坡度与坡角
沪科九年级数学上册第23章2 第4课时 坡角、坡度问题
(3)若斜坡AB的坡度 i = 1∶2.5,l = 5 m,则 h =
B
h
C
l
A
知识回顾
利用解直角三角形的知识解决实际问题的一般过程:
(1)将实际问题抽象为数学问题;(画出平面图形,转
化为解直角三角形的问题)
(2)根据条件的特点,适当选用锐角三角函数等去解直
角三角形;
(3)得到数学问题的答案;
k
x2 x1
α
O
x
1.如图,直线y=2x+1向上的方向与x轴的正方向所夹的锐角为α.那么
(1)tan α=
2
;(2) sin α=
2 5
5 ;(3) cos α=
y
α
O
x
5
5
.
2. 在 平 面 直 角 坐 标 系 的 第 一 象 限 中 , 有 一 点 P(x , y) , 记
r=|OP|= ² + ².
要计算斜坡AB的坡角α,其中坡度与坡角之间的关系是tan α=i=1:3;
要计算AD,又有AD=AE+EF+FD,EF=BC=6 m,只要再分别求出AE和FD即可;
还要计算AB,在Rt△ABE中求解即可.
α
β
E F
A
23
6
B C
D
解:分别过点B、C作垂线,交AD于E、F点,垂足分别为E点、F点,则有
D
2.如图,水库大坝的横断面是四边形ABCD,BC∥AD,坝顶宽为6 m,
坝高为23 m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i'=1∶2.5,求:
(1)斜坡AB的坡角α的值(精确到1°);
(2)坝底宽AD和斜坡AB的值(精确到0.1 m).
坡度与坡角解析
第二步:利用正弦,通过坡角、斜边求对边
Pα
M
牛刀小试
1、某水坝的坡度为i = 1∶ 3 ,则坡角为 30°。
2、已知 ABC 中,∠C = 90°, ∠A的坡度i=1∶1, 则
∠A= 45° 。 第一二题:利用正切,通过坡度求坡角
3、如图,高2米的某地下车库的入口处有斜坡AB,其坡度
i=1∶2,则AB的长为 2 5 米。 B 第一步:利用正切,通过坡度
P
lM
查表可求得 ∠α 约为29°3′ ;第一步:利用正切,通过坡度求坡角
在直角三角形PMN中, ∠M=90°∠P= 29°3′ 。 PN=240m.由于NM是∠P的对边,PN是斜边,因此,
sin
α
=
NM PN
=
NM 240
.
即MN=
240·sinα
;可求
N
得 NM 240sin 293 116.5m.. 240米
坡度越大,山坡越陡.
(1)
(2)
自学指导
例6.一山坡的坡度i=1:1.8,小刚从山坡脚下点P上 坡走了240m到达点N,他上升了多少米(精确到 0.1m)?这座山坡的坡角是多少度(精确到1')?
分析
N
已知坡度i = 1:1.8,用α 表示坡角的大小,
h
由于 tan α =
1 1.8
0.5556.
。
5、斜坡的坡度是1:3,斜坡长=100米,求斜坡高为
_______米。
如果桃源水库某大坝的横断为等腰梯形,
大坝的顶宽(即等腰梯形的上底长)为11.6m,
巩固练习
大坝的坡度i=1:1.6,等腰梯形的高为12m.你能 求出坝基的底宽AB和坡角α吗?
应用2坡度坡角剖析讲解
山坡越陡。
1、斜坡的坡度是1 : 3,则坡角α=___3_0__度。
2、斜坡的坡角是450 ,则坡度是 __1_:_1___。
3、斜坡长是12米,坡高6米,则坡度是__1_:__3__。
h α
L
4、小明沿着坡角为20°的斜坡向上前 进80m, 则他上升的高度是( ).
A. 80 m cos 20
A
D
B
E
C
1、某商场为方便顾客使用购物车,准备将滚 动 电 梯 的 坡 面 坡 度 由 1∶1.8 改 为 1∶2.4( 如 图).如果改动后电梯的坡面长为13米,求改 动后电梯水平宽度增加部分BC的长。
2、如图,一段河坝的断面为梯形ABCD,试 根据图中数据,求出坡角α和坝底宽AD (单 位米,结果保留根号)
B. 80 m sin 20
C.80sin 20m
D.80cos 20m
5、如图是一个拦水大坝的横断面图,AD∥BC, (1)如果斜坡AB=10m,大坝高为8m,则斜坡AB的
坡度 iAB ____ .
(2)如果坡度 iAB 1: 3,则坡角B ____ .
(3)如果坡度 iAB 1: 2, AB 8m,则大坝高度为___.
i=1∶ 3
3、如图,某防洪指挥部发现长江边一处长500米,高10 米,背水坡的坡角为45°的防洪大堤(横断面为梯形 ABCD)急需加固.经调查论证,防洪指挥部专家组制 定的加固方案是:沿背水坡面用土石进行加固,并使
上底加宽3米,加固后背水坡EF的坡比 i=1∶ 3 .
(1)求加固后坝底增加的宽度AF;
(2)求完成这项工程需要土石多少立方米?(结果保 留根号)
4、如图,防洪大堤的横断面是梯形,背水坡AB
28.2 应用举例 方位角、坡度、坡角
因为在 Rt△EBD 中,i=DB∶EB=1∶1, 所以 BD=EB,所以 CD+BC=AE+AB, 即 2+x=4+ 5 x,解得 x=12,所以 BC=12 米.
上,则船C到海岸线l的距离是
km. 3
4.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供 的方案是水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示,已 知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin 50°≈0.77, cos 50°≈0.64,tan 50°≈1.20)
探究点二:坡度与坡角问题 【例2】 如图,水坝的横断面为梯形ABCD,已知上底长CB=5米,迎水面坡度为1∶ 面坡度为1∶1,坝高为4米,求:坝底AD和迎水面CD的长及坡角α 和β .
,背3 水
【导学探究】 1.作CE⊥AD,BF⊥AD,由坡度可得,CE∶ DE =1∶ 2.由坡度是坡角的 正切 值可得坡角.
第2课时 方位角、坡度、坡角
一、方位角 1.平面测量时,经常以正北、正南方向为基准描述物体运动的方向,这种表示方向的角叫 做方位角. 2.如图,射线OA,OB,OC,OD分别表示北偏东30°,南偏东70°,南偏西50°,北偏西35°.
二、坡度、坡角 1.坡度:坡面的铅直高度(h)与水平宽度(l)的比叫做坡面的坡度(或坡比),记作 i,即 i= h .
在 Rt△BCD 中,∠CBD=30°,tan 30°= CD = 3 ,所以 CD= 3 BD≈115(km),
人教版数学九年级下册28.2解直角三角形的应用——坡度问题课件
利用解直角三角形的知识解决实际问题的一般过 程是:
(1)将实际问题抽象为数学问题(画出平 面图形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形 函数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
作业
1.书P92-93第5、8题
2.练习册67、68页
5、(1)若h=2cm,l=5cm,则i= 1:2.5 (2)若i=1:1.5,h=2m,则 l = 3m
例1. 如图,拦水坝的横断面为梯 形ABCD(图中i=1:3是指坡面的 铅直高度DE与水平宽度CE的比), 根据图中数据求:(1)坡角a和β;
(2)坝底宽BC和斜坡CD的长 (精确到0.1m)
为 30 。
练习
1.我军某部在一次野外训练中,有一辆坦克准备通 过一座小山,已知山脚和山顶的水平距离为1000 米,山高为565米,如果这辆坦克能够爬300 的斜坡, 试问:它能不能通过这座小山?
B
565米
A
1000米
C
练习
2.如图,在山坡上种树,要求株距(相邻两树间的 水平距离)是5.5米,测得斜坡的倾斜角是24度,求 斜坡上相邻两树间的坡面距离是多少米?(精 确到0.1米)
BE CF 6 i 1: 3
DF 6 3
∵梯形ABCD是等腰梯A形
B
4
C
i 1: 3
6
α
EF
D
BC EF 4, AE DF 6 3
AD AE EF DF 6 3 4 6 3 12 3 4
• (2) tan i 1 : 3
30
答:路基下底宽AD为 12 3 4 米,坡角
B
24°
九下数学课件坡度和坡角有关的问题(课件)
【变式 2】如图,河 坝横断面迎水 坡 AB 的坡比为 1: 2 (坡
比是坡面的铅直高度 BC 与水平宽度 AC 之比),坝高 BC=
.
4m,则坡面 AB 的长度是
_____m
题型一 一个坡度问题
75m
【变式 4】如图,在平地上种植树木时,要求 株距(相邻两棵
树之间的水 平距离)为 10m,若在坡度为 i=1:2.5 的山坡上种
题型三 坡度修改问题
【变式 1】自开展“全民 健身运动”以来,喜欢户外步行健身的人越来越多.为方便群众
步行健身,某地政府决定对一段如图 1 所示的坡路进行改造.如图 2 所示,改造前的斜
坡 AB=200 米,坡度为 1: 3 ;将斜坡 AB 的高度 AE 降低 AC=20 米后,斜坡 AB 改造为
【例 3】为了学生的安全,某校决定将一段如图所示的步梯路段进
行改造.已知四边形 ABCD 为矩形,DE=10 m,其坡度为 i1=1∶ 3,
将步梯 DE 改造为斜坡 AF,其坡度为 i2=1∶4,则斜坡 AF 的长是
20.62mຫໍສະໝຸດ ________.(结果精确到 0.01 m,参考数据: 3≈1.732, 17≈4.123)
计算判断:
3
当 sin α= ,木箱底部顶点 C 与坡面底部点 A 重合时,
5
木箱上部顶点 E 会不会触碰到汽 车货厢顶部?
题型四 坡度安全问题
又∵∠EKF=∠AHB=90°,∴△EFK∽△ABH.
∴
EF EK
1.6 EK
= ,∴ = .
AB AH
1 0.8
解得 EK=1.28.
∴BJ+EK=0.6+1.28=1.88.
坡度和坡角
D
4.2米 A
32 °
12.51米
C
28 ° B
9
D
12.51米
C
4.2米 A
32 ° E
∟
∟
28 °
F
B
解:作DE AB,CF AB,垂足分别为E、F .由题意可知
DE CF 4.(2 米),CD EF 12.5(1 米).
在Rt△ADE中, i DE 4.2 tan 32 , AE AE
α
A
EF
D
=184′,AD=132.5 m,AB=23 10 m
3
问题探究
4
如图,坡面的铅锤高度( h)和水平长度( l) 的比叫做坡面坡度(或坡比),记作 i ,即 i h .
l 坡度通常写成 1 : m 的形式,如 i 1 : 6
坡面与水平面的夹角叫做坡角,记作 .
i h:l h
l
5
7
④堤坝横断面是等腰梯形,(如图所示)
若AB=10,CD=4,高h=4,则坡度i=__43___,AD=
____5___;
若AB=10,CD=4,i= 1
5
3
,则h=___5___.
D
C
h
i
∟
∟
AE
F
B
8
例1:如图,一段路基的横断面是梯形,高为4.2 米,上底的宽是12.51米,路基的坡面与地面的倾角 分别是32°和28°.求路基下底的宽.(精确到0.1米)
完成该工程需要多少土方?
ED C
α FA
B
11
解:作DG AB于G,作EH AB于H . CD∥AB, EH DG 5米.
ED C
DG 1 , AG 6米. AG 1.2
解直角三角形的应用——坡度、坡角
3.坡度与坡角的关系:
i=h:l=tanα
坡度越大,坡角就越 大 ,坡面 就越陡
自学检测:
知识点一 坡度与坡角
1.以下对坡度的描述正确的是( B )
A.坡度是指斜坡与水平线夹角的度数
B.斜坡是指斜坡的铅垂高度与水平宽度的比
C.斜坡式指斜坡的水平宽度与铅垂高度的比
D.坡度是指倾斜角度的度数
2、若斜坡的坡角为 5 6 ∘ 1 9 、,坡度i=3:2,则( C )
x- 2
AF =
=
°=
ta n ∠ D A F
ta n 3 0
3 (x - 2 )
AF=BE=BC+CE
即 3 (x - 2) = 2 3 &6.
DE=6米
物体通过的路程为 3 5 .
再试牛刀:
知识点二 坡度、坡角及实际问题
1. 如图,河堤横切面迎水坡AB的坡比是1:
,堤
3
高BC=10m,则坡面AB的长度是( C )
A.15m
B. m 2 0 3
C.20m
D. 1 0 3 m
2、如图是拦水坝的横切面,斜坡AB的水平宽度为
12m,斜面坡度为1:2,则斜坡AB的长为( B )
拓展提升:
如图,某校综合实践活动小组的同学欲测量公园内 一颗树DE的高度,他们在这棵树正前方一座楼亭前 的台阶上A点处测得树顶端D的仰角为30度,朝着这 棵树的方向走到台阶下的点C处,测得树顶端D的仰 角为60,已知A点的高度AB为2米,台阶AC的坡度为 1: 3 ,且B、C、E三点在同一条直线上,请根据以上 条件求出树DE的高度(测角器的高度忽略不计)
A. 4 3 m
B.6 5 m
C. 1 2 5 m
2.4三角函数应用——坡度
∴BE=AB·sin∠BAD=26×sin68°≈24.18 米;
(2)如果改造时保持坡脚A不动,坡顶B沿BC向左移11米到F点处, 问这样改造能确保安全吗?(参考数据:sin68°≈0.93, cos68°≈0.37,tan68°≈2.48,sin58°12'≈0.85,tan49°30'≈1.17)
(2)过点F作FM⊥AD于点M,连结AF, 则BF=11,FM=BE=24.18,EM=BF=11, 在Rt△ABE中, cos∠BAE= ,
∴AE=AB·cos∠BAE=26×cos68°≈9.62米,
∴AM=AE+EM ≈ 9.62+11 ≈ 20.62,
在Rt△AБайду номын сангаасM中,
tan∠FAM=
≈1.17,
4.按照精确度进行计算,确定答案以及注明单 位.
随堂练习 课本49页 随堂练习
2个概念: 坡度与坡角,
(1)坡面的铅直高度h 和水平宽度l的比叫做坡度
坡度一般用i来表示,即 i=1:m,如i=1:5
i
h l
,一般写成
(2)坡面与水平面的夹角 叫坡角
i h tan
l
i=h:L
h
α
L
显然,坡度越大,坡角 就越大,坡面就越陡.
水库大坝的横断面是梯形,坝顶宽6m,坝高22m, 斜坡AB的坡度i=1∶3,斜坡CD的坡度i′=1∶2.5, 求斜坡AB的坡角α。坝底宽AD和斜坡AB的长(精确 到0.1m).
∴∠FAM≈49°30'<50°,这样改造能确保安全。
小结
1.弄清坡度、坡角等概念的意义,明确各术语与 几何图中的什么元素对应,恰当地把实际问题转 化为数学问题,构建数学模型。
解直角三角形三《坡度、坡角》教学设计
《解直角三角形(坡度、坡角)》教学设计解直角三角形(三)一、教学目标1、巩固用三角函数有关知识解决问题,学会解决坡度问题.2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、培养学生用数学的意识,渗透理论联系实际的观点.二、教学重点、难点重点:解决有关坡度的实际问题.难点:理解坡度的有关术语.三、教学过程(一)情境导入:(二) 合作探究:1、理解坡度、坡角的概念坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。
即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.引导学生结合图形思考,坡度i与坡角α之间具有什么关系?答:i=h=tanl2、例题解析例1、一种坡屋顶的设计图如图所示. 已知屋顶的宽度l为6m,坡屋顶的高度h为√3 m. 求斜面AB的长度和坡角例2、一段河坝的横断面为等腰梯形ABCD ,试根据下图中的数据求出坡角α和坝底宽AD .(单位是米,结果保留根号)B 4 CA E D(三)、跟踪训练: (1)如图,某水库堤坝横断面迎水坡AB 的坡比是1:√3 ,堤坝高BC=50m ,则迎水坡面AB 的长度是( )(2)如图, 一山坡的坡度为i = 1∶2 . 小刚从山脚A 出发, 沿山坡向上走了240 m 到达点C. 这时 小刚上升了多少米?BE=6∠D=αi 1:3(3)拦水坝的横断面为等腰梯形ABCD,坝顶宽5m,坝底宽13m,坡角30°,求这个梯形面积。
(四)拓展延伸同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:水库大坝的横断面是梯形,坝顶宽6m,坝高20m,斜坡AB的坡度i=1∶1,斜坡CD的坡度i=1∶√3,①求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长.②如果坝长100m,那么整个坝体有土多少立方米?(√3≈1.7)(五)小结与作业水库大坝的横断面是梯形,坝顶宽5m,坝高20m,斜坡AB的坡度i=1:√3,斜坡CD的坡度i=1:2.1、求斜坡AB的坡角α,坝底AD的长。
24.4.3坡度、坡角问题课件
4.得到实际问题的答案.
课堂小结
3.
4.
P.121 12.; P123页13
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
D
12.51
C
28⁰
【分析】
4.2 A
32⁰
E 12.51 F
B
(1)对于梯形问题通常怎么做辅助线?把它转化成 什么问题? (2)要求下底AB的长,可以分别求哪些线段的长? (3)怎么求AE,BF?
变式训练:
如图,某地计划在河流的上游修建一条 拦水大坝。大坝的横断面ABCD是梯形, 坝顶宽BC=6米,坝高25m,迎水坡AB的坡 度 i=1: ,背水坡CD的坡角为450 求(1)求坡角α ; (2)求拦水大坝的底面AD的宽.
——坡度、坡角
裴营一初中 余超
学习目标
1、知道坡度、坡角的意义。 2、能将h、L、i各量的计算问题转化为 解直角三角形的问题,这些量中若已知 两个量,可求其他量. 3、会运用解直角三角形有关知识解决 与坡度、坡角有关的实际问题。 4、在有些实际问题中没有直角三角形, 学会添加辅助线构造直角三角形.
知识回顾
解直角三角形的依据
(1)三边之间的关系:a2+b2=c2(勾股定理); ; (2)两锐角之间的关系:∠ A+ ∠ B= 90º (3)边角之间的关系: sinA= a b cosA= c a tanA= b A B
坡度与坡角
C
i=1:2.5
α
23
EF D
(2)垂线BE、CF将梯形分割成Rt△ABE,Rt△CFD和 矩形BEFC,则AD=AE+EF+FD, EF=BC=6m,AE、DF可结 合坡度,通过解Rt△ABE和Rt△C的坡角的问题实质上 就是解Rt△ ABE和Rt△ CDF。
6
i 1 : 3B
C
i=1:2.5
A
α
23
EF D
例1.水库大坝的横断面是梯形,坝顶宽6m,坝高 23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度 i=1∶2.5,求:坝底AD与斜坡AB的长度。(精确
到0.1m )
分析:(1)由坡度i会想到产
生铅直高度,即分别过点B、
C作AD的垂线。
A
6
i 1 : 3B
的比叫做坡面的坡度(或坡比),记作i, 即 i=—h—
l
坡度通常写成1∶m的形式,如i=1∶6.
3、坡度与坡角的关系
i
h l
tan
坡度等于坡角的正切值
显然,坡度越大,坡角 就越大,坡面就越陡.
例1.水库大坝的横断面是梯形,坝顶宽6m,坝高23m, 斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求:坝 底AD与斜坡AB的长度。(精确到0.1m )
C.80sin 20m
D.80cos 20m
5、如图是一个拦水大坝的横断面图,AD∥BC, (1)如果斜坡AB=10m,大坝高为8m,则斜坡AB的 坡度 iAB ____ . (2)如果坡度 iAB 1: 3,则坡角B ____ .
(3)如果坡度 iAB 1: 2, AB 8m,则大坝高度为___.
直角三角形的应用 第3课时
坡度坡角的概念
坡度坡角的概念
坡度和坡角是两个相关概念,常用于测量地形特征或平面特征。
坡度是指一个平面向上或向下开口的陡峭程度或高低差率,以单位长度为单位。
它可以用来衡量地势的陡峭程度,可以衡量山坡的高度和山坡的深度,也可以衡量河流的坡度。
坡角是指地形特征中,两个面间夹脚的角度大小。
它可以表示不同斜坡的分类。
通常,人们定义45度以下为斜坡,45-90度之间定义为陡峭斜坡,90度以上定义为悬崖。
坡度和坡角这两个概念之间有很多相互关联的关系。
当坡度增加时,坡角也会随之增大,反之,坡度降低时,坡角也会随之减小。
另外,当坡度固定时,坡角也会受空间限制(地形特征设置)的影响,只要坡度没有发生变化,坡角也不会发生变化。
因此,坡度和坡角这两个概念是彼此联系的,它们是地形特征中非常重要的概念,它们也是非常值得了解和研究的概念。
解直角三角形(坡度和坡角)讲义
解直角三角形(坡度和坡角)一、知识点讲解1、坡角:坡面与水平面的夹角叫做坡角,记作α。
2、坡度(或坡比):坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即 lh i =,坡度通常写成1∶m 的形式。
3、坡度与坡角的关系: αtan ==lh i 坡度等于坡角的正切值二、典例分析题型一:利用解直角三角形解决坡度、坡角问题例1 水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i =1∶2.5,求:(1)坝底AD 与斜坡AB 的长度(精确到0.1m );(2)斜坡CD 的坡角α(精确到 1°)。
变式练习:1、如图,一人滑雪沿坡度为1:2斜坡滑下,下滑了距离s =100米,则此人下降的高度为( )A 、50米B 、350米C 、520米D 、550米第1题 第2题 第3题2、如图是人民广场到重百地下通道的手扶电梯示意图,其中AB 、CD 分别表示地下通道、人发广场电梯口处地面的水平线,已知∠ABC =135°,BC 的长约为25m ,则乘电梯从点B 到点C 上升的高度h 是。
3、如图,某拦河坝截面的原设计方案为:AH ∥BC ,坡角∠ABC =74°,坝顶到坝脚的距离AB =6 m .为了提高拦河坝的安全性,现将坡角改为55°,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1 m ).题型二:利用解直角三角形解决其它例2 如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)变式练习:1、如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).第1题第2题2、小强和小明去测得一座古塔的高度,如图,他们在离古塔60m处(A)用测角仪测得塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔的高BE为。
解直角三角形的应用——坡度问题.2_解直角三角形(坡度问题)
h i tan l
的关系
h i l h 水库 α
显然,坡度越大,坡角
就越大,坡面就越陡.
l
h α
L
45 度。 1、斜坡的坡比是1:1 ,则坡角α=______
1: 3 。 2、斜坡的坡角是300 ,则坡比是 _______
1: 3 。 3、斜坡长是12米,坡高6米,则坡比是_______
C
i 1: 3
α D
A
E
F
BC EF 4, AE DF 6 3 AD AE EF DF 6 3 4 6 3 12 3 4
• (2) tan i 1 : 3
30
答:路基下底宽AD为 12 3 4 米,坡角 为 30 。
结束寄语
业精于勤而荒于嬉
B
C
(
24°
5.5 A
化整为零,积零为整,化曲为直,以直代曲的解决问题的策略 解直角三角形有广泛的应用,解决问题时,要根据实际情 况灵活运用相关知识,例如,当我们要测量如图所示大坝的 高度h时,只要测出仰角a和大坝的坡面长度l,就能算出 h=lsina,但是,当我们要测量如图所示的山高h时,问题就 不那么简单了,这是由于不能很方便地得到仰角a和山坡长 度l
中考语录
•中考是一场跳高比赛,取 胜关键在于你起跳时对大 地用力多少!
28.2解直角三角形的应用
——坡度问题
1.坡度与坡角
(1)坡面的铅直高度h 和水平宽度 l的比叫做坡度
h 坡度一般用i来表示,即 i ,一般写成 l
i=1:m,如i=1:5 (或坡比)
(2)坡面与水平面的夹角 叫坡角 2.坡度与坡角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于坡度i =1:1.6 ,对边高DE=12m,可求出邻边AE
1 DE 12 i 1.6 AE AE
BF=AE =19.2(m)
∴AE=19.2(m),
在直角三角形PMN中, ∠M=90°∠P= 29°3′ 。 PN=240m.由于NM是∠P的对边,PN是斜边,因此, sin α = NM = NM . sinα ;可求 PN 240 即MN= 240· 240米 得 NM 240 sin 293 116.5 m . . P α 第二步:利用正弦,通过坡角、斜边求对边
5、斜坡的坡度是1:3,斜坡长=100米,求斜坡高为
_______米。
如果桃源水库某大坝的横断面为等腰梯形, 大坝的顶宽(即等腰梯形的上底长)为11.6m, 大坝的坡度i=1:1.6,等腰梯形的高为12m.你能 巩固练习 求出坝基的底宽AB和坡角α吗? 解:在等腰梯形ABCD中,从顶点D作下底 AB的垂线DE、CF,垂足为E、F.
E
h α
L
1、斜坡的坡度是 1 : 3 / 3 ,则坡角α=______度。 2、传送带和地面所成的斜坡的坡比为1:2,把物体 从地面送到离地面3米高的地方,则物体通过的路程 为 _______米。 3、斜坡的坡角是600 ,则坡比是 _______。
4、斜坡长是12米,坡高6米,则坡比是_______。
28.3
解直角三角形及应用 ——坡度与坡角
学习目标:理解坡度及坡角的定义; 会利用三角函数知识解决 坡度、坡角问题
概念理解
坡度和坡角
1、按课本要求观察P.127的图片,比较哪个山坡比 N 较陡?
升高的高度h i , 水平距离l
h
坡度通常写成 1 : m 的形式.
山坡与地平面的夹角叫作坡角.
坡度等于坡角的正切. 即i=tan ɑ 坡度越大,山坡越陡.
P
l
M
(1)
(2)
自学指导 例6.一山坡的坡度i=1:1.8,小刚从山坡脚下点P上 坡走了240m到达点N,他上升了多少米(精确到 0.1m)?这座山坡的坡角是多少度(精确到1')? 分析 α 表示坡角的大小, 已知坡度i = 1:1.8,用 N
h
1 0.5556. tan α = P l M 由于 。 1.8 查表可求得 ∠α 约为29°3′ ; 第一步:利用正切,通过坡度求坡角
A D
B
C
2、如图,铁路路基横断面为一个 等腰梯形,若腰的坡度为1:3, 顶宽图,一防洪拦水坝的横断面为梯形 ABCD,坝顶宽BC=3米,坝高BE=6米, 坡角α为45°,坡角β为60°,求横断面 (梯形ABCD)的面积。
B C
α A
β
E
D
4、如图,Rt△ABC是一防洪堤背 水坡的横截面图,斜坡AB的长为12m, 它的坡角为45o,为了提高该堤的防 洪能力,现把它改成坡比为1:2的斜 坡AD. 求DB的长.
N
M
牛刀小试 1、某水坝的坡度为i = 1∶
3 ,则坡角为 30°。
2、已知 ABC 中,∠C = 90°, ∠A的坡度i=1∶1, 则 ∠A= 45° 。 第一二题:利用正切,通过坡度求坡角
3、如图,高2米的某地下车库的入口处有斜坡AB,其坡度 i=1∶2,则AB的长为 2 5 米。
B
B 第一步:利用正切,通过坡度
求坡角 第二步:利用正弦,通过坡角、 对边求斜边
A
C A
C C
3、如图,我国为保持水土实行退耕还林补贴, 某村准备在坡角α 为的山坡上栽树,要求相 邻两颗树之间的水平距离为5米,那么在两树 在坡面上的距离AB长为( )
4、如图,斜坡AC的坡度为1∶ ,AC=10米, 坡顶有一旗杆BC,旗杆顶端B点与A点有一条 彩带AB相连,AB=14米,求旗杆BC的高度.
D C
A
E
F
B
坡度和坡角
坡度
N
h
升高的高度h i , 水平距离l
坡度通常写成 1 : m 的形式.
山坡与地平面的夹角叫作坡角. 注意:坡度是个比,坡角是 个角 坡度等于坡角的正切.
坡度越大,山坡越陡.
(1)
P
l
M
(2)
1、如图:水库大坝的截面是等腰梯形 ABCD,坝顶AD=6m,坡长CD=8m, 坡底BC=30m, ∠ ADC=135°。 (1)求tan∠ABC的大小; (2)如果坝长100m,那么建筑这个大 坝共需多少土石料?
5 、 如 图 , 等 腰 梯 形 ABCD 中 , AD∥BC,tanB= 3 ,上底AD=10,梯 形的高是6,
求(1)∠B的度数;(2)下底BC的值。
第三步:利用正切,通过坡度、 对边求邻边
AB CD 2 AE 11.6 2 19.2 50(m)
5分钟后,比谁能正确完成解答!
第四步:利用对称性求边BF
课堂练习:1、必做题 一河提横断面为梯形,上底为4米,堤 高为6米,斜坡AD的坡度为1:3,斜坡 BC的坡度为1:1,求河堤横断面的面积;