二、空间几何体的表面积与体积复习课件
高二数学必修2课件-空间几何体的表面积和体积

步骤三
如果计算正确,则可以庆祝问题 的解决,并享受数学带来的成就 感。
其他的空间几何体常识
名称
圆锥体 圆柱体 球 正方体
特点
底面为圆形,侧面为三角形 底面为圆形,侧面为矩形 表面积为4πr²,体积为(4πr³)/3 6个面组成,每个面积为a²
小结
知识点
• 空间几何体的表面积 • 空间几何体的体积 • 解题方法和步骤
高二数学必修2课件-空间 几何体的表面积和体积 ppt
本课程将带领大家深入理解空间几何体的表面积和体积,掌握重要的公式和 概念,并提供多个实例进行演示。
为什么要学习空间几何体的表面积和 体积?
1 实际应用广泛
几何体是我们日常生活中常见的物体,如箱子、瓶子、汽车等,熟练掌握空间几何体的 表面积和体积可以应用于各种实际计算中。
技能
• 应用公式解决实际问题 • 掌握计算技巧和策略 • 提高自我学习和思考能力
效果
• 成为数学大师 • 提高应对数学竞赛能力 • 在各种实际计算和操作
中表现更加出色
矩形的体积
面积×高:bh
三角形的体积
底面积之和×高的一半:(ah)/2
立体几何体的体积
1
圆柱体的体积
2
பைடு நூலகம்
πr²h
3
球的体积
(4πr³)/3
圆锥体的体积
(πr²h)/3
解题示例:如何计算球的体积?
步骤一
根据题目提供的半径长度,计算 球的表面积公式:4πr³/3
步骤二
把计算结果与题目所需体积相比 较,如相等则问题解决;如不相 等需检查计算过程是否正确。
2 提高数学水平
对于数学专业的学生,掌握空间几何体的表面积和体积是必不可少的,是数学基础中不 可或缺的一部分。
空间几何体的体积和表面积复习课(定)

问题(3): 若在奖杯中间部分堆塑一条龙,缠绕奖杯一圈,且使 龙的首与尾在一条竖直线上。两种设计方案中如何堆 塑使得龙的身长最短?
图(1)
图(2)
小结:
1、几何体的体积
2、几何体的表面积
3、用分割与组合方法求几何体的体积
4、 空间图形问题
平面图形问题
想一想:
一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为 (A)48+12 2 (B)48+24 2 (C)36+12 2 (D)36+24 2
S (r r r l rl )
'2 2 '
2r `
O`
2r
O
1、多面体的表面积 2、旋转体的表面积
各面面积之和
S球 4 r
空间图形问题 平面图形问题
2
O O'
E
O O'
H F
S总 S球 S棱柱侧 S棱台全 1 4 4 8 4 20 14 20 (14 4 20 4) 5 2 64 1576 1777
8
8 20
4
14 20
图(1) 图(2)
圆柱的展开图是一个矩形:
如果圆柱的底面半径为 r ,母线为 l ,那么圆柱 2 r 的底面积为 ,侧面积为 2rl 。因此圆柱的 表面积为
S 2r 2rl 2r (r l )
2
O`
O
圆台的展开图是一个扇环,它的表面积等于上、 下两个底面和加上侧面的面积,即
锥体的体积
1 V Sh 3
4 3 V r 3
S/=0
球的体积:
用分割与组合方法求几何体的体积。
苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
高三数学一轮复习 8.2 空间几何体的表面积与体积

考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,
2023年高考数学(文科)一轮复习课件——空间几何体的表面积和体积

2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式 S圆柱侧=__2_π_r_l_____ S圆锥侧=___π_rl____ S圆台侧=____π_(_r1_+__r_2_)l__
索引
3.空间几何体的表面积与体积公式
几何体
名称
表面积
体积
柱体 (棱柱和圆柱) 锥体(棱锥和圆锥)
Q
522+62=123.
索引
(2)已知正三棱锥 S-ABC 的侧棱长为 4 3,底面边长为 6,则该正三棱锥外接球 的表面积是___6__4_π__.
解析 如图,过点S作SE⊥平面ABC于点E,记球心为O. ∵在正三棱锥 S-ABC 中,底面边长为 6,侧棱长为 4 3, ∴BE=23× 23×6=2 3, ∴SE= SB2-BE2=6.
∵球心O到四个顶点的距离相等,均等于该正三棱锥外接球的半径R, ∴OB=R,OE=6-R. 在Rt△BOE中,OB2=BE2+OE2,即R2=12+(6-R)2,解得R=4, ∴外接球的表面积为S=4πR2=64π.
索引
感悟提升
(1)求解多面体的外接球时,经常用到截面图.如图所 示,设球O的半径为R,截面圆O′的半径为r,M为截 面圆上任意一点,球心O到截面圆O′的距离为d,则在 Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.
是( B )
A.158
B.162
C.182
D.324
索引
解析 由三视图可知,该柱体是一个直五棱柱,如图,棱柱的高为6,底面可 以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一 个的上底为2,下底为6,高为3. 则底面面积 S=2+2 6×3+4+2 6×3=27. 因此,该柱体的体积V=27×6=162.
2017届高三理科数学一轮复习课件:第八篇第2节 空间几何体的表面积与体积

(A) 2 (B) 3 (C) 4
3
3
3
(D) 3 2
解析:(1)如图,分别过点 A,B 作 EF 的垂线,
垂足分别为 G,H,连接 DG,CH,容易求得 EG=HF= 1 , 2
AG=GD=BH=HC= 3 ,所以 S =S = △AGD △BHC 1 × 2 ×1= 2 ,
2
22
4
所以 V= VEADG + VFBHC + VAGDBHC
径的球的表面积是
.
解析:设 O 到底面的距离为 h,则 1 ×3×h= 3 2 ,
3
2
解得 h= 3 2 .OA= 2
h2
6 2 2
=
6,
故球的表面积为 4π×( 6 )2=24π.
答案:24π
第十页,编辑于星期六:一点 十九分。
数学
5.(2016海淀模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所
1.圆柱、圆锥、圆台的侧面积公式是如何导出的?
提示:将其侧面展开利用平面图形面积公式求解. 2.将圆柱、圆锥、圆台的侧面沿任意一条母线剪开铺平分别得到什么图形?
提示:矩形、扇形、扇环.
第四页,编辑于星期六:一点 十九分。
数学
知识梳理
空间几何体的表面积和体积公式如下
表面积
棱柱
S 表=S 侧+2S 底
考点专项突破 在讲练中理解知识
考点一 几何体的表面积
几何体的表面积
【例1】 (1)(2014高考山东卷)一个六棱锥的体积为2,其底面是边长为2的正
六边形,侧棱长都相等,则该六棱锥的侧面积为
.
解析:(1)设该六棱锥的高为 h,
则 1 ×6× 3 ×22×h=2 6 ,
第二讲+空间几何体的表面积与体积课件-2025届高三数学一轮复习

图 6-2-7
解析:设上部圆柱的体积为 V1,则
V1=π×322×2
3=9
3π 2.
设中、下部圆台的体积分别为 V2,V3,则
V2=31×49π+841π+247π×3 3
=1174 3π,
V3=31×49π+841π+247π× 3
=39
4
3π .
所以该青铜器的体积为 V=V1+V2+V3=87 2 3π(cm3).故选 A.
是圆 O 的直径,点 M 是 SA 的中点.若侧面展开图中,△ABM 为直
角三角形,则该圆锥的侧面积为( )
A.π3
B.23π
C.43π
D.83π
解析:如图621所示,因为SB=SA,且△ABM为直角三角 形,所以 SA⊥BM.
图 6-2-1 又因为 M 为 SA 的中点,所以 SB=AB,
可得△SAB 为等边三角形,即∠ASB=π3. 则侧面展开图的圆心角为23π. 所以该圆锥的侧面积 S 侧=π×22×13=43π.
答案:A
2.(考向 1)(一题两空)如图 6-2-8,已知三棱台 ABC-A1B1C1 中, S△ABC=25,SA1B1C1=9,高 h=6,则三棱锥 A1-ABC 的体积 V 为 A1ABC ________,三棱锥 A1-BCC1 的体积 V A1BCC1为________.
图 6-2-8
解析:V A1ABC=31S△ABC·h=13×25×6=50.
则VV12=13×S12+×413S×+4S×S×h 4Sh=72.
答案:C
考向 2 旋转体的体积 通性通法:求圆柱、圆锥、圆台的体积的关键是求其底面面 积和高,其中高一般利用几何体的轴截面求得,一般是由母线、 高、半径组成的直角三角形中列出方程并求解.
苏教版高三数学复习课件7.2 空间几何体的表面积和体积

S直棱柱侧= ch 直棱柱的侧面展开图是矩形
正棱锥
底面是正多边形, 并且顶点在底面的 正投影是底面中心 的棱锥叫做 正棱锥
S正棱锥侧 正棱锥的侧面展开图是一些全 等的等腰三角形
=
正棱台
正棱锥被平行于底 面的平面所截,截 面和底面之间的部 分叫做 正棱台
S正棱台侧
正n棱台的侧面展开图是n个全 等的等腰梯形.
1.多面体的展开图:(1)直棱柱的侧面展开图是矩形.(2)正棱锥的侧
面展开图是由一些全等的等腰三角形拼成的,底面是正多边形.(3)正
棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边 形. 2.旋转体的展开图:(1)圆柱的侧面展开图是矩形,矩形的长是底面 圆周长,宽是圆柱的母线长.(2)圆锥的侧面展开图是扇形,扇形的半 径是圆锥的母线长,弧长是圆锥的底面周长.(3)圆台的侧面展开图是 扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
1.(2010·栟茶中学学情分析)正方体中,连接相邻两个面的中心的连 线可以构成一个美丽的几何体.若正方体的边长为1,则这个美丽的 几何体的体积为________.
答案:
2.圆柱的侧面展开图是边长为 6π和4π的矩形,则圆柱的全面积为 ________. 答案:6π(4π+3)或8π(3π+1)
(其中R为球半径).
3.几何体的体积公式 (1)柱体的体积公式V= (2)锥体的体积公式V= (3)台体的体积公式V= 面面积,h为高). (4)球的体积公式V= (其中R为球半径).
Sh
(其中S为底面面积,h为高). (其中S为底面面积,h为高). (其中S′,S为上、下底
探究:对于不规则的几何体应如何求其体积? 提示:对于求一些不规则几何体的体积常用割补的方法,转化成已知 体积 公式的几何体进行解决.虽说在某些情况下,割补法优于整体法,但
空间几何体的表面积和体积(第二课时)

把圆柱沿这条母线展开,将问题转
化为平面上两点间的最短距离.
解
把圆柱侧面及缠绕其上
的铁丝展开,在平面上得到 矩形ABCD(如图所示), 由题意知BC=3π cm,
AB=4π cm,点A与点C分别是铁丝的起、止位
置,故线段AC的长度即为铁丝的最短长度.
AC AB 2 BC 2 5 π cm, 故铁丝的最短长度为5π cm.
1.3 简单几何体的表面积和体积(二)
题型一
多面体的表面积及其体积
【例3】 一个正三棱锥的底面边长为6,侧棱长 为 15,求这个三棱锥的体积.
思维启迪
本题为求棱锥的体积问题.已知底面
边长和侧棱长,可先求出三棱锥的底面面积
和高,再根据体积公式求出其体积. 解 如图所示, 正三棱锥S—ABC. 设H为正△ABC的中心,
(1)几何体的“分割” 几何体的分割即将已知的几何体按照结论的要 求,分割成若干个易求体积的几何体,进而求之. (2)几何体的“补形”
与分割一样,有时为了计算方便,可将几何体补
成易求体积的几何体,如长方体、正方体等.另外 补台成锥是常见的解决台体侧面积与体积的方法, 由台体的定义,我们在有些情况下,可以将台体 补成锥体研究体积. (3)有关柱、锥、台、球的面积和体积的计算, 应以公式为基础,充分利用几何体中的直角三角 形、直角梯形求有关的几何元素.
2
11 3 旋转所得到的几何体的表面积为 π R2. 2
4 1 1 又V球 π R 3 ,V圆锥AO1 AO1 π CO 2 π R 2 AO1 1 3 3 4 1 1 2 V圆锥BO1 BO1 π CO 1 π R 2 BO1 3 4 V几何体 V球 (V圆锥AO1 V圆锥BO1 ) 4 1 5 3 3 π R π R π R3. 3 2 6
高考数学空间几何体及其表面积、体积ppt课件

21
2.(多选)下列命题,正确的有( )
A.棱柱的侧棱都相等,侧面都是全等的平行四边形
√B.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直 √C.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直
四棱柱
√D.存在每个面都是直角三角形的四面体
上一页
返回导航
下一页
第八章 立体几何与空间向量
22
解析:A 不正确,根据棱柱的定义,棱柱的各个侧面都是平行 四边形,但不一定全等;B 正确,若三棱锥的三条侧棱两两垂 直,则三个侧面构成的三个平面的二面角都是直二面角;C 正 确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;D 正确, 如图,正方体 ABCD-A1B1C1D1 中的三棱锥 C1ABC,四个面都是直角三角形.
上一页
返回导航
下一页
第八章 立体几何与空间向量
32
平面图形与其直观图的关系
(1)在斜二测画法中,要确定关键点及关键线段.平行于 x 轴的线段平行性不
变,长度不变;平行于 y 轴的线段平行性不变,长度减半.
(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关
系:S
= 直观图
2 4S
原图形.
第八章 立体几何与空间向量
11
3.正方体与球的切、接常用结论 正方体的棱长为 a,球的半径为 R, (1)若球为正方体的外接球,则 2R= 3a; (2)若球为正方体的内切球,则 2R=a; (3)若球与正方体的各棱相切,则 2R= 2a.
上一页
返回导航
下一页
第八章 立体几何与空间向量
12
常见误区 1.求组合体的表面积时,组合体的衔接部分的面积问题易出错. 2.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析 图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的 截面图.
空间几何体的表面积与体积讲义

空间几何体的表面积与体积讲义一、知识梳理1.多面体的表面积、侧面积 因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台侧面展开图侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r 1+r 2)l3.名称几何体表面积 体积 柱体(棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13Sh 台体(棱台和圆台)S 表面积=S 侧+S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 3 注意:1(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( )(2)锥体的体积等于底面积与高之积.( )(3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )(5)长方体既有外接球又有内切球.( )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( )题组二:教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cm D.32cm 3.[]如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.题组三:易错自纠4.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+45.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8π D .4π 6.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.二、典型例题题型一:求空间几何体的表面积1.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π2.已知某几何体的三视图如图所示,则该几何体的表面积为( )A.73B.172 C .13 D.17+3102思维升华:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.题型二:求空间几何体的体积命题点1:以三视图为背景的几何体的体积典例 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 命题点2:求简单几何体的体积 典例已知E ,F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AA 1,CC 1的中点,则四棱锥C 1—B 1EDF 的体积为________.思维升华:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪训练 (1)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.323B.163C.83D.43 (2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32题型三:与球有关的切、接问题典例 在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2 C .6π D.32π3引申探究:1.若将本例中的条件变为“直三棱柱ABC —A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.2.若将本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.思维升华:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.跟踪训练如图所示,在平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3π C.2π3 D .2π四、反馈练习1.某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 2.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .303.已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为( )A.16π3B .16π C.32π3 D .32π4.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .24πB .30πC .42πD .60π5.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+2 3B .8+42C .6+6 2D .6+22+436.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π7.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.8.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.9.如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为______.10.如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r =________.11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. 12如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.2=4-x 2,即x =2时取等号,∴当x =2时,体积有最大值33. 13.如图,四棱锥P —ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N —P AC 与三棱锥D —P AC 的体积比为( )A .1∶2B .1∶8C .1∶6D .1∶314.在三棱锥P —ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B .4πC .8πD .20π15.已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为( )A.32B.233C.23D.13 16.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P —BCD 的体积的最大值是________.。
第二节 空间几何体的表面积与体积

第二节 空间几何体的表面积与体积考试要求了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.[知识排查·微点淘金]知识点1 圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展 开图侧面积 公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l[微拓展] 圆台、圆柱、圆锥之间的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 知识点2 空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h台体(棱台和圆台)S 表面积=S 侧+ S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3[微拓展]柱体、锥体、台体的体积公式间的联系:V 柱体=Sh ――→S ′=SV 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 常用结论 几个与球有关的切、接问题的常用结论(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.[小试牛刀·自我诊断]1.思维辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高的乘积.(×) (2)球的体积之比等于半径比的平方.(×) (3)台体的体积可转化为两个锥体的体积之差.(√) (4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .(√) 2.(链接教材必修2 P 27T 1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD .32cm解析:选B.S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.(链接教材必修2P 28A 组T 3)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体的体积的比为 .解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ·12b ·12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 答案:1∶474.(忘记分类讨论)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,所以S底=4π,S侧=6π·4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3,所以S底=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).答案:6π(4π+3)或8π(3π+1)5.(对组合体不能合理分割)如图所示,由圆柱与圆锥组合而成的几何体的三视图如图所示,则该几何体的表面积为.解析:设圆柱底面半径为r,周长为c,圆锥母线长为l,圆柱高为h.由题中三视图得r=2,c=2πr=4π,h=4,由勾股定理得:l=22+(23)2=4,S表=πr2+ch+12cl=4π+16π+8π=28π.答案:28π一、基础探究点——空间几何体的表(侧)面积(题组练透)1.(2021·新高考卷Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.4 2解析:选B由题意知圆锥的底面周长为22π.设圆锥的母线长为l,则πl=22π,即l=2 2.故选B.2.如图为某几何体的三视图,则该几何体的表面积是()A.6+4 2B.4+4 2C .6+2 3D .4+2 3解析:选C 由三视图还原几何体知,该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝⎛⎭⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.3.如图,一个棱长为4的正方体被挖去一个高为4的正四棱柱后得到图中的几何体,若该几何体的体积为60,则该几何体的表面积为 .解析:设正四棱柱的底面边长为m ,则4(42-m 2)=60,解得m =1,则该几何体的表面积为42×4+(42-12)×2+4×1×4=110.答案:1104.已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为 . 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =13×π·62·h =30π,解得h =52.所以l =r 2+h 2=62+⎝⎛⎭⎫522=132,故圆锥的侧面积S =πrl =π·6×132=39π.答案:39π求空间几何体表面积时应注意(1)以三视图为载体的几何体的表面积问题,关键 是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理.(3)旋转体的表面积问题应注意其侧面展开图的应用.二、综合探究点——空间几何体的体积(多向思维)[典例剖析]思维点1直接利用公式求体积问题[例1](1)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为.解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图所示,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′=OQ2-O′Q2=52-42=3. 据此可得圆台的体积V=1π×3×(52+5×4+42)=61 π.3答案:61π对于规则几何体的体积问题,可以直接利用公式进行求解. 要注意准确记忆基本体积公式.思维点2割补法求体积问题[例2]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为()A.12 000立方尺B.11 000立方尺C.10 000立方尺D.9000立方尺解析:由题意,将锲体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V 1=12×3×2×2=6,四棱锥的体积V 2=13×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V =V 1+2V 2=10立方丈=10 000立方尺.故选C .答案:C割补法求体积的解题思路首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.思维点3 等积转换法求体积[例3] 如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为( )A .312 B .34 C .612D .64解析:易知三棱锥B 1ABC 1的体积等于三棱锥A -B 1BC 1的体积,又三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 答案:A等积转化法求体积的解题思路选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换.[学会用活]1.如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A .3B .4C .6D .12解析:选B 因为S △BCD =12S 四边形ABCD ,CE =23CC 1,VABCD A 1B 1C 1D 1=S 四边形ABCD ·CC 1=36,所以V E BCD =13S △BCD ·CE =13×12S 四边形ABCD ·23CC 1=19×36=4.故选B.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:选B 解法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π·32×4+π·32×6×12=63π.故选B.解法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π·32×10=90π,∴45π<V几何体<90π.观察选项可知只有63π符合.故选B.3.某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C .三、应用探究点——与球有关的切、接问题(多向思维)[典例剖析]思维点1 几何体的外接球问题[例4] 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3解析:由等边△ABC 的面积为93可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.答案:B [拓展变式][变条件、变结论]若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.解:将直三棱柱补形为长方体ABEC -A ′B ′E ′C ′(图略),则球O 是长方体ABEC -A ′B ′E ′C ′的外接球,∴体对角线BC ′的长为球O 的直径.因此2R =32+42+122=13,故S 球=4πR 2=169π.处理“相接”问题,要抓住空间几何体“外接”的特点,即球心到多面体的顶点的距离等于球的半径.思维点2 几何体的内切球问题[例5] 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .解析:解法一:如图,在圆锥的轴截面ABC 中,CD ⊥AB ,BD =1,BC =3,圆O 内切于△ABC ,E 为切点,连接OE ,则OE ⊥B C .在Rt △BCD 中,CD =BC 2-BD 2=2 2.易知BE =BD =1,则CE =2.设圆锥的内切球半径为R ,则OC =22-R ,在Rt △COE 中,OC 2-OE 2=CE 2,即(22-R )2-R 2=4,所以R =22,圆锥内半径最大的球的体积为43πR 3=23π. 解法二:如图,记圆锥的轴截面为△ABC ,其中AC =BC =3,AB =2,CD ⊥AB ,在Rt △BCD 中,CD =BC 2-BD 2=22,则S △ABC =2 2.设△ABC 的内切圆O 的半径为R ,则R =2·S △ABC 3+3+2=22,所以圆锥内半径最大的球的体积为43πR 3=23π. 答案:23π处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.[学会用活]4.长方体ABCD -A 1B 1C 1D 1的长、宽、高分别为2,2,1,其顶点都在球O 的球面上,则球的表面积为 .解析:因为长方体的外接球O 的直径为长方体的体对角线,长方体的长、宽、高分别为2,2,1,所以长方体的外接球O 的直径为4+4+1=3,故长方体的外接球O 的半径为r =32,所以球O 的表面积为S =4πr 2=9π.答案:9π5.已知正四面体P -ABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则S 1S 2= .解析:设正四面体的棱长为a ,则正四面体的表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 答案:63π限时规范训练 基础夯实练1.(2021·四川乐至中学月考)已知圆锥的轴截面是边长为2的等边三角形,则该圆锥的侧面积为( )A .33π B .2π C .3πD .4π解析:选B 由题意,圆锥的轴截面是边长为2的等边三角形,即圆锥的底面圆的半径为r =1,母线长为l =2,所以该圆锥的侧面积为S =πrl =π·1×2=2π. 故选B.2.在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π解析:选C 由题意可知旋转后的几何体如图所示,直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为V =V 圆柱-V 圆锥=π·12×2-13·π·12×1=53π,故选C .3.(2021·云南昆明月考)某锥体的三视图如图所示,则该几何体的体积为( )A .2B .533C .433D .233解析:选C 由三视图还原几何体得,原几何体是一个四棱锥E -ABCD ,如图所示,四棱锥的高为3,底面是边长为2的正方形,因此体积为13×2×2×3=433,故选C . 4. 《九章算术》中给出了一个圆锥体积近似计算公式V ≈l 2·h36,其中l 为底面周长,它实际上是将圆锥体积中圆周率近似取为3得到的,那么若圆锥体积近似公式为V ≈l 2·275·h ,则相当于圆周率近似取值为( )A .227B .217C .238D .258解析:选D 设圆锥底面圆的半径为r ,高为h ,则l =2πr ,13πr 2h =275(2πr )2 h ,所以π=258. 故选D.5.(2021·四川石室中学开学考试)某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S 1,其内切球的表面积为S 2,且S 1=λS 2,则λ=( )A .1B .23C .43D .32解析:选D 由已知可得,此柱体为底面直径与高相等的圆柱,设底面圆的半径为r ,则高为2r ,则S 1=2πr 2+2πr ·(2r )=6πr 2,又此柱体内切球的半径为r ,则S 2=4πr 2, 则λ=S 1S 2=6πr 24πr 2=32,故选D. 6.某几何体的三视图如图所示,则该几何体的体积为( )A .π+43B .2π+4C .3π+4D .4π+43解析:选A 由三视图还原原几何体如图,该几何体为组合体,上半部分为半圆柱,下半部分为正四棱锥,圆柱的底面半径为1,高为2,棱锥的底面边长为2,高为1,∴该几何体的体积为12π·12×2+13×22×1=π+43.故选A .7.若圆锥的内切球与外接球的球心重合,且圆锥内切球的半径为1,则圆锥的表面积为 .解析:因为圆锥的内切球与外接球的球心重合,所以圆锥的轴截面为等边三角形,设其边长为a ,则13×32a =1,a =23,所以圆锥的底面圆半径为3,从而利用圆锥的表面积公式可得S =πrl +πr 2=π·3×23+π·(3)2=9π.答案:9π8.(2021·陕西渭南月考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体称为正八面体,则图中正八面体体积为 .若图中正八面体的各个顶点都在同一个球面上,则此球的体积为 .解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的对角线是正方体的棱长2,故正方形的边长等于2,所以该多面体的体积为2×13×(2)2×1=43.由图中几何关系知正八面体的外接球,即正方体的内切球,故半径R =1,所以体积V =43π·13=43π.答案:43 43π9.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为1个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积 .解析:由三视图知,该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为43π·13+13π·22×7=323π,设制成的大铁球半径为R ,则43πR 3=323π,解得R =2,故大铁球的表面积为4πR 2=16π.答案:16π综合提升练10.最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”“圆罂测雨”“峻积验雪”和“竹器验雪”.其中“天池测雨”法是下雨时用一个圆台形的天池盆收集雨水.已知天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.当盆中积水深九寸(注:1尺=10寸)时,平地降雨量是( )A .9寸B .7寸C .8寸D .3寸解析:选D 由已知天池盆上底面半径是14寸,下底面半径为6寸,高为18寸,由积水深9寸知水面半径为12×(14+6)=10寸,则盆中水的体积为13π·9×(62+102+6×10)=588π(立方寸),所以平地降雨量为588ππ·142=3(寸),故选D.11.(2021·四川成都月考)一块边长为10 cm 的正方形铁片如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,则这个正四棱锥的外接球的表面积为( )A .2894πB .28916πC .28948πD .28964π解析:选A 由题设知:底面ABCD 的外接圆半径为r =32,且EO =4,令正四棱锥外接球的半径为R ,且外接球的球心必在直线EO 上,∴(R -EO )2+r 2=R 2,即R =174.∴正四棱锥的外接球的表面积为4πR 2=289π4.故选A .12.(2021·安徽合肥一中模拟)学生到工厂劳动实践,利用3D 打印技术制作一个机械零件模型,该零件模型是由两个相同的正四棱柱镶嵌而成的几何体,其三视图如图所示.这个几何体的体积为( )A .16B .403C .16-423D .163解析:选B 由三视图还原几何体如图所示,两个四棱柱的体积均为V 1=12×2×2×4=8,中间重复的部分为两个小正四棱锥,其体积为2V 2=13×2×2×2=83,故该几何体体积为V =16-83=403,故选B.13.有一个圆锥与一个圆柱的底面半径相等,圆锥的母线长是底面半径的2倍,若圆柱的外接球的表面积是圆锥的侧面积的6倍,则圆柱的高是底面半径的 倍.解析:设圆柱的高为h ,底面半径为r ,圆柱的外接球的半径为R ,则R 2=⎝⎛⎭⎫h 22+r 2. ∵母线长l =2r ,∴圆锥的高为3r ,∴圆锥的侧面积为πrl =2πr 2,∴4πR 2=4π⎣⎡⎦⎤⎝⎛⎭⎫h 22+r 2=6×2πr 2,∴h 24+r 2=3r 2,整理得h 2=8r 2,∴hr =2 2.答案:2 214.某市民广场有一批球形路障球(如图1所示). 现公园管理处响应市民要求,决定将每个路障球改造成方便市民歇脚的立方八面体石凳(如图2所示). 其中立方八面体有24条棱、12个顶点、14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.经过测量,这批球形路障球每个直径为60 cm ,若每个路障球为改造后所得的立方八面体的外接球,则每个改造后的立方八面体表面积为 cm 2.解析:由题意知,立方八面体表面有8个正三角形,再加上6个小正方形,且正方形边长与正三角形边长相等,路障球为立方八面体的外接球. 设立方八面体的棱长为a ,则外接球直径d =2a 2+2a 2=2a =60,则a =30.立方八面体表面积S =6a 2+8×34a 2=5400+1800 3.答案:5400+1800 315.如图1,在一个正方形S 1S 2S 3S 4内,有一个小正方形和四个全等的等边三角形.将四个等边三角形折起来,使S 1,S 2,S 3,S 4重合于点S ,且折叠后的四棱锥S -ABCD 的外接球的表面积是16 π(如图2),则四棱锥的体积是 .解析:在题图2中,连接AC ,BD 交于点O ,连接OS ,如图,因为SD =SB =CD ,BD =2CD ,所以SD ⊥SB ,故OA =OB =OC =OD =OS ,则O 是正四棱锥外接球的球心,正四棱锥的所有棱都相等,设棱长为x ,则外接球的半径是OA =22x ,所以4π⎝⎛⎭⎫22x 2=16π,x =2 2.因此SO =OA =22x =2.故四棱锥S -ABCD 的体积是13·x 2·SO=13×(22)2×2=163. 答案:163创新应用练16.某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为43的正方体的六个面所截后剩余的部分(球心与正方体的中心重合),若其中一个截面圆的周长为4π,则该球的半径是( )A .2B .4C .26D .4 6解析:选B 设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即23,根据截面圆的周长可得4π=2πr ,得r =2,故由题意知R 2=r 2+(23)2,即R 2=22+(23)2=16,所以R =4,故选B.17.(2021·安徽黄山二模)棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其能到达的空间的体积为( )A .32+22π3B .36+4π3C .44+13π3D .12+12π解析:选A 在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为8⎣⎡⎦⎤13-18⎝⎛⎭⎫4π3·13=8-4π3,除此之外,在以正方体的棱为一条棱的12个1×1×2的正四棱柱空间内,小球不能到达的空间共为12×⎣⎡⎦⎤1×1×2-14(π·12)×2=24-6π.其他空间小球均能到达.故小球不能到达的空间体积为⎝⎛⎭⎫8-43π+24-6π=32-223 π.∴小球可以经过的空间的体积V =43-⎝⎛⎭⎫12-π4·12×2×12-⎝⎛⎭⎫8-43 π=32+22π3.故选A .。
空间几何体的表面积与体积的复习课课件

2. 所 有 棱 长 为 1 的 正 三 棱 锥 的 全 面 积 3 为 . 解析 3 2 S=4× × = 3. 1 4
3. 如 图 所 示 , 在 棱 长 为 4 的 正 方 体 ABCD—A1B1C1D1 中,P 是 A1B1 1 上一点,且 PB1= A1B1,则多 4 面 体 为
解析
16 3
a,则长方体的体对角线长为 (2a)2+a2+a2= 6a.又长方体外接球的直径 2R 等于长方体的 体对角线,∴2R= 6a.∴S 球=4πR2=6πa2.
题型剖析
题型一 几何体的展开与折叠 例 1 有一根长为 3π cm, 底面半径为 1 cm 的圆 柱形铁管,用一段铁丝在铁管上缠绕 2 圈, 并使铁丝的两个端点落在圆柱的同一母线 的两端,求铁丝的最短长度为多少? 思维启迪: 把圆柱沿这条母线展开,将问题转
P—BCC1B1 的 体 积 .
∵四棱锥 P—BB1C1C 的底面积为 16,
高 PB1=1, 1 16 ∴VP—BB1C1C= × 1= . 16× 3 3
4. 若正方体的棱长为 2,则以该正方体各个 面的中心为顶点的凸多面体的体积为( B ) 2 2 3 2 A. B. C. D. 6 3 3 3
化为平面上两点间的最短距离.
解
把圆柱侧面及缠绕其上的铁丝展开,在平
面上得到矩形 ABCD(如图所示), 由题意知 BC =3π cm,AB=4π cm, A 点 与点 C 分别是铁丝的起、 止 位置,故线段 AC 的长度即 为铁丝的最短长度. AC= AB2+BC2=5π cm, 故铁丝的最短长度为 5π cm.
1 V= (S 上+S 下 3 圆台 + S上S下)h= π(r1+r2)l S 侧=________ 1 π(r2+r2+ 3 1 2 r1r2)h 直棱 柱 正棱 锥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考 点 探 究 • 挑 战 高 考
答案: 3
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
5.(2009年高考上海卷)若等腰直角三角形的直 角边长为2,则以一直角边所在的直线为轴旋 转一周所成的几何体体积是________.
8π 答案: 3
考 点 探 究 • 挑 战 高 考
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
2 ∴AP=AB= 2,EG= . 2 1 ∴S△ABC= AB· BC 2 1 = × 2×2= 2, 2 1 ∴VEABC= S△ ABC· EG 3 1 2 1 = × 2× = . 3 2 3
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
解:如图所示,只有当圆柱的底面圆为直三棱 柱的底面三角形的内切圆时,圆柱的体积最大, 削去部分体积才能最小,设此时圆柱的底面半 径为R,圆柱的高即为直三棱柱的高.
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
考点探究•挑战高考
考点突破 几何体的表面积 求解有关多面体表面积的问题,关键是找到其特征 几何图形,如棱柱中的矩形,棱台中的直角梯形, 棱锥中的直角三角形,它们是联系高与斜高、边长 等几何元素间的桥梁,从而架起求侧面积公式中的 未知量与条件中已知几何元素间的联系;求球的表 面积关键是求其半径;旋转体的侧面积就是它们侧 面展开图的面积.
双 基 研 习 • 面 对 高 考
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
几何体的折叠与展开 几何体的表面积,除球以外,都是利用展开图求得 的,利用了空间问题平面化的思想.把一个平面图 形折叠成一个几何体,再研究其性质,是考查空间 想象能力的常用方法,所以几何体的展开与折叠是
考 点 探 究 • 挑 战 高 考
高考的一个热点.
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
(1)有一根长为3π cm、底面半径为1 cm的圆 柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁 丝的两个端点落在圆柱的同一母线的两端,则铁丝 的最短长度为多少? (2)把长、宽分别为4π cm和3π cm的矩形卷成圆柱, 如何卷能使体积最大? 【思路点拨】 把圆柱沿着铁丝的两个端点落在的 那条母线展开,将问题转化为平面上两点间的最短 距离.
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
【名师点评】
求锥体的体积,要选择适当的底面 1 积和高,然后应用公式 V= Sh 进行计算即可.常用 3 方法:割补法和等积变换法. (1)割补法:求一个几何体的体积可以将这个几何体 分割成几个柱体、锥体,分别求出锥体和柱体的体 积,从而得出几何体的体积. (2)等积变换法:①利用三棱锥的任一个面可作为三 棱锥的底面.求体积时,可选择容易计算的方式来 计算;②利用“等积性”可求“点到面的距离”.
相应的底面面积和高,应注意充分利用多面体的
截面和旋转体的轴截面,将空间问题转化为平面
问题求解.
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
例2 (2010年高考陕西卷)如图,在四棱锥
P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
第8章 立体几何
双 基 研 习 • 面 对 高 考
二
空间几何体的表面积与体积
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
双基研习•面对高考
基础梳理
柱、锥、台与球的侧面积和体积
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
在△ABC 中,令 AB=3,BC=4,AC=5, ∴△ABC 为直角三角形. 根据直角三角形内切圆的性质可得 7-2R=5, ∴R=1. ∴V 圆柱=πR2· h=6π(cm3). 1 而 三 棱 柱 的 体 积 为 V 三 棱 柱 = ×3×4×6 = 2 36(cm3). 3 ∴削去部分的体积为 36-6π=6(6-π)(cm ). 即削去部分体积的最小值为 6(6-π)cm3.
面积 ch S 侧=___ 1 S 侧= ch′ 2
考 点 探 究 • 挑 战 高 考
考 立体几何
双 基 研 习 • 面 对 高 考
思考感悟 对不规则的几何体应如何求体积?
提示:对于求一些不规则的几何体的体积常用割
补的方法,转化为已知体积公式的几何体进行解 决.
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
由题意可知:球心在三棱柱上、下底面的中心 O1、 2 的连线的中点 O 处, O 连接 O1B、 1O、 O OB, 2 其中 OB 即为球的半径 R,由题意知:O1B= 3 3a 3a 3a 2 7a2 a2 × = ,所以半径 R2=( ) +( )= , 2 3 2 3 12 2 7πa 2 所以球的表面积 S=4πR = ,故选 B. 3
B.48+24 2 D.36+24 2
解析:选A.由三视图可知原棱锥为三棱锥,记 为P-ABC(如图),且底面为直角三角形,顶点P 在底面的射影为底边AC的中点,
双 基 研 习 • 面 对 高 考
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
【思路点拨】 根据图形特征,球心为三棱柱上、 下底面的中心连线的中点,构造三角形可求得球 的半径,代入公式可求得表面积.
例1
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
【解析】
三棱柱如图所示,
考 点 探 究 • 挑 战 高 考
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
(2)连接 AE,AC,EC,过 E 作 EG∥PA,交 AB 于点 G, 1 则 EG⊥平面 ABCD,且 EG= PA. 2 在△PAB 中, AP=AB, ∠PAB=90° BP=2, ,
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
变式训练1 (2009年高考海南、宁夏卷)一个棱锥 的三视图如图,则该棱锥的全面积(单位:cm2) 为( )
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
A.48+12 2 C.36+12 2
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
A.1 cm
B.1.2 cm
C.1.5 cm
D.2 cm
答案:C
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
2.用与球心距离为 1 的平面去截球,所得的 截面面积为 π,则球的体积为( ) 8π 8 2π A. B. 3 3 32π C.8 2π D. 3
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
课前热身 1.(教材习题改编)一个圆柱形的玻璃瓶的内半径 为3 cm,瓶里所装的水深为8 cm,将一个钢球完 全浸入水中,瓶中水的高度上升到8.5 cm,则钢球 的半径为( )
双 基 研 习 • 面 对 高 考
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
3+ 3 A. 2 1 C. 6
B.3+ 3 3 D. 2
考 点 探 究 • 挑 战 高 考
答案:A
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
4. 如图是一个几何体的三视图. 若它的体积是 3 3,则 a=______.
(2)由图形特征易求得三棱锥 E-ABC 的底面积及高 1 PA,代入体积公式可求 V. 2
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
【解】 (1)证明:在△PBC 中,E,F 分别是 PB, PC 的中点, ∴EF∥BC. ∵四边形 ABCD 是矩形, ∴BC∥AD,∴EF∥AD, 又∵AD 平面 PAD,EF Ø 平面 PAD, ∴EF∥平面 PAD.
AP=AB,BP=BC=2,E,F分别是PB,PC的中 点. (1)证明:EF∥平面PAD; (2)求三棱锥E-ABC的体积V.
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
【思路点拨】 EF∥平面 PAD.
(1)由线面平行的判定定理易证
答案:B
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考