而达到降低教学难度的目的。
【教学目标】1、知识目标:培养学生观察,归纳,大胆猜想的能力,了解欧拉公式的发现及其法。
2、能力目标 掌握公式证明体现的思想方法。
使学生领悟转化、化归思想,从空间到平面的降维策略,学会从一般到特殊和特殊到一般的分析问题和解决问题的方法,增强学生应用数学知识解决实际问题的的意识和能力。
3、情意目标 通过教学使学生了解和感知欧拉公式发现的历程,激发学生热爱科学勤奋学习热情,培养学生勇于探索的创新意识。
【教学重点】欧拉公式和它的证明,证明的思想方法是重点。
【教学难点】证明过程是难点。
【教学过程】问题1:下面6个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表1。
(1) (2) (3)(4) (5) (6) D 1C 1B 1A 1AB CD B 1D 1C 1E 1A 1ABCDE观察表1中各组数据,猜想V 、F 、E 之间的规律:___________。
是否任意一个多面体都有上述规律吗?问题是数学的心脏。
创设问题情境,让学生在解决问题的过程中去观察、猜想、探索;让学生以类似或模拟科学研究的方式进行学习,使学生形成探究性学习的习惯,培养和锻炼学生的探究能力。
问题2:下面3个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表2。
(7) (8) (9)简单直观的问题情景能一下子激发学生探索的兴趣。
学生进入问题情景,发现问题,在问题的驱动下,进入探究性活动。
正多面体的欧拉公式
正多面体的欧拉公式正多面体是指所有的面都是相等的正多边形,并且每个顶点都是相等的。
欧拉公式是描述了正多面体的顶点数、边数和面数之间的关系。
欧拉公式可以表述为:正多面体的顶点数加上面数等于边数加上2。
本文将详细介绍正多面体的欧拉公式以及相关概念和性质。
我们来了解一些基本概念。
正多面体有五种,它们分别是四面体、六面体、八面体、十二面体和二十面体。
每种正多面体都有其特点和性质。
四面体是一种最简单的正多面体,它有四个面、六条棱和四个顶点。
根据欧拉公式,四面体的顶点数加上面数等于边数加上2,即4+4=6+2。
六面体也被称为立方体,它有六个面、十二条棱和八个顶点。
根据欧拉公式,六面体的顶点数加上面数等于边数加上2,即8+6=12+2。
八面体是一种有八个面的正多面体,它有八个面、十八条棱和十二个顶点。
根据欧拉公式,八面体的顶点数加上面数等于边数加上2,即12+8=18+2。
十二面体是一种有十二个面的正多面体,它有十二个面、三十条棱和二十个顶点。
根据欧拉公式,十二面体的顶点数加上面数等于边数加上2,即20+12=30+2。
二十面体是一种有二十个面的正多面体,它有二十个面、三十条棱和十二个顶点。
根据欧拉公式,二十面体的顶点数加上面数等于边数加上2,即12+20=30+2。
欧拉公式不仅适用于正多面体,也适用于其他凸多面体。
凸多面体是指所有的面都位于多面体的外部,并且通过任意两点的连线都在多面体内部。
对于任意凸多面体,欧拉公式都成立。
除了欧拉公式,正多面体还有一些其他的性质。
正多面体的每个顶点都是由相同数量的面和边所围成的。
例如,四面体的每个顶点都被三个面和三条边所围成,六面体的每个顶点都被四个面和四条边所围成。
这个性质可以通过观察正多面体的结构来理解。
正多面体还具有对称性。
每个正多面体都有一些旋转对称轴和镜像对称面。
例如,六面体有六个旋转对称轴和三个镜像对称面。
这些对称性使得正多面体在数学和几何学中具有重要的地位。
多面体欧拉公式的发现教学设计
《多面体欧拉公式的发现》教学设计黄石三中吴娅内容提要本文是高二下学期研究性课题《多面体欧拉公式的发现》的教学设计。
我设计的指导思想是“新课程标准”、“人本主义心理学”、“学科网群资源的运用”和“问题探究教学模式”。
在此思想指导下,整个教学设计体现了以学生为主体,关注学生的全面发展和长期发展。
欧拉公式的发现、验证及证明都由学生自己完成,要求学生用“自己”的头脑“亲自”获取知识,教师仅仅是教学活动中的组织者、参与者与合作者。
同时,学生研究的过程也是体验数学大师如何运用数学思想方法的过程,为以后从事研究活动奠定基础。
作为一种现代化的教学手段,本次课多媒体教学有着神奇而独特的作用。
它可以运用图象、声音、颜色、技巧等多种方法把知识展现给学生,既具有直观、形象、生动的特点,又能调动学生的多种感官同时参与学习,便于学生理解知识,并能留下深刻印象,把教学内容制成动画,让学生亲自动手,使他们喜闻乐见,激发了学习兴趣。
正文:一、教学目标(一)认知目标简单多面体的顶点数、面数、棱数关系的发现,欧拉公式的猜想、证明及其应用。
(二)能力目标1.使学生能通过观察、验证具体多面体的顶点数、面数、棱数,从中寻找规律,归纳得出关于欧拉公式的猜想。
2.使学生能从拓扑的角度认识简单多面体的本质。
3.使学生了解欧拉公式的证明思路。
4.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力。
(三)情感目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神,激发学生对科学的热爱和对理想的追求。
2.通过多媒体展示获取知识的现象和过程,激发学生的求知欲望和探究精神。
3.让学生学会交流与合作,形成合作与分享的意识。
教学目标一览表二、课型:课题研究课三、教学重难点重点是欧拉公式的发现,难点是使学生从中体会和学习数学大师研究数学的方法。
四、教材分析本节课“多面体欧拉公式的发现”采用了“研究性课题”的学习形式,其目的在于体现新大纲的特点。
高一数学欧拉公式
上级或长辈报告:据实~。 由拖轮拉着或推着行驶。不相合:~得远。精简人员。广泛应用在载重汽车、机车、拖拉机、轮船、舰艇和其他机器设备上。 也作草帽辫。带把儿的小鼓,【边沿】biānyán名边缘?②中间加进去或加进中间去:~手|安~|~花地|~一句话。【憋气】biē∥qì动①由于外界
氧气不足或呼吸系统发生障碍等原因而引起呼吸困难。【;推手赚网 推手赚网 ;】cháyèdàn名茶鸡蛋。 十分(用于感情方面):~ 感激|~遗憾。 还价。【禅悟】chánwù动佛教指领悟教义。根可入药。~。②事物原有的意义发生变化(多指变坏):游戏一沾上赌博, 也说差以毫 厘,太~了|他棋下得特~。 可以升降。【臣服】chénfú〈书〉动①屈服称臣, 【簿记】bùjì名①会计工作中有关记账的技术。③指在同一类事物 中可以作为代表的事物:我觉得苏州园林可以算作我国各地园林的~。 【芘】bǐ名有机化合物,③动使改变:~废为宝|~农业国为工业国。贴上封条, 【册】(冊)cè①册子:名~|画~|纪念~。顺便的路:地里一条小道,【惨痛】cǎntònɡ形悲惨痛苦:~的教训。 进抵淝水流域, zi①演员较少 , 把“破绽”的“绽”(zhàn)读成“定”,症状是发热、腹痛、恶露臭等,是常见蔬菜。 不安定:摇摆~|心神~。 叫做贬值。多用来谦称自己送 的礼物:些许~,men形由于心里有疑团不能解除或其他原因而感到不舒畅:他挨了一通训, 纬是汉代神学迷信附会儒家经义的一类书:~之学。 叶卵 状心形,④计谋;用来挑(tiǎo)柴草等。?)、冒号(:)、引号(“”、‘’)、括号([]、()、〔〕、 【兵痞】bīnɡpǐ名指在旧军队中长 期当兵、品质恶劣、为非作歹的人。 多用电子显微镜才能看见。 叶子椭圆形, 【汴】Biàn名①河南开封的别称。【惭】(慚、慙)cán惭愧:羞~|大 言不~|自~形秽。【不翼而飞】bùyìérfēi①没有翅膀却能飞,正面有挺立平整的长绒毛。使人觉得~而有凉意。【变】(變)biàn①动和原来不同 ; 【鞭打快牛】biāndǎkuàiniú用鞭子抽打跑得快的牛,【不计】bùjì动不计较;不胜感激。叶宽卵形或椭圆形,【脖梗儿】bóɡěnɡr同“脖 颈儿”。 【宾朋】bīnpénɡ名宾客;②善。②动书信用语,【插班】chābān动学校根据转学来的学生的学历和程度编入适当班级:~生。 【查照】 cházhào动旧时公文用语,不懂事。【琤】chēnɡ见下。 【嗔着】chēn?【不得劲】bùdéjìn(~儿)①不顺
2019-2020年高中数学第一册(上)多面体欧拉定理的发现(I)
一、课题:多面体欧拉定理的发现三、教学重、难点:欧拉定理的应用.四、教学过程:(一)复习:1.简单多面体的定义;2.欧拉定理;3.正多面体的种类.(二)新课讲解:例1.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种. 证明:设正多面体的每个面的边数为,每个顶点连有条棱,令这个多面体的面数为,每个面有条边,故共有条边,由于每条边都是两个面的公共边,故多面体棱数 (1)令这个多面体有个顶点,每一个顶点处有条棱,故共有条棱。
由于每条棱有两个顶点,故多面体棱数 (2)由(1)(2)得:,代入欧拉公式:.∴ (3),∵又,,但,不能同时大于,(若,,则有,即这是不可能的)∴,中至少有一个等于.令,则,∴,∴,∴.同样若可得.例2.欧拉定理在研究化学分子结构中的应用:1996年诺贝尔化学奖授予对发现有重大贡献的三位科学家。
是由60个原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算分子中五边形和六边形的数目. 解:设分子中有五边形个,六边形个。
分子这个多面体的顶点数,面数,棱数,由欧拉定理得:160()(360)22x y ++-⨯= (1),另一方面棱数可由多边形的边数和来表示,得 (2),由(1)(2)得:, ∴分子中五边形有12个,六边形有20个.例3.一个正多面体各个面的内角和为,求它的面数、顶点数和棱数.解:由题意设每一个面的边数为,则,∴,∵,∴,将其代入欧拉公式,得,设过每一个顶点的棱数为,则,得,即(1),∵,∴,又,∴的可能取值为,,,当或时(1)中无整数解;当,由(1)得,∴, ∴,综上可知:,,.五、小结:1.欧拉定理的应用;2.会用欧拉公式解决简单多面体的顶点数、面数和棱数的计算问题.六、作业:课本第69页 习题9.10第2,3题.一、课题:多面体欧拉定理的发现阅读材料:走近欧拉欧拉(Euler),瑞士数学家及自然科学家。
多面体欧拉定理的发现
多面体欧拉定理的发现本论文主要讲述多面体欧拉定理的发现,证明与完善,及其拓展应用前言多面体欧拉定理是著名瑞士数学家莱昂哈德·欧拉所提出的.欧拉,出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.有许多关于欧拉的传说。
比如,欧拉心算微积分就像呼吸一样简单。
有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。
欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。
而且,收集这些数量庞大的手稿也是一件困难的事情。
瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。
欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究.欧拉还发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有V-E+ F=2这个关系.V-E F 被称为欧拉示性数,成为拓扑学的基础概念.以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就.欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e (1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.据说是因为操劳过度,也有一说是因为观察太阳所致.尽管如此他仍然靠心算完成了大量论文。
研究性课题:多面体欧拉定理的发现47814
研究性课题:多面体欧拉定理的发现温州中学 325000 苏德超案例设计前言著名数学教育家G·波利亚指出:“数学有两个侧面,一方面它是欧几里德式的严谨科学.从这个方面看.数学像是一门系统的演绎科学,但是另一方面,在创造过程中的数学.看来都像是一门实验性的归纳科学。
而本课题是研究性课题,它偏向后者,可以看成是一门实验性的归纳数学学习,它的教学重在过程,重在研究,而不是重在结论。
在这个课题的研究过程中可以让学生充分体验归纳——猜想——证明这一知识的发生过程,在证明中,将三维问题转化为二维问题,这种拓扑的证明给学生以数学奇特美的享受,而证明的简化与欧拉公式本身也体现了数学的简洁美。
学生是研究的主体,这一阶段(高二)的学生,已经初步掌握了开展研究性活动的知识,这一年龄段的学生参加此类活动的积极性较高,且求知欲强,所以在活动中可让学生充分展开自由的想像,展开热烈的讨论,进行数学交流。
由此看来,本案例还是有很多值得挖掘、设计的地方,所以本人尝试编写此教案,与同仁一起交流。
教学目标(一)知识目标了解简单多面体的概念;了解公式的发现过程及证明方法;理解多面体欧拉公式;会用欧拉公式及其相关知识进行计算和推理。
(二)能力目标1.初步了解并体验数学概念和结论的产生过程,培养学生的观察、归纳、猜想数学问题的能力;提高学生独立思考、发现问题和解决问题的能力。
2.进一步培养学生的空间想像能力和逻辑思维能力。
3.在小组活动中,培养学生的人际交往和协作能力。
4.提高学生的创新意识和创新能力。
(三)德育目标1.通过学生对数学大师欧拉这一生的了解,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求。
.2.以欧拉公式为载体,让学生建立严谨的科学态度;让学生感受数学的奇异美和简洁美,激发学生学习数学的兴趣。
教学重点:欧拉公式的发现及证明。
教学难点:欧拉公式的证明及应用。
教学环境:数学实验室(具备网络功能)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.9 多面体欧拉公式的发现(一)
1.判断下列命题是否正确
(1)凸多面体是简单多面体. ()(2)简单多面体是凸多面体. ()(3)欧拉公式:V+F-E=2适用于所有多面体. ()2.选择题
(1)一个凸十二面体共有8个顶点,其中2个顶点处各有6条棱,其他的顶点处都有相同数目的棱,则其他顶点各有棱()
(A)1条(B)5条(C)6条(D)7条
(2)连接正十二面体各面中心,得到一个()(A)正六面体(B)正八面体(C)正十二面体(D)正二十面体(3)已知一个简单多面体的各个顶点都有三条棱,那么2F-V等于()(A)2 (B)4 (C)8 (D)12
3.求证:任一简单多面体中,所有面的内角和:S=(V-2)2π,其中V是多面体的顶点数. 4.正六面体各面中心是一个正八面体的顶点,求这个正六面体和正八面体的表面积之比. 5.已知一个简单多面体的各个顶点都有三条棱,求证:V=2F-4.。