关于专题 滑块与木板模型
专题05+滑块木板模型
专题05 滑块木板模型【模型归纳】模型一 光滑面上外力拉板加速度分离不分离m 1最大加速度a 1max =μg m 2加速度a 2=(F -μm 1g )/m 2条件:a 2>a 1max 即F >μg (m 1+m 2)条件:a 2≤a 1max 即 F ≤μg (m 1+m 2) 整体加速度a =F /(m 1+m 2) 内力f =m 1F /(m 1+m 2)模型二 光滑面上外力拉块加速度分离不分离m 2最大加速度a 2max =μm 1g/m 2 m 1加速度a 1=(F -μm 1g )/m 1条件:a 1>a 2max 即F >μm 1g (1+m 1/m 2)条件:a 2≤a 1max 即 F ≤μm 1g (1+m 1/m 2) 整体加速度a =F /(m 1+m 2) 内力f =m 2F /(m 1+m 2)模型三 粗糙面上外力拉板不分离(都静止) 不分离(一起加速)分离条件: F ≤μ2(m 1+m 2)g条件:a 2≤a 1max即 μ2(m 1+m 2)g<F ≤(μ1+μ2)g (m 1+m 2) 整体加速度a =[F -μ2(m 1+m 2)g )]/(m 1+m 2) 内力f =m 1a条件:a 2>a 1max =μ1g 即F >(μ1+μ2)g (m 1+m 2)外力区间范围模型四 粗糙面上刹车减速一起减速减速分离m 1最大刹车加速度:a 1max =μ1g 整体刹车加速度a =μ2g 条件:a >a 1max 即μ2>μ1 m 1刹车加速度:a 1=μ1gm 2 m 1 μ Ff光滑afm 2 m 1 μ F f光滑a fm 2 m 1 μ1 Ff 1af 1μ2f 2 F (μ1+μ2)g (m 1+m 2)μ2(m 1+m 2)g分离一起加速都静止m 2 m 1 μ1f 1 vf 1 μ2f 2a条件:a ≤a 1max 即μ2≤μ1 m 2刹车加速度:a 2=μ2(m 1+m 2)g -μ1m 1g )]/m 2 加速度关系:a 1<a 2模型五 粗糙面上外力拉块μ1m 1g>μ2(m 1+m 2)g 一起静止 一起加速分离条件: F ≤μ2(m 1+m 2)g 条件:μ2(m 1+m 2)g<F ≤(μ1-μ2)m 1g (1+m 1/m 2) 整体加速度a =[F -μ2(m 1+m 2)g )]/(m 1+m 2) 内力f 1=μ2(m 1+m 2)g+m 2a条件:a 1>a 2max =[μ1m 1g -μ2(m 1+m 2)g ]/m 2 即F >(μ1-μ2)m 1g (1+m 1/m 2)外力区间范围【常见问题分析】问题1. 板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 02-½a 1t 02=L 分离,位移关系:x 相对=½a 1t 02-½a 2t 02=Lm 2 m 1 μ1Ff 1 a f 1 μ2f 2F (μ1-μ2)m 1g (1+m 1/m 2μ2(m 1+m 2)g分离一起加速一起静止m 1Fm 2Lm 1F m 2 Lx 1F Fx 2 x 相对m 1m 2v 1v 2 x 1 F Fx 2x 相对m m 2 v 1v 2 t 0t/sv 2v/ms -1 a 1a 2 v 1 x 相对 t 0t/sv 1 v/ms -1a 2a 1 v 2 x 相对问题2. 板块模型中的运动学多过程问题1——至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:①板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv·(t 1+t 2)/2=L ; 利用相对运动Δv =(a 2-a 1)t 1 、Δv =(a 2+a 1')t 2问题3. 板块模型中的运动学多过程问题2——抽桌布问题抽桌布问题简化模型过程①:分离过程:①匀减速m 1F m 2 Lx 1 F F x 2x 相对mm 2 v 1v 2 x 1'F x 2' x 2相对 mm 2v 1v 2t 1t/sv 1 v/ms -1 a 2a 1v 2 x 1相对 t 1t/sv 1 v/ms -1 a 2 a 1v 2 x 1相对 x 2相对 a 1't 2 ABam 1 F m 2 L 1L 2x 1 FFx 2L 1 m 1 m 2 v 1v 2x 1 FL 2m 1 m 2v 1x 1分离,位移关系:x 2-x 1=L 1 0v 0多过程问题,位移关系:x 1+x 1'=L 2问题4. 板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2t 0t/sv 2v/ms -1 a 1a 2 v 1 x 相对 t 0t/sv 1 v/ms -1a 1 v 2 x 1x 1' a 1' m 1 v 0 m 2μ2 μm 1v 0m 2μ2μx 1 v 0 x 2x 相对mm 2 v 共v 共 x 1v 0 x 2 x 相对m 1m 2v 共v 共t 0 t/s0 v 0 v/ms -1a 2 a 1v 共 x 相对a 共t 0 t/s0 v 0 v/ms -1a 2 a 1v 共 x 相对a 共t 0 t/s 0 v 0 v/ms -1 a 2a 1v 共 x 1相对a 1' x 2相对 a 2'【例1】一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m ,如图(a)所示。
滑块与木板问题
同步练习
chenzhs
1.如图所示,长为L=6m、质量M=4kg的长木板放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1kg的物块,物块与木板间的动摩擦因数μ=0.4,开始时物块与木板都处于静止状态,现对物块施加F=8N,方向水平向右的恒定拉力,求:(g=10m/s2) ⑴小物块的加速度; ⑵物块从木板左端运动到右端经历的时间。
M
m
F
chenzhs
(2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2' 解得:a2'=4.7m/s2………④ 设二者相对滑动时间为t,在分离之前 小滑块:x1=½ a1t2 …………⑤ 木板:x1=½ a2't2 …………⑥ 又有x2-x1=L …………⑦ 解得:t=2s …………⑧
m
V0
M
解析 (1)m相对M水平向右运动,所以m受到摩擦力如图, 力的作用是相互的,所以M受到摩擦力如图
M
fm
m
fm
(2)由牛顿第二定律可得: m的加速度为 a1=μmg/m=μg M的加速度为a2=μmg/M
(3)分析m与M的运动状态 m:初速度为V0,加速度为a1的匀减速直线运动 M: 初速度为0,加速度为a2的匀加速直线运动
滑块与木板问题
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
考点1、板块的临界问题 【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求力F的大小范围。
F
M
m
(1)
知识点52应用三大观点解决滑块与长木板碰撞问题
学问点52:应用三大观点解决滑块与长木板碰撞问题【学问思维方法技巧】〔1〕滑块与木板碰撞模型的特点:系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统削减的机械能.假设滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大.〔2〕滑块与木板碰撞模型的求解方法:①求速度:依据动量守恒定律求解,讨论对象为一个系统;②求时间:依据动量定理求解,讨论对象为一个物体;③求系统产生的内能或相对位移:依据能量守恒定律Q=fΔx或Q=E初-E末,讨论对象为一个系统.考点一:滑块与木板碰撞模型题型一:滑块带木板模型【典例1根底题】如下图,光滑水平面上有质量为M且足够长的木板,木板上放一质量为m、可视为质点的小木块.现两次分别使木块获得向右的水平初速度v0和2v0,两次运动均在木板上留下划痕,那么两次划痕长度之比为( )A. 1∶4B. 1∶4C. 1∶8D. 1∶12【典例1根底题】【答案】A【解析】木块从开头到相对木板静止的过程中,木块和木板组成的系统水平方向上动量守恒,取向右为正方向,当木块的初速度为v0时,那么有mv0=(M+m)v,解得v=;依据能量守恒定律有μmgs=mv02-(M+m)v2,解得划痕长度s=.同理,当木块的初速度为2v0时,那么划痕长度s′=.可知两次划痕长度之比为s∶s′=1∶4,故A 正确,B、C、D错误.【典例1根底题对应练习】如下图,质量m=2 kg的滑块(可视为质点),以v0=5 m/s的水平初速度滑上静止在光滑水平面的平板小车,假设平板小车质量M=3 kg,长L=4.8 m。
滑块在平板小车上滑移1.5 s后相对小车静止。
求:(1)滑块与平板小车之间的动摩擦因数μ;(2)假设要滑块不滑离小车,滑块的初速度不能超过多少(g取10 m/s2)。
【典例1根底题对应练习】【答案】(2)4 2 m/s【解析】(1)滑块滑上平板小车到与平板小车相对静止,设共同速度为v1,依据动量守恒定律有mv0=(m+M)v1,对滑块,由动量定理得-μmgt=mv1-mv0,解得μ=。
动力学和能量观点的综合应用之滑块-木板模型
动力学和能量观点的综合应用之滑块—木板模型问题1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.4.滑块—木板模型问题的分析和技巧(1)解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(2)规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE内=-ΔE机=F f x相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.【题型1】如图所示,一质量m=2 kg的长木板静止在水平地面上,某时刻一质量M=1 kg 的小铁块以水平向左v0=9 m/s的速度从木板的右端滑上木板.已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取重力加速度g=10 m/s2,木板足够长,求:(1)铁块相对木板滑动时木板的加速度的大小;(2)铁块与木板摩擦所产生的热量Q和木板在水平地面上滑行的总路程x.【题型2】图甲中,质量为m1=1 kg的物块叠放在质量为m2=3 kg的木板右端.木板足够长,放在光滑的水平面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10 m/s2.甲(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4 s内,若拉力F的变化如图乙所示,2 s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4 s内木板和物块的v-t图象,并求出0~4 s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.【题型3】如图所示,水平地面上有一质量为M且足够长的长木板,一个质量为m的煤块(可视为质点)放在长木板的最右端。
高一物理期末复习专题强化:滑块--木板模型
班级姓名学号专题强化:滑块--木板模型【教学目标】1、掌握滑块—滑板类问题的主要题型及特点。
2、强化受力分析,运动过程分析;抓住运动状态转化时的临界条件。
【课堂活动】例1:质量m=1kg的滑块(滑块大小忽略不计)放在质量为M=2kg的长木板左端,木板放在光滑的水平地面上,滑块与木板之间的动摩擦因数为μ=0.2,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平恒力F0拉滑块,使滑块与木板以相同的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F1=2N拉滑块,此时滑块与木板间摩擦力多大?(3)用水平恒力F2=8N拉滑块向木板的右端运动,求滑块运动到木板右端所用的时间.(4)用水平恒力F2=8N拉滑块向木板的右端运动,经过3s后撤去,要使滑块不从木板上掉下来,木板至少多长?(5)滑块以某一初速度从木板左端滑上木板,为了保证滑块不从木板的右端滑落,滑块滑上长木板的初速度应为多大?例2:如图所示,光滑水平面上静止放着长L=4 m,质量为M=3 kg的木板,一个质量为m=1 kg的小物体(可视为质点)放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10 m/s2)(1)为使两者保持相对静止,F不能超过多少?(2)用水平恒力F1=7N拉木板,此时木板的加速度多大?(3)如果水平恒力F1=7 N,求小物体离开木板时的速度?(4)用水平恒力F1=7N拉木板向右运动,经过4s后撤去,要使滑块不从木板上掉下来,木板至少多长?(5)若木板以速度v0=2m/s向右作匀速直线运动,将滑块轻轻放在木板上的右端,它们相对静止时,滑块与木板左端的相距多远?【课堂活动】1.质量为m的长木板放在光滑的水平面上,质量为0.5m的物块放在长木板上,整个系统处于静止状态.若对物块施加水平拉力(如图甲),使物块能从长木板上滑离,需要的拉力至少为F1;若对长木板施加水平拉力(如图乙),也使物块能从长木板上滑离,需要的拉力至少为F2,则F1:F2为( )A.1:2 B.2:1 C.2:3 D.3:22.如图所示,质量为M=2kg的长木板位于光滑水平面上,质量为m=1kg的物块静止在长木板上,两者之间的滑动摩擦因数为µ=0.5.重力加速度g取10m/s2,物块与长木板之间的最大静摩擦力等于两者之间的滑动摩擦力。
专题 动力学中的“滑块木板模型” (解析版)
专题18 动力学中的“滑块木板模型”常考点动力学中的“滑块木板模型”分析【典例1】质量m0=30kg、长L=1m的木板放在水平面上,木板与水平面的动摩擦因数μ1=0.15.将质量m=10kg的小木块(可视为质点),以v0=4m/s的速度从木板的左端水平滑到木板上(如图所示),小木块与木板面的动摩擦因数μ2=0.4(最大静摩擦力近似等于滑动摩擦力,g取10m/s2),则以下判断中正确的是()A.木板一定向右滑动,小木块不能滑出木板B.木板一定向右滑动,小木块能滑出木板C.木板一定静止不动,小木块能滑出木板D.木板一定静止不动,小木块不能滑出木板【解析】木块受到的滑动摩擦力为F f2,方向向左F f2=μ2mg=40N木板受到木块施加的滑动摩擦力为F′f2,方向向右,大小为F′f2=F f2=40N木板受地面的最大静摩擦力等于滑动摩擦力,即F f1=μ1(m+m0)g=60NF f1方向向左F′f2<F f1木板静止不动,木块向右做匀减速运动,设木块减速到零时的位移为x,则由0-v2=-2μ2gx得x=2m>L=1m故小木块能滑出木板。
【典例2】如图所示,一块足够长的轻质长木板放在光滑水平地面上,质量分别为m A =1kg 和m B =2kg 的物块A 、B 放在长木板上,A 、B 与长木板间的动摩擦因数均为μ=0.4,最大静摩擦力等于滑动摩擦力。
现用水平拉力F 拉A ,取重力加速度g =10m/s 2。
改变F 的大小,B 的加速度大小可能为( )A .1.5m/s 2B .2.5m/s 2C .3.5m/s 2D .4.5m/s 2【解析】物块A 、B 放在轻质长木板上,二者所受摩擦力大小相等,由于A 物块所受最大静摩擦小于B 物块的。
故B 物块始终相对长木板静止,当拉力增加到一定程度时,A 相对长木板滑动,B 所受的最大合力等于A 的最大静摩擦力,即B Amax A f f m g μ==根据牛顿第二定律,有B B Bmax f m a =可知B 的最大加速度为2Bmax 2m /s a =【典例3】如图所示,质量为M =5kg 的足够长的长木板B 静止在水平地面上,在其右端放一质量m =1kg 的小滑块A (可视为质点)。
微专题16 牛顿运动定律应用之“滑块—木板模型”问题
微专题16 牛顿运动定律应用之“滑块—木板模型”问题【核心要点提示】1.问题的特点滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.2.常见的两种位移关系(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.【核心方法点拨】此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.【微专题训练】类型一:滑块-木板间有摩擦,木板与地面间无摩擦【例题1】(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A =6 kg,m B=2 kg.A、B间动摩擦因数μ=0.2.A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)()A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止【解析】假设细线不断裂,则当细线拉力增大到某一值A物体会相对于B物体开始滑动,此时A、B之间达到最大静摩擦力.以B为研究对象,最大静摩擦力产生加速度,由牛顿第二定律得:μm A g=m B a,解得a=6 m/s2以整体为研究对象,由牛顿第二定律得:F m=(m A+m B)a=48 N即当绳子拉力达到48 N时两物体才开始相对滑动,所以A、B错,D 正确.当拉力F=16 N时,由F=(m A+m B)a解得a=2 m/s2,再由F f=m B a得F f=4 N,故C正确.【答案】CD【变式1-1】如图所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,最大静摩擦力等于滑动摩擦力,下列选项可能正确的是()A.a m=2 m/s2,a M=1 m/s2B.a m=1 m/s2,a M=2 m/s2C.a m=2 m/s2,a M=4 m/s2D.a m=3 m/s2,a M=5 m/s2【解析】若物块与小车保持相对静止一起运动,设加速度为a,对系统受力分析,由牛顿第二定律可得:F=(M+m)a,隔离小物块受力分析,二者间的摩擦力F f为静摩擦力,且F f≤μmg,由牛顿第二定律可得:F f=ma,联立可得:a m=a M=a≤μg=2 m/s2.若物块与小车间发生了相对运动,二者间的摩擦力F f为滑动摩擦力,且a m<a M,隔离小物块受力分析,如图所示,由牛顿第二定律可得:F f=μmg=ma m,可得:a m=2 m/s2,选项C正确,选项A、B、D错误.【答案】C【变式1-2】如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F =kt,其中k为已知常数.设物体A、B之间的滑动摩擦力大小等于最大静摩擦力F f,且A、B的质量相等,则下列可以定性描述长木板B运动的v-t图象是()【解析】A、B相对滑动之前加速度相同,由整体法可得:F=2ma,当A、B间刚好发生相对滑动时,对木板有F f=ma,故此时F=2F f=kt,t=2F fk,之后木板做匀加速直线运动,故只有B项正确.【答案】B【例题2】如图所示,在光滑的水平面上有一长为0.64 m、质量为4 kg的木板A,在木板的左端有一质量为2 kg的小物体B,A、B之间的动摩擦因数为μ=0.2。
专题滑块与木板模型
专题常见滑块—木板模型分析类型一地面光滑,木板受外力1.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值;2.如图所示,光滑水平面上静止放着长L=1 m,质量为M=3 kg的木板厚度不计,一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=,今对木板施加一水平向右的拉力F;g取10 m/s21为使小物体与木板恰好不相对滑动,F不能超过多少2如果拉力F=10 N恒定不变,求小物体所能获得的最大速率;类型二地面光滑,滑块受外力3.如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B 之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g;现用水平力F 作用于A,则保持A、B相对静止的条件是F不超过A. μmgB. μMgC. μmg1+错误!D. μMg1+错误!4.如图所示,质量M=1 kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1 kg的铁块B大小可忽略,铁块与木块间的动摩擦因数μ1=,木块长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2;1若水平地面光滑,计算说明两物块间是否发生相对滑动;2若木块与水平地面间的动摩擦因数μ2=,求铁块运动到木块右端的时间;类型三地面粗糙,木板受外力5.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间动摩擦因数为μ,B与水平面间的动摩擦因数为认为最大静摩擦力等于滑动摩擦力,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值;6.如图所示,小木块质量m=1kg,长木桉质量M =10kg,木板与地面以及木块间的动摩擦因数均为μ=4 m/s向=.当木板从静止开始受水平向右的恒力F=90 N作用时,木块以初速v左滑上木板的右端.则为使木块不滑离木板,木板的长度l至少要多长类型四地面粗糙,滑块受外力7.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上;A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为2μ;最大静摩擦力等于滑动摩擦力,重力加速度为g ;现对A 施加一水平拉力F ,则A .当F <2μmg 时,A 、B 都相对地面静止B .当F =mg μ25时,A 的加速度为g μ31 C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过g μ21 类型五 地面粗糙,滑块与木板具有初速度8. 一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示;己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上;取重力加速度的大小g =10m /S 2求:1物块与木板间;木板与地面间的动摩擦因数:2从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.知识要求:运动学公式、相对位移的计算、牛顿运动定律、摩擦力的特点、动能定理、能量守恒定律方法要求:一、动力学的观点:运动学公式、牛顿第二定律运动分析、受力分析 整体法、隔离法 图像法二、能量的观点:动能定理、能量守恒定律不需分析具体的过程,只需抓住初、末状态注意两点:1、滑块与木板发生相对滑动的条件:二者加速度不相等;2、滑块与木板发生分离的条件: 滑块由木板一端运动到另一端过程中若1滑块与木板同向运动,二者对地位移之差等于板长;2滑块与木板反向运动,二者对地位移之和等于板长;。
动力学中的“滑块—木板”模型-高考物理复习
图4
A的下面抽出,重力加速度为g。则拉力F应大于( C )
A.mgsin θ+μmgcos θ
B.mgsin θ+2μmgcos θ
C.4μmgcos θ
D.2mgsin θ
解析 设拉力为F0时,B刚要从A下面被抽出,对整体,根据牛顿第二定律有 F0-2mgsin θ-2μmgcos θ=2ma,对物块A,根据牛顿第二定律有μmgcos θ -mgsin θ=ma,联立可得F0=4μmgcos θ,故A、B、D错误,C正确。
01 02 03 04 05 06 07
目录
提升素养能力
3.(多选)如图3甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上。
已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t(N)的变力作用,
从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示。设最大
静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,则下列说法正确的是
目录
提升素养能力
解析 要使木板沿斜面加速运动,对物块与木板整体有
F>(M+m)gsin α,解得 F>20 N,故 A 错误;对物块与 木板整体,由牛顿第二定律可得 F-(M+m)gsin α= (M+m)a,对物块有 f-mgsin α=ma,为使物块不滑 离木板,则 f≤μmgcos α,解得 F≤30 N,综上可得, 当 F≤30 N 时物块不滑离木板,当 F>30 N 时物块与木板发生相对滑动,故 B 错误,C 正确;若 F=37.5 N>30 N,物块能滑离木板,对木板有 F-Mgsin α-
( ACD )
A.滑块与木板间的动摩擦因数为0.4
B.木板与水平地面间的动摩擦因数为0.2
滑块木板模型专题
专题:滑块—木板模型1.建模指导解此类题的基本思路:(1) 分析滑块和木板的受力情况, 根据牛顿第二定律分别求出滑块和木板的加速度; (2) 对滑块和木板进行运动情况分析, 找出滑块和木板之间的位移关系或速度关系,建立方程。
特别注意滑块和木板的位移都是相对地面的位移。
2.模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
3.思维模板4.分析滑块—木板模型问题时应掌握的技巧(1)分析题中滑块、木板的受力情况,求出各自的加速度。
(2)画好运动草图,找出位移、速度、时间等物理量间的关系。
(3)知道每一过程的末速度是下一过程的初速度。
(4)两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力。
(2)二者加速度不相等。
5. 滑块—木板模型临界问题的求解思路预览:【典例精析1】如图甲所示, 光滑的水平地面上放有一质量为M 、长为4.0m L =的木板。
从0t =时刻开始,质量为1.0kg m =的物块以初速度06m/sv =从左侧滑上木板,同时在木板上施一水平向右的恒力7.0N F =,已知开始运动后1s 内两物体的v t -图线如图乙所示,物块可视为质点, 2s 10m/g =,下列说法正确的是A .木板的质量1.5M kg =B .物块与木板间的动摩擦因数为0.1C . 1.5s t =时,木板的加速度为273m/s D . 2s t =时,木板的速度为7.2m/s【典例精析2】如图所示,质量M =8.0 kg、长L =2.0 m的薄木板静置在光滑水平地面上,且木板不固定。
质量m =0.40kg 的小滑块(可视为质点)以速度v 0从木板的左端冲上木板。
已知滑块与木板间的动摩擦因数μ=0.20, (假定滑块与木板之间最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s2。
)(1)若v 0=2.1 m/s, 从小滑块滑上长木板,到小滑块与长木板相对静止, 小滑块的位移是多少?(2) 若v 0=3.0 m/s, 在小滑块冲上木板的同时, 对木板施加一个水平向右的恒力F ,如果要使滑块不从木板上掉下,力F应满足什么条件?预览:【典例精析3】如图1所示,光滑水平面上放置质量分别为m 、2m 的物块A 和木板B , A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,求拉力F 的最大值。
第六章 微专题47 “滑块-木板”模型综合问题-2025年物理《加练半小时》新教材版
第六章机械能守恒定律微专题47“滑块-木板”模型综合问题1.分析滑块与木板间的相对运动情况,确定两者间的速度关系、位移关系,注意两者速度相同时摩擦力可能变化。
2.用公式Q=F f·x相对或动能定理、能量守恒定律求摩擦产生的热量。
1.(多选)(2023·云南丽江市统测)质量为m1=4kg的木板放在光滑的水平面上,其上放置一个质量m2=2kg的小物块,木板和物块间的动摩擦因数为0.4,木板的长度为4m,物块可视为质点,现用一大小为F=16N的力作用在物块上,下列说法正确的是(g取10m/s2)()A.木板的加速度为2m/s2B.物块的加速度为6m/s2C.经过2s物块从木板上滑离D.物块离开木板时的速度为8m/s答案ACD解析对木板,由牛顿第二定律可得μm2g=m1a1,解得a1=2m/s2,对物块,由牛顿第二定律可得F-μm2g=m2a2,解得a2=4m/s2,A正确,B错误;物块从木板上滑离时,位移关系满足12a2t2-12a1t2=L,解得t=2s,C正确;物块离开木板时的速度为v2=a2t=8m/s,D正确。
2.(多选)如图甲,长木板A放在光滑的水平面上,质量为m=3kg的木块B可看作质点,以水平速度v0=2m/s滑上原来静止的长木板A的表面。
由于A、B间存在摩擦力,之后A、B速度随时间变化情况如图乙所示,则下列说法正确的是(g取10m/s2)()A.木板的质量为M=3kgB.木块减小的动能为1.5JC.系统损失的机械能为3JD.A、B间的动摩擦因数为0.2答案AC解析由题图乙可知,A 、B 的加速度大小都为1m/s 2,根据牛顿第二定律知μmg m =1m/s 2,μmg M =1m/s 2,代入数据解得M =3kg ,μ=0.1,故A 正确,D 错误;木块减小的动能ΔE k =E k0-E k1=12m v 02-12m v 12=4.5J ,故B 错误;由题图乙可知,A 、B 的相对位移大小Δx =12×2×1m =1m ,则系统损失的机械能为ΔE =W f =μmg Δx =3J ,故C 正确。
13 牛顿运动定律的应用之”滑块—木板“模型
【专题概述】在物理中经常会出现一类题就是滑块在滑板上运动类型的题目,这类题目一般会牵涉到牛顿第二定律,也会用到动能定理及能量守恒或者能量转换之间的关系,考试范围广,也成为近年来高考的重点,那么我们在处理此类问题时,我们着重从以下几个方面来分析问题1 . 滑块能不能从滑板上脱落的问题,所以在这个专题中就存在临界问题。
2 . 始运动时时滑块和滑板一起运动,还是分开各走各的,那么这儿就存在一个判断问题,如果出现这类情况我们就可以采取假设的方法,假设两个物体一起运动然后通过他们之间的摩擦力是否超过最大静摩擦力来判断是否一起运动。
3. 解这类题很多时候我们采用的是用运动学公式来求解,所以一般解此类题会导致我们的计算量比较大,也是考察学生的计算能力和数学方法归类的能力【典例精讲】1. 滑块和滑板的动力学问题.典例1如图所示,质量为m1的足够长木板静止在水平面上,其上放一质量为m2的物块.物块与木板的接触面是光滑的.从t=0时刻起,给物块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是()A B.C.D.典例2如图所示,一长木板在水平地面上运动,初速度为v0,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,己知物块与木板的质量相等,设物块与木板间及木板与地面间均有摩擦且摩擦因数为μ,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度-时间图象可能是选项中的()A. B.C.D.典例3 (多选)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零2 滑块、滑板中的临界问题典例4 (多选)如图所示,A,B两物块的质量分别为2m和m,静止叠放在水平地面上,A,B间的动摩擦因数为μ,B与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g,现对A施加一水平拉力F,则()A.当F<2μmg时,A,B都相对地面静止B.当F=μmg时,A的加速度为μgC.当F>3μmg时,A相对B滑动D.无论F为何值,B的加速度不会超过μg典例5如图所示,质量m1=0.5 kg的长木板在水平恒力F=6 N的作用下在光滑的水平面上运动,当木板速度为v0=2 m/s时,在木板右端无初速轻放一质量为m2=1.5 kg的小木块,此时木板距前方障碍物s=4.5 m,已知木块与木板间动摩擦因数μ=0.4,在木板撞到障碍物前木块未滑离木板.g取10 m/s2.(1)木块运动多长时间与木板达到相对静止;(2)求木板撞到障碍物时木块的速度.【总结提升】牛顿运动定律在滑块一木板类问题中的应用问题实质是牛顿运动定律与运动学等知识的综合问题,着重考查学生分析问题、运用知识的能力。
专题 滑块—木板模型(板块模型)(附精品解析)
专题 滑块—木板模型(板块模型) 专题训练一、单选题1.(2021·湖南·长郡中学高一期中)木板B 静止在水平面上,其左端放有物体A 。
现对A 施加水平恒力F 的作用,使两物体均从静止开始向右做匀加速直线运动,直至A 、B 分离,已知各接触面均粗糙,则( )A .A 和地面对B 的摩擦力是一对相互作用力B .A 和地面对B 的摩擦力是一对平衡力C .A 对B 的摩擦力水平向右D .B 对A 的摩擦力水平向右2.(2021·黑龙江·农垦佳木斯学校高三月考)如图所示,质量为M 的木板放在水平桌面上,一个质量为m 的物块置于木板上。
木板与物块间、木板与桌面间的动摩擦因数均为μ。
现用一水平恒力F 向右拉木板,使木板和物块共同向右做匀加速直线运动,物块与木板保持相对静止。
已知重力加速度为g 。
下列说法正确的是( )A .木板与物块间的摩擦力大小等于0B .木板对物块的摩擦力水平向左C .木板与桌面间的摩擦力大小等于μMgD .当拉力2()F M m g μ>+时,m 与M 发生相对滑动 3.(2021·山东师范大学附中高三月考)如图所示,质量为3kg 的长木板B 静置于光滑水平面上,其上放置质量为1kg 的物块A ,A 与B 之间的动摩擦因数为0.5设最大静摩擦力等于滑动摩擦力,且当地的重力加速度为210m/s 。
当木板A 和B 刚好要发生相对滑动时,拉力F 的大小为( )A .20NB .15NC .5ND .25N4.(2021·安徽·定远县民族中学高三月考)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A 。
木板B 受到随时间t 变化的水平拉力F 作用时,木板B 的加速度a 与拉力F 的关系图象如图乙所示,则小滑块A 的质量为( )A .4kgB .3kgC .2kgD .1kg二、多选题5.(2021·四川·眉山市彭山区第一中学高三月考)物体A 和物体B 叠放在光滑水平面上静止,如图所示。
滑块—木板模型专题(附详细参考答案)
精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
专题:滑块—木板模型
专题:滑块—木板模型1.建模指导 解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程。
特别注意滑块和木板的位移都是相对地面的位移。
2.模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
3.思维模板4.分析滑块—木板模型问题时应掌握的技巧(1)分析题中滑块、木板的受力情况,求出各自的加速度。
(2)画好运动草图,找出位移、速度、时间等物理量间的关系。
(3)知道每一过程的末速度是下一过程的初速度。
(4)两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力。
(2)二者加速度不相等。
5. 滑块—木板模型临界问题的求解思路【典例精析1】如图甲所示,光滑的水平地面上放有一质量为M 、长为 4.0m L =的木板。
从0t =时刻开始,质量为 1.0kg m =的物块以初速度06m/s v =从左侧滑上木板,同时在木板上施一水平向右的恒力7.0N F =,已知开始运动后1s 内两物体的v t -图线如图乙所示,物块可视为质点,2s 10m/g =,下列说法正确的是A .木板的质量 1.5M kg =B .物块与木板间的动摩擦因数为0.1C . 1.5s t =时,木板的加速度为273m/s D .2s t =时,木板的速度为7.2m/s【典例精析2】如图所示,质量M =8.0 kg 、长L =2.0 m 的薄木板静置在光滑水平地面上,且木板不固定。
质量m =0.40kg 的小滑块(可视为质点)以速度v 0从木板的左端冲上木板。
已知滑块与木板间的动摩擦因数μ=0.20,(假定滑块与木板之间最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2。
)(1)若v 0=2.1 m/s ,从小滑块滑上长木板,到小滑块与长木板相对静止,小滑块的位移是多少?(2)若v 0=3.0 m/s ,在小滑块冲上木板的同时,对木板施加一个水平向右的恒力F ,如果要使滑块不从木板上掉下,力F 应满足什么条件?【典例精析3】如图1所示,光滑水平面上放置质量分别为m 、2m 的物块A 和木板B ,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,求拉力F 的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题常见滑块—木板模型分析
类型一地面光滑,木板受外力
1.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
2.如图所示,光滑水平面上静止放着长L=1 m,质量为M=3 kg的木板(厚度不计),一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F。
(g取10 m/s2)
(1)为使小物体与木板恰好不相对滑动,F不能超过多少?
(2)如果拉力F=10 N恒定不变,求小物体所能获得的最大速率。
类型二地面光滑,滑块受外力
3.如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g。
现用水平力F作用于A,则保持A、B相对静止的条件是F不超过( )
A. μmg
B. μMg
C. μmg(1+m
M
) D. μMg(1+
M
m
)
4.如图所示,质量M=1 kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1 kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2。
(1)若水平地面光滑,计算说明两物块间是否发生相对滑动;
(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间。
类型三地面粗糙,木板受外力
5.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间动摩擦因数为μ,B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑
动摩擦力),现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最
大值。
6.如图所示,小木块质量m=1kg,长木桉质量M=10kg,木板与地面以
及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F=
=4 m/s向左滑上木板的右端.则为使木块不滑离90 N作用时,木块以初速v
木板,木板的长度l至少要多长?
类型四 地面粗糙,滑块受外力
7.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为2
μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平拉力F ,则( )
A .当F <2μmg 时,A 、
B 都相对地面静止
B .当F =mg μ25时,A 的加速度为g μ3
1 C .当F >3μmg 时,A 相对B 滑动
D .无论F 为何值,B 的加速度不会超过g μ2
1 类型五 地面粗糙,滑块与木板具有初速度
8. 一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块
轻放到木板上,以后木板运动的速度-时间图像如图所示。
己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
取重力加速度的大小g =10m /S 2求:
(1)物块与木板间;木板与地面间的动摩擦因数:
(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.
知识要求:运动学公式、相对位移的计算、牛顿运动定律、摩擦力的特点、动能定理、能量守恒定律
方法要求:一、动力学的观点:运动学公式、牛顿第二定律(运动分析、受力分析)
整体法、隔离法图像法
二、能量的观点:动能定理、能量守恒定律(不需分析具体的过程,
只需抓住初、末状态)
注意两点:1、滑块与木板发生相对滑动的条件:二者加速度不相等。
2、滑块与木板发生分离的条件:滑块由木板一端运动到另一端过
程中若(1)滑块与木板同向运动,二者对地位移之差等于板长;
(2)滑块与木板反向运动,二者对地位移之和等于板长。