(完整版)相似三角形专题
(完整版)相似三角形专题复习教案
龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。
考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。
教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似比。
三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。
相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。
3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。
4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。
《相似三角形》最全讲义(完整版)
相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。
2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。
a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。
ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。
ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。
ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。
8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。
完整版)相似三角形题型归纳
完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。
证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。
点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。
证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。
证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。
4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。
写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。
5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。
证明DE=BE·CE。
6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。
证明AE∶ED=2AF∶FB。
7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。
证明:(1)△AED∽△CBM;(2)DE=DM。
8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。
证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。
9、在平行四边形ABCD中,点P为对角线AC上的一点。
过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。
证明:AG∶GB=CP∶PD。
1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。
相似三角形模型分析大全(非常全面,经典)
相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
求证:∠=︒GBM 90GMF EHDCBA5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DCB上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。
相似三角形-专题(完整版-可打印)
相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【高清课程名称:相似三角形的判定(2)高清ID号:394499关联的位置名称(播放点名称):例4及变式应用】【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AF EFCF FD, 即AF·FD=CF·FE.3.(2014秋•揭西县校级期末)如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE.【答案与解析】解:设BE=x,∵EF=32,GE=8,∴FG=32﹣8=24,∵AD∥BC,∴△AFE∽△CBE,∴=,∴则==+1①∵DG∥AB,∴△DFG∽△CBG,∴=代入①=+1,解得:x=±16(负数舍去),故BE=16.【总结升华】此题主要考查了相似三角形的判定、平行四边形的性质,得出△DFG∽△CBG 是解题关键.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【思路点拨】从求证可以判断是运用相似,再根据BP2=PE·PF,可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了.【答案与解析】连接,,,是的中垂线,,,,.,.又, ∽,,. 【总结升华】根据求证确定相似三角形,是解决此类题型的捷径. 举一反三:【变式】如图,F 是△ABC 的AC 边上一点,D 为CB 延长线一点,且AF=BD,连接DF,交AB 于E. 求证:DE ACEF BC=.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE △AGF ∽△ABC∵DE DBEF GF=, 又∵AF=BD,∴.DE AFEF GF= ∵△AGF ∽△ABC∴AF ACGF BC =, 即DE ACEF BC=.相似三角形的判定--巩固练习(基础)【巩固练习】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.(2015•大庆校级模拟)如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件( ).A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF ∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7.(2015•伊春模拟)如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为.8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15.(2014秋•射阳县校级月考)如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E 是AB上一点,AF⊥CE于F,AD交CE于G点,(1)求证:AC2=CE•CF;(2)若∠B=38°,求∠CFD的度数.相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用 1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
(完整版)专题:相似三角形的几种基本模型及练习
专题:相似三角形的几种基本模型(1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型"的相似三角形。
“A ”字型 “X ”(或8)字型 “A ” 字型(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形。
ABCD E12AABBCC DD EE12412(3) “母子" (双垂直)型 射影定理:由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。
“母子” (双垂直)型 “旋转型”(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
(5)一线“三等角”型“K ” 字(三垂直)型(6)“半角”型图1 :△ABC 是等腰直角三角形,∠MAN=12∠BAC ,结论:△A BN ∽△MAN ∽△MCA ; ABEADCAB CDEAACCDEE B EA CD12A B C D 图2图1旋转N M60°120°E DCA 45°EDC B A图2 :△ADE 是等边三角形, ∠DAE=12∠BAC ,结论:△A BD ∽△CAE ∽△CBA; 应用1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3B .4C .5D .62.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABDD .不存在图3 图4 图53.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对.A.4 对 B 。
相似三角形典型例题30道
相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。
求DE/BC的比值。
2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。
3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。
4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。
5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。
6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。
7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。
8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。
9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。
10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。
11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。
12: 已知相似三角形的对应边长比为1:4,求它们的周长比。
13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。
14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。
15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。
16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。
17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。
18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。
19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。
(完整版)相似三角形基本知识点+经典例题(完美打印版)
相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
(完整word版)九年级数学相似三角形知识点及习题
相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
相似三角形判定与性质专题
专题-相似三角形判定与性质专题典型训练题1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
专题典型题考法及解析【例题1】如图,在Rt△ABC中,△C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ△AB 交BC于点Q,D为线段PQ的中点,当BD平分△ABC时,AP的长度为()B.C.D.A.【例题2】在△ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【例题3】如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【例题4】如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【例题5】如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.专题典型训练题一、选择题1.如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.43.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE △BC ,若AD =2,AB =3,DE =4,则BC 等于( )A .5B .6C .7D .84.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( )A .2B .3C .2D .55.如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .= B .= C .= D .=6. 如图,在ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC 的面积为( ) A.B .4 C. D .8D ABC7.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG =()A.2:3B.3:2C.9:4D.4:99.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题10.如图所示,Rt△ABC中,△C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的△P与△ABC的一边相切时,AP的长为.11. 一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.12.如图,矩形ABCD 中,AB =3,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF的长是 .13.如图,在矩形ABCD 中,AD =3AB =310.点P 是AD 的中点,点E 在BC 上,CE =2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN =__________.14.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)15.如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .P EDA三、解答题16.如图,△ABD=△BCD=90°,DB平分△ADC,过点B作BM△CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.在矩形ABCD中,AE△BD于点E,点P是边AD上一点.(1)若BP平分△ABD,交AE于点G,PF△BD于点F,如图△,证明四边形AGFP是菱形;(2)若PE△EC,如图△,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.18.如图,Rt△ABC中,△ACB=90°,AC=BC,P为△ABC内部一点,且△APB=△BPC=135°.(1)求证:△P AB△△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.19.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.。
初中数学《相似三角形》压轴30题含解析
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。
初中数学经典相似三角形专题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD 于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC=_________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N 从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD 面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC 上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A 运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A 出发,以1cm/s的速度沿AB方向运动,同时,Q 自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA 的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.===∴∴28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.BC=∴==,==,∴BD=CD=;=BE•CD=∴BE==30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.)设=k,。
中考数学几何专项——相似模型(相似三角形)
相似模型【相似模型一: A 字型】 特征 模型 结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB C BDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD【相似模型二: X 型】 特征 模型 结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D ③ 顺着比, 交叉乘 ④ △BOC∽△DOA【相似模型三: 旋转相似】 特征 模型结论成比例线段共端点① △ABC ∽△ADE ② △ABD∽△ACE【相似模型四: 三平行模型】 特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=【相似模型五: 半角模型】 特征模型 结论ECD BAA BDC EEDCBA90度, 45度; 120度, 60度 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六: 三角形内接矩形模型】 特征模型 结论矩形EFGH 或正方形EFGH 内接与三角形H GFED C BA【相似模型七: 十字模型】 特征 模型结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE, 则AF=BE,②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中, CE ⊥BD, 则△CDE ∽△BCD,平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中, AB =AC,AB ⊥AC, ①D 为中点, ②AE ⊥BD, ③BE :EC =2:1, ④∠ADB =∠CDE, ⑤∠AEB =∠CED,⑥∠BMC =135°, ⑦ , 这七个结论中, “知二得五”【A 型, X 型, 三平行模型】1.如图, 在△ABC 中, EF ∥DC, ∠AFE=∠B, AE=6, ED=3, AF=8, 则AC=_________, _________.F E DCBABCDE FA2. 如图, AB ∥CD, 线段BC, AD 相交于点F, 点E 是线段AF 上一点且满足∠BEF=∠C, 其中AF=6, DF=3, CF=2, 则AE=_________.3.如图, 在Rt △ABD 中, 过点D 作CD ⊥BD, 垂足为D, 连接BC 交AD 于点E, 过点E 作EF ⊥BD 于点F, 若AB=15, CD=10, 则BF:FD=_____________.FEBCD AN MEDCBA4.如图, 在□ABCD中, E为BC的中点, 连接AE, AC, 分别交BD于M, N, 则BM:DN=_____________.5.如图所示, AB∥CD, AD, BC相交于点E, 过E作EF∥AB交BD于点F.则下列结论:①△EFD∽△ABD;②;③;④.其中正确的有___________.F EDCBA图26.在△ABC中, AB=9, AC=6, 点M在边AB上, 且AM=3, 点N在AC边上.当AN= 时, △AMN与原三角形相似.7.如图, 在△ABC中, ∠C=90°, AC=8, BC=6, D是边AB的中点, 现有一点P位于边AC上, 使得△ADP与△ABC相似, 则线段AP的长为.8.如图, 已知O是坐标原点, 点A.B分别在轴上, OA=1, OB=2, 若点D在轴下方, 且使得△AOB与△OAD相似, 则这样的点D有个.9.如图, 在Rt△ACB中, ∠C=90°, AC=16cm, BC=8cm, 动点P从点C出发, 沿CA方向运动;动点Q同时从点B出发, 沿BC方向运动,如果点P的运动速度均为4cm/s, Q点的运动速度均为2cm/s, 那么运动几秒时, △ABC与△PCQ相似.10.将△ABC的纸片按如图所示的方式折叠, 使点B落地边AC上, 记为点B', 折叠痕为EF, 已知AB=AC=8, BC=10,若以点B'.F.C为顶点的三角形与△ABC相似, 那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图, 四边形中, 平分, , , 为的中点.(1)求证: ;(2)与有怎样的位置关系?试说明理由;(3)若, , 求的值.13.如图, 在中, 为上一点, , , , 于, 连接.(1)求证:;(2)找出图中一对相似三角形, 并证明.14.如图, 在中, , 分别是, 上的点, , 的平分线交于点, 交于点.(1)试写出图中所有的相似三角形, 并说明理由(2)若, 求的值.15.如图, 在平行四边形ABCD中, 对角线AC.BD交于点O. M为AD中点, 连接CM交BD于点N, 且ON=1.(1)求BD的长;(2)若△DCN的面积为2, 求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB = _________.19.如图所示, AD=DF=FB, DE∥FG∥BC,则=__________.20.如图, 在矩形ABCD中, 对角线AC, BD相交于点O, OE⊥BC于点E, 连接DE交OC于点F, 作FG⊥BC于点G, 则线段BG与GC的数量关系是___.21.如图, 已知点C为线段AB的中点, CD⊥AB且CD=AB=4, 连接AD, BE⊥AB, AE是∠DAB的平分线, 与DC相交于点F, EH⊥DC于点G, 交AD 于点H, 则HG的长为 .22.如图1, 在△ABC 中, 点D.E 、Q 分别在边AB.AC.BC 上, 且DE ∥BC, AQ 交DE 于点P. (1)求证: ;(2)如图, 在△ABC 中, ∠BAC=90°, 正方形DEFG 的四个顶点在△ABC 的边上, 连接AG 、AF, 分别交DE 于M 、N 两点. 如图2, 若AB=AC=1, 直接写出MN 的长;如图3, 求证MN2=DM【母子型】1.已知: 如图, △ABC 中, ∠ACB=90°, CD ⊥AB 于D, S △ABC=20, AB=10。
史上最全!!!!相似三角形难题精选
相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A 点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(s)表示移动的时间(0<t<6)。
(完整版)相似三角形知识点及典型例题,推荐文档
相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6)判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ ABC 中,/ BAC=90 , AD是斜边BC上的高,则有射影定理如下:(1)( AD) 2=BD- DC ( 2)( AB) 2=BD • BC ,22(3)( AC) =CD・ BC。
注:由上述射影定理还可以证明勾股定理。
即 2 2(AB) + ( AC) = ( BC)2典型例题:例1 如图,已知等腰 △ABC 中,AB = AC , AD 丄BC 于D , CG II AB , BG 分别交AD , AC 于E 、F ,求证:BE 2=EF EG证明:如图,连结 EC ,v AB = AC , AD 丄BC ,•••/ ABC = Z ACB , AD 垂直平分 BC••• BE = EC ,/ 1 =Z 2,•/ ABC- / 1 =Z ACB- / 2 ,即/ 3 = Z 4,又 CG // AB ,•/ G = Z 3,•/ 4 = Z GCE EF又•••/ CEG = Z CEF , CEF GEC , • EG = CE • EC 2= EG- EF ,故 EB 2=EF -EG【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明•而 其中利用线段的垂直平分线的性质得到 BE=EC ,把原来处在同一条直线上的三条线段BE , EF , EC 转换到相似三角形的基本图形中是证明本题的关键。
相似三角形(8大题型)(48道压轴题专练)(原卷版)—2024-2025学年九年级数学上册单元速记巧
相似三角形(8大题型)(48道压轴题专练) 压轴题型一 相似形压轴题型1.(20-21九年级上·重庆渝中·期末)如图,△ABC 三个顶点的坐标分别是A (-2,2),B (-4,1),C (-1,-1).以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A'B'C .并把△ABC 的边长放大为原来的2倍,那么点A'的坐标为( )A .(1,-6)B .(1,-7)C .(2,-6)D .(2,-7)2.(23-24八年级下·山东淄博·(2)ABCD AD AB AD <<纸片,以它的一边为边长剪去一个菱形,在余下的平行四边形中,再以它的一边为边长剪去一个菱形.若剪去两个菱形后余下的平行四边形与原平行四边形ABCD 相似,则平行四边形ABCD 的相邻两边AD 与AB 的比值是 .3.(2024·湖北武汉·一模)如图是由小正方形组成的网格,四边形ABCD的顶点都在格点上,仅用无刻度的直尺在所给定的网格中按要求完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,先以点A为位似中心,将四边形ABCD缩小为原来的12,画出缩小后的四边形111AB C D,再在AB上画点E,使得DE平分四边形ABCD的周长;(2)在图2中,先在AB上画点F,使得CF BC=,再分别在AD,AB上画点M,N,使得四边形BCMN 是平行四边形.4.(23-24九年级上·江苏南京·阶段练习)形状相同(即长与宽之比相等)的矩形是相似矩形,已知一个矩形长为()1a a³,宽为1.一分为二(1)如图1,将矩形分割为一个正方形(阴影部分)和小矩形,小矩形恰与原矩形相似,则a的值为______.(2)如图2,将矩形分割为两个矩形,使每个小矩形均与原矩形相似,则a的值为______.一分为多(3)有同学说“无论a为何值,该矩形总可以分割为几个小矩形,这几个小矩形都与原矩形相似”,你同意这个说法吗?若同意,在图3中画出一种可行的分割方案;若不同意,举出反例.一分为三(4)将矩形分割为三个矩形,使每个小矩形均与原矩形相似.画出所有可能的分割方案的示意图,并在每个示意图下方直接写出对应的a 的值.5.(20-21八年级下·山东淄博·期末)如图,四边形ABCD ∽四边形A B C D ¢¢¢¢,且62A Ð=°,75B Ð=°,140D Т=°,9AD =,11A B ¢¢=,6A D ¢¢=,8B C ¢¢=.(1)请直接写出:C Ð= 度;(2)求边AB 和BC 的长.6.(23-24九年级上·广西南宁·阶段练习)如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,1A ,()3,2B ,()2,3C (每个方格的边长均为1个单位长度),请按下列要求画图:(1)111A B C △与ABC V 关于原点O 成中心对称,画出111A B C △并写出点1A 的坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC V 放大,画出放大后的222A B C △并写出点2B 的坐标;(3)根据信息回答问题:已知ABC V 的面积为32,AB ,请直接写出222A B C △的面积和22A B 边上的高的值.压轴题型二 比例线段压轴题型1.(2020古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底0.618≈,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm2.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG GN MN MG ==这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC V 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE V 的面积为 .3.(23-24八年级下·贵州六盘水·期末)已知a ,b ,c ,d ,e ,f 六个数,如果()0a c e k b d f b d f ===++¹,那么a c e k b d f++=++.理由如下:∵()0a c e k b d f b d f===++¹∴a bk =,c dk =,e fk =(第一步)∴()k b d f a c e bk dk fk k b d f b d f b d f++++++===++++++(第二步)(1)解题过程中第一步应用了______的基本性质;在第二步解题过程中,()k b d f k b d f ++=++应用了______的基本性质;(2)应用此解题过程中的思路和方法解决问题:①如果22567a b c ===,则218a b c ++=______;②已知0345x y z ==¹,求23x y z x y z -++-的值.4.(23-24九年级上··的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽1AB =.(1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.5.(22-23九年级上·浙江·周测)若实数a b c ,,满足a b c b c a a c b c a b +-+-+-==,求()()()a b b c a c abc+×+×+的值.6.(23-24九年级下·山东淄博·期末)已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b =,求a b b +与a b a b -+的值;(2)如果(),a c a b c d b d =¹¹,求证a c b a d c =--;(3)如果a c a b d b +=+,求证a c b d=.压轴题型三 相似三角形的判定压轴题型1.(21-22九年级上·陕西咸阳·期中)如图,在矩形ABCD 中,E 是AD 边的中点,BE ^F ,连接DF ,分析下列四个结论,①AEF CAB △∽△,②CF 2AF =;③DF DC =;④CD AC =.其中正确的结论有( )A .4个B .3个C .2个D .1个2.(2024·广东深圳·二模)如图,在等腰直角ABC V 中,4AB BC ==,D 为BC 上一点,E 为BC 延长线上一点,且45DAE =°∠,2AE AD =,则BD = .3.(2024·广东梅州·模拟预测)(1)如图1,在矩形ABCD 中,点C ,D 分别在边DC ,BC 上,AB AB ^,垂足为点G .求证:ADE DCF ∽V V .【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H Ð=Ð.【类比迁移】(3)如图3,在菱形ABCD 中,E F 分别在边DC ,BC 上,10AE DF ==,7DE =,60AED Ð=°,求CF 的长.4.(2024·山西晋中·二模)综合与实践问题情境:数学活动课上,老师要求同学们以正方形为背景探索几何图形运动变化中的数学结论.如图1,正方形ABCD 中,4AB =,点E ,F 分别是边AB ,AD 的中点,连接EF ,点G 是线段EF 上的一个动点,连接AG ,将线段AG 绕点A 逆时针方向旋转90°,得到AH ,连接HD ,GB .猜想证明:(1)针对老师给出的问题背景,“智慧小组”发现GB HD =,请你证明这一结论;操作探究:(2)“善思小组”提出问题:如图2,当点G 为线段EF 的中点时,连接FH ,试判断四边形AGFH 的形状,并说明理由;深入探究:(3)“创新小组”BG 与直线DH 交于点M ,当AHD V 为直角三角形时,请直接写出四边形AGMH 的面积.5.(2024·安徽蚌埠·一模)如图1,在四边形ABCD 中,120ABC Ð=°,60ADC Ð=°,对角线AC ,BD 相交于点O ,且AC AD =,BD 平分ABC Ð.(1)求证:DB AB CB =+;(2)如图2,过点D 作DE AB ∥,使DE BC =,连接AE ,取AE 中点 F ,连接DF ,求证:22AC DF OD =×.6.(23-24九年级上·湖南常德·期中)(1)如图1,在四边形ABCD 中,90BAD BCD Ð=Ð=°,连接AC BD ,,过点A 作AE AC ^交CB 的延长线于点E ,求证:E ACD Ð=Ð.(2)如图2,在四边形ABCD 中,AB AD =,(1)中的其它条件不变,点M ,N 分别是BD EC ,的中点,连接AN AM ,,MN .①求证:AE AC =﹔②求证:N ABE AM ∽△△.压轴题型四 相似三角形的性质压轴题型1.(22-23九年级上·上海长宁·期中)已知点D 在ABC V 的边BC 上,联结AD ,如果ABD △与ACD V 相似,那么下列四个说法:①BAD C Ð=Ð;②AD BC ^;③2AD BD CD =×;④22AB BD AC CD =.一定成立的是( ).A .②④B .①③C .①②③D .②③④2.(2024·上海浦东新·三模)如图,在ABC V 中,3AC BC ==,90C Ð=°,点D 在边BC 上(不与点B ,点C 重合),连接AD ,点E 在边AB 上,EDB ADC Ð=Ð.已知点H 在射线AC 上,连接EH 交线段AD 于点G ,当1CH =,且AEH BED Ð=Ð时,则BE AB = .3.(23-24八年级下·山东威海·期末)如图1,矩形ABCD ,点E ,点F 分别为AD ,BC 上的点,将矩形沿EF 折叠,使点B 的对应点B ¢落在CD 上,连接BB ¢.(1)如图2,当点B ¢与点D 重合时,连接BE ,试判断四边形BEB F ¢的形状,并说明理由;(2)若6AB =,8BC =,求折痕EF 的最大值.4.(23-24八年级下·山东东营·期末)综合与探究(1)如图1,在正方形ABCD 中,点E ,F 分别在边BC CD ,上,且AE BF ^,则线段AE 与BF 的之间的数量关系为_____________;(2)【类比探究】如图2,在矩形ABCD 中,35AB AD ==,,点E ,F 分别在边BC ,CD 上,且AE BF ^,请写出线段AE 与BF 的数量关系,并证明你的结论.(3)【拓展延伸】如图3,在Rt ABC V 中,9046ABC AB BC Ð=°==,,,D 为BC 上一点,且2BD =,连接AD ,过点B 作BE AD ^于点F ,交AC 于点E ,求BE 的长.5.(23-24九年级下·广西南宁·阶段练习)已知等边ABC V ,以AC 为斜边向外作Rt ACD △,定义Rt ACD △为等边ABC V 的“关联直角三角形”,连接BD 交AC 于点E ,下面我们来研究与DE BE的值有关的问题.(1)如图①,当“关联直角三角形”是等腰直角三角形时,DE BE的值为______;(2)如图②,当“关联直角三角形”是含30°的直角三角形时,求DE BE的值;(3)如图③,当“关联直角三角形”是一般的直角三角形时,若16,3DE AB BE ==,求BD 的值.6.(2024·安徽·中考真题)如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF Ð=°,求AC BD 的值.压轴题型五 相似三角形的应用压轴题型1.(2024·浙江温州·三模)图1是《九章算术》中记载的“测井深”示意图,译文指出:“如图2,今有井直径CD 为5尺,不知其深AD .立5尺长的木CE 于井上,从木的末梢E 点观察井水水岸A 处,测得“入径CF ”为4寸,问井深AD 是多少?(其中1尺10=寸)”根据译文信息,则井深AD 为( )A .500寸B .525寸C .550寸D .575寸2.(2022·浙江金华·一模)将一本高为17cm (即17cm EF =)的词典放入高(AB )为16cm 的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F 离收纳盒最左端B 处8cm ,若此时将词典无滑动向右倒,书角H 的对应点H ¢恰为CD 中点.(1)收纳盒的长BC = ;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有本书可与边BC 有公共点.3.(2024·江苏南京·一模)在光学中,由实际光线会聚成的像,称为实像,而光线能会聚的是因为折射.图中,凸透镜EF 的焦距为f ,主光轴l EF ^,A ,B ,C ,D 都在l 上,其中O 是光心,2OB OD f ==,蜡烛PQ l ^(蜡烛可移动,且OQ f >),光线PG l ∥,其折射光线GC 与另一条经过光心的光线PP ¢相交于点P ¢(P Q l ¢¢^)即为蜡烛在光屏上所成的实像.图中所有点都在同一平面内.记物高()PQ 为h ,像高()P Q ¢¢为h ¢,物距()OQ ,像距()OQ ¢为v .(1)若10cm f =,10cm h =,15cm u =,=v cm .(2)求证111u v f+=.(3)当f 一定时,画出v 与u 之间的函数图象()u f >,并结合图象描述v 是怎么随着u 的变化而变化的?4.(23-24九年级上·河北邢台·1,小红家的阳台上放置了一个晒衣架,图2是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点在地面上,经测量得到136cm AB CD ==,51cm OA OC ==,34cm OE OF ==,现将晒衣架完全稳固张开,扣链EF 成一条线段.发现:连接AC .则AC 与EF 有何位置关系?并说明理由;探究:若32cm EF =,求利用夹子垂挂在晒衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?5.(22-23九年级上·浙江·单元测试)如图,Rt ABC V 为一块铁板余料,90B Ð=°,6cm BC =,8cm AB =,要把它加工成正方形小铁板,有如图所示的两种加工方案,请你分别计算这两种加工方案的正方形的边长.6.(2022九年级·全国·专题练习)阅读理解:如图1,AD 是△ABC 的高,点E 、F 分别在AB 和AC 边上,且EF //BC ,可以得到以下结论:AH EF AD BC=.拓展应用:(1)如图2,在△ABC 中,BC =3,BC 边上的高为4,在△ABC 内放一个正方形EFGM ,使其一边GM 在BC 上,点E 、F 分别在AB 、AC 上,则正方形EFGM 的边长是多少?(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为160cm 的等腰三角形展台.现需将展台用隔板沿平行于底边,每间隔10cm 分隔出一排,再将每一排尽可能多的分隔成若干个无盖正方体格子,要求每个正方体格子内放置一瓶葡萄酒.平面设计图如图3所示,将底边BC 的长度看作是0排隔板的长度.①在分隔的过程中发现,当正方体间的隔板厚度忽略不计时,每排的隔板长度(单位:厘米)随着排数(单位:排)的变化而变化.请完成下表:排数/排0123…隔板长度/厘米160__________________…若用n 表示排数,y 表示每排的隔板长度,试求出y 与n 的关系式;②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?压轴题型六 重心的性质压轴题型1.(23-24九年级上·浙江宁波·期末)如图,点G 是ABC V 的重心,过点G 作MN BC ∥分别交AB AC ,于点M ,N ,过点N 作ND AB ∥交BC 于点D ,则四边形BDNM 与ABC V 的面积之比是( )A .1:2B .2:3C .4:9D .7:92.(2023·上海·一模)在Rt ABC △中,9030B BAC BC Ð=°Ð=°=,,1,以AC 为边在ABC V 外作等边ACD V ,设点E 、F 分别是ABC V 和ACD V 的重心,则两重心E 与F 之间的距离是 .3.(2024·江苏盐城·中考真题)如图1,E 、F 、G 、H 分别是平行四边形ABCD 各边的中点,连接AF CE 、交于点M ,连接AG 、CH 交于点N ,将四边形AMCN 称为平行四边形ABCD 的“中顶点四边形”.(1)求证:中顶点四边形AMCN 为平行四边形;(2)①如图2,连接AC BD 、交于点O ,可得M 、N 两点都在BD 上,当平行四边形ABCD 满足________时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)4.(23-24七年级下·江苏扬州·阶段练习)作图.(1)直尺作图:如图1,已知D 、E 分别为AB 、AC 中点,过点A 作AF 平分ABC V 面积;(2)直尺作图:如图2,已知AD BC ∥,在四边形ABCD 中作一点O ,使AOB COD S S =△△;(3)尺规作图:如图3,已知D 为AC 中点,点M 在BC ,在AC 上作点N 使MN 平分ABC V 面积.5.(2024·辽宁丹东·二模)阅读与思考:三角形的重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.三角形重心的一个重要性质:重心与一边中点的连线的长是对应中线长的13.下面是小明证明性质的过程.如图,在ABC V 中,D 、E 分别是边BC 、AC 的中点,AD 、BE 相交于点G ,求证:13GE GD BE AD ==证明:连接ED ,∵D ,E 是边BC ,AC 的中点,∴DE AB ∥,12DE AB =(依据1)∴ABG DEGV V ∽∴12GE GD DE GB GA AB ===(依据2)∴13GE GD BE AD ==(1)任务一,在小明的证明过程中,依据1和依据2的内容分别是:依据1:______________________依据2:______________________(2)应用①如图,在ABC V 中,点G 是ABC V 中的重心,连接AG 并延长交BC 与点E ,若 3.5GE =,求AG 长.②在ABC V 中,中线AD 、BE 相交于点O ,若ABC V 的面积等于30,求BOD V 的面积.6.(2024·河南周口·三模)(1)古往今来,人们在生产和生活中对三角形的应用层出不穷,三角形也是我们平时研究的重点,如图1,已知ABC V 是等边三角形. P 是ABC V 的重心,连接BP CP ,并延长分别交边AC AB ,于点E ,D .试判断:①BPD Ð的度数为 ;②线段PB PD PE ,,之间的数量关系:PB PD PE +;(填写“>”“<”或“=”)(2)如图2,若在等边ABC V 中,点E 是射线AC 上一动点(其中点E 不与点A 重合,且12CE AC <),连接BE ,作边BA 关于直线 BE 的对称线段 BD ,直线CD ,BE 相交于点 P ,试探究线段PB PC PD ,,的数量关系,并说明理由.压轴题型七 平面向量的线性运算压轴题型1.(23-24九年级上·上海·期中)下列判断不正确的是( )A .()222a b a b +=+r r r r ;B .如果向量a r 与b r 均为单位向量,那么a b =r r 或a b =-r r ;C .如果a b =r r ,那么a b =r r ;D .对于非零向量b r ,如果()0a k b k =×¹r r ,那么a b r r P .2.(2024·上海普陀·二模)如图,梯形ABCD 中,AD BC ∥,过点A 作AE DC ∥分别交BD 、BC 于点F 、E ,23BE BC =,设AD a =uuu r r ,AB b =uuu r r ,那么向量FE uuu r 用向量a r 、b r 表示为 .3.(23-24八年级下·上海崇明·期末)如图,点E 在平行四边形ABCD 的对角线BD 的延长线上.(1)填空:BA AB +uuu r uuu r = ,BA AE ED DC +++uuu r uuu r uuu r uuu r = ;(2)图中与AB uuu r 相等的向量是 ,与AD uuu r 相反的向量是 ;(3)求作:DC DE +uuu r uuu r (不写作法,保留作图痕迹,写出结论).4.(23-24八年级下·上海·期末)如图,在四边形ABCD 中,AD BC ∥,点O 是对角线AC 的中点,DO 的延长线与BC 相交于点E ,设AB a uuu r r =,AD b =uuu r r ,BE c =uuu r r .(1)试用向量a r 、b r 、c r 表示向量:ED =uuu r ______;(2)写出图中所有与AD uuu r 互为相反向量的向量:______;(3)求作:AD OC +uuu r uuu r.(画出所求向量,并直接写出结论)5.(23-24八年级下·上海闵行·期末)如图,已知梯形ABCD 中,AB DC P ,点E 在AB 上,ED BC ∥.(1)填空:BE ED DC CB +++=uuu r uuu r uuu r uuu r ,(2)填空:BA AD DC EA ++-=uuu r uuu r uuu r uuu r ;(3)在图中直接作出AE ED AB +-uuu r uuu r uuu r .(不写作法,写结论)6.(2022八年级下·上海·专题练习)如图,已知点M 是△ABC 边BC 上一点,设AB uuu r =a r ,AC uuu r =b r .(1)当BM MC=2时,AM uuuu r =______;(用a r 与b r 表示)(2)当AM uuuu r =4377a b +r r 时,BM MC =______;(3)在原图上作出AM uuuu r 在AB uuu r 、AC uuu r 上的分向量.压轴题型八 相似三角形的动点问题1.(2020·山西·一模)如图,在ABC V 中,8AB AC ==,6BC =,点P 从点B 出发以1个单位长度/秒的速度向点A 运动,同时点Q 从点C 出发以2个单位长度/秒的速度向点B 运动,其中一点到达另一点即停.当以B ,P ,Q 为顶点的三角形与ABC V 相似时,运动时间为( )A .2411秒B .95秒C .2411秒或95秒D .以上均不对2.(2023八年级上·江苏·专题练习)如图,在ABC V 中,90C Ð=°,3AC =,4BC =,动点P 从点B 出发以每秒1个单位长度的速度沿B A ®匀速运动;同时点Q 从点A 出发同样的速度沿A C B ®®匀速运动.当点P 到达点A 时,P 、Q 同时停止运动,设运动时间为t 秒,当t 为 时,以B 、P 、Q 为顶点的三角形是等腰三角形.3.(2024·吉林长春·三模)如图,在Rt ABC △中,90ABC Ð=°,8AB =,6BC =,点D 为AC 中点,动点P 从点A 出发,沿边AB 以每秒5个单位长度的速度向终点B 运动,连结DP ,将线段DP 绕点D 逆时针旋转90°得线段DE ,连结PE .设点P 运动的时间为t 秒.(1)用含t 的代数式表示点P 到AC 的距离为________;(2)当点E 落在ABC V 内部(不包括边界)时,求t 的取值范围;(3)当PE 与ABC V 的一边平行时,求线段PE 的长度;(4)当经过点E 与ABC V 的一个顶点的直线平分ABC V 面积时,直接写出t 的值.4.(2024·江苏苏州·二模)如图,矩形ABCD 中,4AB =厘米,3BC =厘米,点E 从A 出发沿AB BC -匀速运动,速度为1厘米/秒;同时,点F 从C 出发沿对角线CA 向A 匀速运动,速度为1厘米/秒,连接DE DF EF 、、,设运动时间为t 秒.请解答以下问题:(1)当0 2.5t <<时①t 为何值时,EF AD ∥;②设DEF V 的面积为y ,求y 关于t 的函数;5.(2023·吉林松原·模拟预测)已知ABC V 中,90C Ð=°,3cm AC =,4cm CD =,BD AD =.点F 从点A 出发,沿AC CD -运动,速度为1cm/s ,同时点E 从点B 出发,沿BD DA -运动,运动速度为1cm/s ,一个点到达终点,另一点也停止运动.设AEF △ 的面积为S 2cm ,点E ,F 运动时间为t s .(1)求BD 的长;(2)用含t 的代数式表示DE ;(3)求S 与t 的函数关系式,并写出t 的取值范围.6.(23-24九年级下·河北邯郸·阶段练习)如图1和2,在矩形ABCD 中,6,8AB BC ==,点K 在CD 边上.且73CK =.点M N ,分别在,AB BC 边上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速运动,点E 在CD 边上随P 移动,且始终保持^PE AP ;点Q 从点D 出发沿DC 匀速运动,点P Q ,同时出发,点Q 的速度是点P 的一半,点P 到达点N 时停止,点Q 随之停止.设点P 移动的路程为x .(1)当点Q 与点K 重合时,通过计算确定点P 的位置;(2)若点P 在BN 上,当BP CE =时,如图2,求x 的值;(3)在点P 沿折线MB BN -运动过程中,求点Q ,E 的距离(用含x 的式子表示);(4)已知点P 从点M 到点B 再到点N 共用时20秒,请直接写出点K 在线段QE 上(包含端点)的总时长.。
相似三角形基本知识点+经典例题(完美打印版)
相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边长成比例。
以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。
2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。
b. 对应边成比例:两个相似三角形的对应边的比值相等。
3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。
b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。
二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。
如果两个三角形是相似的,则对应边的比值相等。
以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。
则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。
例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。
解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。
例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。
若AB= 10cm,BC = 15cm,求AD的长度。
解析:由于ABCD是平行四边形,所以∠B = ∠D。
根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。
相似三角形专题复习(共66张PPT)
2.右图中,若D,E分别是AB,AC
DE
边上的中点,且DE=4则BC= ____8
B
C
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=__1:_3 __
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
4. 在△ABCAC=4,AB=5.D是AC上一动点, 且∠ADE=∠B,设AD=x,AE=y,写出y与x之间 的函数关系式.试确定x的取值范围.
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
三、基本图形的形成、变化及发展过程:
平行型
.
旋转
∽
斜交型
.
.
.
平移
特 殊 垂直型
平移
.. 特 殊
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
四、运用 ☞
1.添加一个条件,使△AOB∽ △ DOC
A
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
α
B
α
B
D
A
F
α
E
问题2:
(12)延长BA、CF相交于点 D点,且D,E且善为E于B为运CB的用C类的中比点中、,点若,若 ∠B=∠迁C=移α的,数∠学AE方F法= ∠ C,连 α C 结 当A∠AF.EF旋解转决问到题如图位置时, ① 上找 述出 关图 系中 还的 成相立似吗三?角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【一】知识梳理 【1】比例①定义:四个量a,b,c,d 中,其中两个量的比等于另两个量的比,那么这四个量成比例 ②形式:a:b=c:d ,③性质:基本性质:dcb a = ac=bd4,比例中项:bcc a = ab c =2【2】黄金分割定义:如图点C 是AB 上一点,若BC AB AC •=2,则点C 是AB 的黄金分割点,一条线段的黄金分割点有两个ACAC BC AB AB BC AB AB AC 618.0215382.0253618.0215≈-=≈-=≈-=注意:如图△ABC ,∠A=36°,AB=AC ,这是一个黄金三角形,【3】平行线推比例AB AB BC 618.0215≈-=dcb a =注:比例式有顺序性的,比例线段没有负的,比例数有正有负1、可以把比例式与等积式互化。
2、可以验证四个量是否成比例 上比全=上比全,下比全=下比全,上比下=上比下,左比右=左比右 全比上=全比上,全比下=全比下 下比上=下比上【4】相似三角形1、相似三角形的判定①AA 相似:∵∠A=∠D, ∠B=∠E ∴△ABC ∽△DEF②‘S A S ’ E B EFBCDE AB ∠=∠=,∴△ABC ∽△DEF③‘S S S ’EFBCDF AC DE AB =∴△ABC ∽△DEF ④平行相似: ∵DE ∥BC ∴△ADE ∽△ABC2、相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比③相似三角形的面积比等于相似比的平方3、相似三角形的常见图形‘A 型图’ ‘ X 型图’ ‘K 型图’‘母子图’ ‘一般母子图’ AC 2=AD •AB母子图中的射影定理AC 2=AD •AB BC 2=BD •AB CD 2=AD •BD【二】题型 1、求线段的比【例题1】如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1, l 2, l 3于点A ,B ,C ;直线DF 分别交l 1, l 2, l 3于点D ,E ,F .AC 与DF 相较于点H ,且AH=2,HB=1,BC=5则EFDE的值为【例题2】如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于(1) (2)【例题3】如图,点D 是△ABC 的边AB 上一点,且AB=3AD ,点P 是△ABC 的外接圆上的一点,且∠ADP=∠ACB 则PB:PD=【例题4】如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E , 如果AE EC =23,那么ABAC =( ) A .13B .23C .25D .35(3) (4)【例题5】 已知32==d c b a ,则ba ba 4332-+=求a 比b 的方法:①求a,b 的长度,②设k 法,③利用三角形相似的性质,④平行推比例线段⑤比例分配32=-a b a ,则ba=【例题6】如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D 的直线折叠,使点A 与BC 边上的点E 重合,折痕交AB 于点F.若BE:EC=m:n ,则AF:FB= .【例题7】如图所示,将矩形ABCD 折叠,使点B 落在边AD 上,点B 与点F 重合,折痕为AE,此时,矩形EDCF 与矩形ABCD 相似,则ABAD= .【例题8】如图,Rt △ABC 内接于⊙O ,∠,A=90°,AB=4,AC=3,D 为弧AB 的中点,则DECE=(6)(7) (8)【例题9】在Rt △ABC 中,∠ACB=90°,CD 为AB 的中线,AN ⊥CD ,交BC 于N,若CD=3,AN=4,则tan ∠CAN=2、相似三角形的性质与判定【例题1】如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )【例题2】如图,已知△ABC ,P 是边AB 上的一点,连结CP ,以下条件中不能确定△ACP 与△ABC 相似的是( )A ∠ACP=∠B , B ∠APC=∠ACBC AC 2=AP.ABD BCABCP AC【例题3】已知四边形ABCD 与四边形A /B /C /D /,且AB:BC:CD:DA=20:15:9:8,若四边形A /B /C /D /为26,则A /B /的长为【例题4】 如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为【例题5】如图,P 为□ABCD 的边AD 上一点,E,F 分别为PB,PC 的中点, △PEF 的面积为3,则平行四边形的面积是已知两个相似三角形的对应高的比为3:10,面积差为100,则大三角形的面积为【例题6】如图,将边长为6的正方形ABCD 折叠,使点D 落在AB 的中点E处,折痕为FH ,点C 落在点Q 出,EQ 与BC 相较于点G ,则△EBG 的周长为(4) (5) (6)【例题7】如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为多少?【例题8】如图,AB=4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE=DB ,作EF ⊥DE 并截取EF=DE ,连结AF 并延长交射线BM 于点C .设BE=x ,BC=y ,则y 关于x 的函数解析式是点拨:同一时刻、同一地点,物高与影长的比是 定值3、相似三角形讨论方法1、固定一个角,按AA讨论,2、按夹相等角得两边的比值相等讨论【例题1】直线y=-x+1分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1)写出点A、B、C、D的坐标;(2)求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3)在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD 相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【例题2】已知二次函数y=ax2+bx的图象经过点A(-5,0)和点B,其中点B1在第一象限,且OA=OB,tan∠BAO=2(1)求点B的坐标。
(2)求二次函数的解析式。
(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,连结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标。
【例题3】如图,在平面直角坐标系中,正方形OABC 的边长是4,点A ,C 分别在y 轴、x 轴的正半轴上,动点P 从点A 开始,以每秒2个单位长度的速度在线段AB 上来回运动.动点Q 从点B 开始沿B →C →O 的方向,以每秒1个单位长度的速度向点O 运动.P ,Q 两点同时出发,当点Q 到达点O 时,两点同时停止运动.设运动时间为t 秒.(I )当t =1时,求PQ 所在直线的解析式.(2)当点Q 在BC 上运动时,若以P ,B ,Q 为顶点的 三角形与△OAP 相似,求t 的值.(3)在P ,Q 两点运动的过程中,若△OPQ 的面积为 6,请直接写出所有符合条件的P 点坐标.【例题4】如图,抛物线y =ax 2+bx+c 的开口向上,顶点M 在第三象限,抛物线与x 轴交于A 、B 两点,与y 轴负半轴交于点C ,点A 坐标为(-3,0),点B 坐标为(1,0).(1)试用含a 的式子表示b ,c ;(2)连接AM 、CM 、CB ,试说明△OCB 与四边形AMCO 的面积之比是一个定值,并求出这个定值;(3)连接AC ,若∠AC M =90°,解决下列问题:①求抛物线解析式并证明∠MAO =∠ACB ;②线段AM 上是否存在点D ,使以点A 、O 、D 为顶点的三角形与△ACB 相似?若存在,求出点D 坐标;若不存在,说明理由.Q PB yx O C Ac【例题5】已知在平面直角坐标系xOy 中,O 是坐标原点,以P (1,1)为圆心的⊙P 与x 轴,y 轴分别相切于点M 和点N ,点F 从点M 出发,沿x 轴正方向以每秒1个单位长度的速度运动,连接PF ,过点PE ⊥PF 交y 轴于点E ,设点F 运动的时间是t 秒(t >0)(1)若点E 在y 轴的负半轴上(如图所示),求证:PE=PF ;(2)在点F 运动过程中,设OE=a ,OF=b ,试用含a 的代数式表示b ;(3)作点F 关于点M 的对称点F ′,经过M 、E 和F ′三点的抛物线的对称轴交x 轴于点Q ,连接QE .在点F 运动过程中,是否存在某一时刻,使得以点Q 、O 、E 为顶点的三角形与以点P 、M 、F 为顶点的三角形相似?若存在,请直接写出t 的值;若不存在,请说明理由.【例题6】在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a = ,b = ,顶点C 的坐标为 ; (2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.ABHCyABHCy【例题7】.如图:在平面直角坐标系中,直线y =x +3与x 轴、y 轴分别交于A ,B 两点,直线y =kx +8与直线AB 相交于点D ,与x 轴相交于点C ,过D 作DE ⊥x 轴于点E (1,0),点P (t ,0)为x 轴上一动点.若点T 为直线DE 上一动点,当以O,B, T 为顶点的三角形与以O,B, P 为顶点的三角形相似时,则相应的点P (t <0)的坐标为 .【例题8】如图,二次函数4352++-=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,点P 从点O 出发沿OA 以每秒1个单位长度的速度向点A 运动,到达点A 后立刻在以原来的速度沿AO 返回;点Q 从点A 出发沿AC 以每秒1个单位长度的速度向点C 匀速运动,过点Q 作QD x ⊥轴,垂足为D 。
点P 、Q 同时出发,当点Q 到达点C 时停止运动,点P 也随之停止.设点P ,Q 的运动时间为)0(≥t t . (1) 当点P 从点O 向点A 运动的过程中,求QPA ∆面积S 与t 的函数关系式; (2) 当线段PQ 与抛物线的对称轴没有公共点时,请直接写出t 的取值范围; (3)当t 为何值时,以P 、D 、Q 为顶点的三角形与OBC ∆相似;(4) 如图2: FE 保持垂直平分PQ ,且交PQ 于点F ,交折线QC -CO -OP 于点E ,在整个运动过程中,请你直接写出点E 所经过的路径长.4、求线段长的方法【例题1】如图,在△ABC 中,AB=AC ,BC=8,tanC=23如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为【例题2】已知AB 是半圆O 的直径,D 为AC 的中点,sin ∠BAC=53,AB=10,EA 与⊙O 相切于A ,E 、D 、B 在一条直线上,求AE 的长【例题3】已知矩形ABCD ,AD=3,AB=2,E 为AB 的中点,F 在BC 边上,且BF=2CF,AF 分别与DE,DB 相较于G,H ,求GH1、勾股定理2、相似3、直角三角形边角关系4、方程 注意:方程可以根据勾股定理、相似、边角关系得到【例题4】如图所示,在△ABC 中,BC=6,E 、F 分别是AB 、AC 的中点,动点P在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ=31CE 时,则EP+BP=【例题5】如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD 的面积是小正方形EFGH 面积的13倍,那么tan ∠ADE 的值为【例题5】如图以△ABC 的边BC 上一点O 为圆心的圆经过A,C 两点且与BC 边交于点E ,点D 为CE 的下半圆的中点,连接AD ,交线段EO 与点 F ,AC=CF=4,DF=10(1)求证:AC 是⊙O 的切线:(2)求⊙O 的半径r .和sinC【例题6】如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB 于点N ,交CB 的延长线于点P ,若MN=1,PN=3,则DM 的长为 _________ .【例题7】如图D 是△ABC 的边AC 上一点,BD=8,sin ∠CBD=43,过点A 作AE ⊥BC 于E,CD=2AD,求AE 的长求坐标的方法【例题1】已知抛物线125212++-=x x y 与直线121+=x y 交于A,B ,在x 轴上试找一点P ,使∠APB=45°,则点P 的坐标为【例题2】已知抛物线y=-mx 2+4x+2m 与x 轴交于点A(α,0),B(β,0),且. 抛物线的对称轴为l ,与y 轴的交点为C ,顶点为D ,点C 关于l 的对称点为E. 若点P 在抛物线上,点Q 在x 轴上,当以点D 、E 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标.【例题3】如图,二次函数y=225x 212+-x 的图象与y 轴交于点C ,与直线y=3434-x 交于A,B,在抛物线上是否存在点P ,使S △ABC=S △ABP ,在P 的坐标为1、求点到x 轴或y 轴的距离2、两个函数组成方程组3、设出横坐标或纵坐标然后代入解析式 4方程方法:方程D B y【例题4】在平面直角坐标系xOy 中,一块含60°角的三角板作如图摆放,斜边AB 在x 轴上,直角顶点C 在y 轴正半轴上,已知点A (-1,0).抛物线经过A ,B ,C 三点,现有与上述三角板完全一样的三角板DEF (其中∠EDF=90°,∠DEF=60°),把顶点E 放在线段AB 上(点E 是不与A ,B 两点重合的动点),并使ED 所在直线经过点C .此时,EF 所在直线与(2)中的抛物线交于第一象限的点M .当AE=2时,抛物线的对称轴上是否存在点P 使△PEM 是等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B 是该半圆周上的一动点,连结OB 、AB ,并延长AB 至点D ,使DB =AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF .(1)当∠AOB =30°时,求弧AB 的长;(2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由.。