完整word版,七年级下册数学相交线与平行线难题及答案
七年级下册数学难题
七年级下册数学难题一、相交线与平行线类1. 如图,已知直线AB∥CD,∠1 = 30°,∠2 = 90°,则∠3等于多少度?解析:因为AB∥CD,所以∠1 = ∠4(两直线平行,同位角相等),已知∠1 = 30°,所以∠4 = 30°。
又因为∠2 = 90°,在三角形中,∠3+∠4+∠2 = 180°(三角形内角和为180°)。
把∠4 = 30°,∠2 = 90°代入可得:∠3+30°+90° = 180°。
解得∠3 = 180° 30° 90° = 60°。
2. 已知:如图,EF⊥AB,CD⊥AB,∠1 = ∠2,试说明∠AGD=∠ACB。
解析:因为EF⊥AB,CD⊥AB,所以EF∥CD(在同一平面内,垂直于同一条直线的两条直线互相平行)。
所以∠2 = ∠3(两直线平行,同位角相等)。
又因为∠1 = ∠2,所以∠1 = ∠3(等量代换)。
所以DG∥BC(内错角相等,两直线平行)。
所以∠AGD = ∠ACB(两直线平行,同位角相等)。
二、实数类1. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2+7的值。
解析:先求a + b的值:a + b=√(5)+2+√(5)-2 = 2√(5)。
再求ab的值:ab=(√(5)+2)(√(5)-2)=(√(5))^2-2^2=5 4 = 1。
然后a^2+b^2=(a + b)^2-2ab=(2√(5))^2-2×1=20 2=18。
所以a^2+b^2+7=18 + 7=25。
2. 若√(1 3a)+|8b 3| = 0,求ab的值。
解析:因为√(1 3a)≥slant0,|8b 3|≥slant0,要使√(1 3a)+|8b 3| = 0成立。
则√(1 3a)=0,解得a=(1)/(3);|8b 3| = 0,解得b=(3)/(8)。
(完整版)七年级数学下册相交线与平行线测试题与答案,推荐文档
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多 ∠AOE=25°,∠DOF=45°,则∠AOC=_______。
C C
⊥E C C ⊥ F ⊥⊥ CC C O C B⊥
4的5∠6、、、位B如a如G、置图F图b=关,、,1系1∠c直8是º是A线,=_平1_则A2_面0B_∠°_内∥_E,_H的C_D∠D。三,=C_条=E_6_F不0_°与_同_,的A。EB直F、线与C,DA若B分、别a∥C相Dc交,分于b别∥G相cCC、,交则H于,aG与、⊥CCCCCCCCbHA⊥⊥C⊥⊥CCCCCCCC,F⊥⊥CC⊥⊥CCCC CCG⊥⊥CCCCH⊥⊥CCC⊥⊥CCCCE
二、 选择题(每小题 4 分,共 32 分)
9、B 10、C 11、D 12、C 13、A 14、C 15、B 16、C
三、 解答题(每小题 9 分,共 36 分)
17、解:∵DE∥BC,∠ADE=62°,∠DEC=112°,∴∠B=∠ADE=62°, ∴∠C=180°-∠DEC=180°-112°=68°。 18、解: ∵AB∥CD,∠EFG=72°,∴∠BEF=180°-∠EFG=180°-72°=108°, 又 EG 平分∠BEF,∴∠BEG= 1 ∠BEF=54°,又 AB∥CD,∴∠EGF=∠BEG=54°。
CA C
C
⊥C
⊥
D
CE
⊥ C⊥
B ⊥ C ⊥C
C
⊥
C C⊥
C
⊥
C⊥
CC
CC
18、如图,已知 AB∥CD,EF 与 AB、CD 分别相C交于CE、F,EG C平分C ∠BEF,且∠EFG=72°,
求∠EGF 的度数。
初中数学相交线与平行线难题汇编附答案
初中数学相交线与平行线难题汇编附答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学相交线与平行线难题汇编附答案一、选择题1.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.2.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤【答案】D【解析】如图,①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;⑤∠1和∠3是直线BC和直线AB被直线AC截得的同旁内角,所以⑤正确.故答案选D.点睛:(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.3.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.∥的条件有()个.4.如图,下列能判定AB CD(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.5.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°【答案】C【解析】【分析】 根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.7.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A .64°B .68°C .58°D .60°【答案】A【解析】【分析】 首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.8.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55 ,故选:B.【点睛】此题考查平行线的性质,折叠的性质.9.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A.50°B.55°C.65°D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.10.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A.30B.60C.90D.120【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.11.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.12.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )A.75°B.72°C.70°D.65°【答案】B【解析】【分析】如图,由折叠的性质可知∠3=∠4,已知AB∥CD,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°【详解】如图,由折叠的性质可知∠3=∠4,∵AB∥CD,∴∠3=∠1,∵∠1=2∠2,∠3+∠4+∠2=180°,∴5∠2=180°,即∠2=36°,∴∠AEF=∠3=∠1=72°故选B.【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.13.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识14.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.15.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.16.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.17.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.18.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.19.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD 【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.。
部编数学七年级下册第5章相交线与平行线(解析版)含答案
第5章 相交线与平行线一、单选题1.下面四个图形中,1Ð与2Ð是对顶角的是( )A .B .C .D .【答案】C【分析】根据对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,分别判断即可.【详解】解:A 、两角两边没有互为反向延长线,选项错误;B 、两角两边没有互为反向延长线,选项错误;C 、有公共顶点,且两角两边互为反向延长线,选项正确.D 、没有公共顶点,两角没有互为反向延长线,选项错误.故选:C .【点睛】本题考查对顶角的定义,根据定义解题是关键.2.如图所示,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34Ð=ÐB .12Ð=Ð C .D DCE Ð=Ð D.180D ACD Ð+Ð=°【答案】B 【分析】根据平行线的判定判断即可;【详解】当34Ð=Ð时,BD AC P ,故A 不符合题意;当12Ð=Ð时,//AB CD ,故B 符合题意;当D DCE Ð=Ð时,BD AE P ,故C 不符合题意;当180D ACD Ð+Ð=°时,BD AE P ,故D 不符合题意;故答案选B .【点睛】本题主要考查了平行线的判定,准确分析判断是解题的关键.3.如图,若////,//,AB CD EF BC AD AC 为BAD Ð的平分线,则与AOF Ð相等的角有( )个.A.2B.3C.4D.5【答案】D【分析】根据角平分线定义可得∠BAC=∠DAC,利用平行线性质与对顶角性质可得∠DCA=∠FOA=∠BAC=∠COE,∠BCA=∠DAC,即可得出结论.【详解】解:∵AC为BADÐ的平分线,∴∠BAC=∠DAC,AB CD EF BC AD,∵////,//∴∠DCA=∠FOA=∠BAC=∠COE,∠BCA=∠DAC,∴∠AOF=∠DCA=∠BAC=∠COE=∠BCA=∠DAC.故选项D.【点睛】本题考查角平分线定义,平行线性质,对顶角性质,掌握角平分线定义,平行线性质,对顶角性质是解题关键.4.下列图形中,线段PQ能表示点P到直线l的距离的是().A.B.C.D.【答案】D【分析】根据点到直线的距离的定义“从直线外一点到这条直线的垂线段长度,叫点到直线的距离”,即可直接选择.^,故D选项中线段PQ能表示点P到直线l的距离.【详解】只有D选项PQ l故选:D.【点睛】本题考查点到直线的距离的定义,理解并掌握点到直线的距离的定义是解答本题的关键.5.下列现象中,属于平移现象的是()A.方向盘的转动B.行驶的自行车的车轮的运动C.电梯的升降D.钟摆的运动【答案】C【分析】根据平移的定义:把一个图形整体沿着某一直线方向移动,会得到一个新的图形,这种移动就叫做平移,进行判断即可.【详解】解:A、方向盘的转动,不是平移,不符合题意;B、行驶的自行车的车轮的运动,不是平移,不符合题意;C、电梯的升降,是平移,符合题意;D、钟摆的运动,不是平移,不符合题意;故选C.【点睛】本题主要考查了生活中的平移现象,解题的关键在于能够熟练掌握平移的定义.6.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°【答案】C【分析】由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON-∠MOC得出答案.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON-∠MOC=90°-35°=55°.故选:C.【点睛】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.7.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A .30°B .32°C .42°D .58°【答案】B 【详解】试题分析:如图,过点A 作AB ∥b ,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a ∥b ,AB ∥B ,∴AB ∥b ,∴∠2=∠4=32°,故选B .考点:平行线的性质.8.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB l ^于点B ,90APC Ð=°,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P 到直线l 的距离.其中正确的是( )A .②③B .①②③C .③④D .①②③④【答案】A 【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】解:①线段AP 是点A 到直线PC 的距离,错误;②线段BP 的长是点P 到直线l 的距离,正确;③PA ,PB ,PC 三条线段中,PB 最短,正确;④线段PC 的长是点P 到直线l 的距离,错误,故选:A .【点睛】此题主要考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.9.如果A Ð与B Ð的两边分别平行,A Ð比B Ð的3倍少36o ,则A Ð的度数是( )A .18oB .126oC .18o 或126oD .以上都不对【答案】C【分析】由∠A 与∠B 的两边分别平行,即可得∠A 与∠B 相等或互补,然后分两种情况,分别从∠A 与∠B 相等或互补去分析,即可求得∠A 的度数.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A 与∠B 相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B ,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C .【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.10.下列说法中正确的有( )①在同一平面内,不重合的两条直线若不相交,则必平行;②在同一平面内,不相交的两条线段必平行;③相等的角是对顶角;④两条直线被第三条直线所截,所得的同位角相等;⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A .1个B .2个C .3个D .4个【答案】B【分析】在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).在同一平面内,不相交的两条直线叫平行线.两条平行线被第三条直线所截,同位角相等,内错角相等,据此进行判断.【详解】解:①在同一平面内,不相交的两条直线必平行,故说法①正确.②在同一平面内,不相交的两条线段可能平行,也可能不平行,故说法②错误.③相等的角不一定是对顶角,故说法③错误.④两条直线被第三条直线所截,所得同位角不一定相等,故说法④错误.⑤两条平行直线被第三条直线所截,一对内错角的角平分线互相平行,故说法⑤正确.∴说法正确的有2个,故选:B.【点睛】本题主要考查了平行线的概念,平行线的性质以及对顶角的概念的运用,同一平面内的两条直线的位置关系为:平行或相交,对于这一知识的理解过程中,要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.二、填空题11.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.【答案】如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行如果两个角是同一个角的补角,那么这两个角相等【分析】找出原命题的条件和结论即可得出答案.【详解】(1)“两条直线被第三条直线所截,内错角相等”是命题的条件,“这两条直线互相平行”是条件的结论.(2)“两个角是同一个角的补角”是命题的条件,“这两个角相等”是条件的结论.故答案为:(1)如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行.(2)如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.Ð+Ð+Ð=________度.12.如图,三条直线1l、2l、3l相交于一点O,则123【答案】180【分析】根据对顶角相等得到∠1=∠4,再根据平角的定义即可得到结果.【详解】∵∠1=∠4,∴∠1+∠2+∠3=∠4+∠2+∠3=180°.故答案为:180.【点睛】本题考查了对顶角的性质及平角,熟记对顶角相等是解题的关键.13.将直角梯形ABCD 平移得梯形EFGH ,若10,2,4HG MC MG ===,则图中阴影部分的面积为_________平方单位.【答案】36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD 的面积减去梯形EFMD 的面积,恰好等于梯形EFGH 的面积减去梯形EFMD 的面积.【详解】根据平移的性质得S 梯形ABCD =S 梯形EFGH ,Q DC = HG = 10,MC = 2,MG = 4,\DM = DC - MC = 10 - 2 = 8,\S 阴影= S 梯形ABCD -S 梯形EFMD=S 梯形EFGH -S 梯形EFMD=S 梯形HGMD =()12DM HG MG +g =12×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD 的面积减去梯形EFMD 的面积,恰好等于梯形EFGH 的面积减去梯形EFMD 的面积.14.如图,AB ∥EF ,设∠C =90°,那么x ,y ,z 的关系式为______.【答案】y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB∥CG∥HD∥EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.15.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.【答案】(ab ﹣2b )【分析】根据图形的特点,可以把小路的面积看作是一个底是2米,高是b 米的平行四边形,根据平行四边形的面积=底×高,长方形的面积=长×宽,用长方形的面积减去小路的面积即可.【详解】解:由题可得,草地的面积是(ab ﹣2b )平方米.故答案为:(ab ﹣2b ).【点睛】本题考查了平移的实际应用.化曲为直是解题的关键.16.如图,直线AB 、CD 相交于点O ,OE AB ^,O 为垂足,如果38EOD Ð=°,则AOC Ð=________,COB Ð=________.【答案】52o 128o【分析】根据对顶角相等可知AOC BOD Ð=Ð,根据余角的定义求得BOD Ð,根据邻补角的定义求得COB Ð.【详解】Q OE AB ^,38EOD Ð=°,90903852BOD EOD \Ð=°-Ð=°-°=°,Q AOC BOD Ð=Ð,52AOC \Ð=°,\180********COB AOC Ð=°-Ð=°-°=°,故答案为:52,128°°.【点睛】本题考查了垂线定义的理解,对顶角相等,求一个角的余角,求一个角的补角,掌握以上知识是解题的关键.17.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:_____.【答案】垂线段最短【详解】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.18.如图,给出下列条件:①180B BCD Ð+Ð=°;②12Ð=Ð;③34Ð=Ð;④5B Ð=Ð;⑤B D Ð=Ð.其中,一定能判定AB ∥CD 的条件有_____________(填写所有正确的序号).【答案】①③④【分析】根据平行线的判定方法对各小题判断即可解答.【详解】① ∵180B BCD Ð+Ð=°,∴AB ∥CD (同旁内角互补,两直线平行),正确;② ∵12Ð=Ð,∴AD ∥BC ,错误;③ ∵34Ð=Ð,∴AB ∥CD (内错角相等,两直线平行),正确;④ ∵5B Ð=Ð,∴AB ∥CD (同位角相等,两直线平行),正确;⑤ B D Ð=Ð不能证明AB ∥CD ,错误,故答案为:①③④.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解答的关键.三、解答题19.根据下列语句画出图形:(1)过线段AB 的中点C ,画CD ⊥AB ;(2)点P 到直线AB 的距离是3cm ,过点P 画直线AB 的垂线PC ;(3)过三角形ABC 内的一点P ,分别画AB ,BC ,CA 的平行线.【答案】见解析【分析】(1)根据线段中点和垂直的定义画图;(2)根据点到直线的距离画图;(3)根据平行线的性质画图.【详解】解:(1)如图所示,AC =CB ,CD ⊥AB ;(2)如图所示,点P到直线AB的距离是3cm,AB⊥PC;(3)如图所示,PD∥AB,PE∥BC,PF∥CA..【点睛】本题考查了基本作图,在作垂线、平行线时可以不用直尺和圆规作图,可以利用三角板.20.一个台球桌的桌面如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B 后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D.如果PQ//RS,AB,BC,CD 都是直线,且∠ABC的平分线BN垂直于PQ,∠BCD的平分线CM垂直于RS,那么,球经过两次反弹后所滚的路径CD是否平行于原来的路径AB?【答案】球经过两次反弹后所滚的路径CD平行于原来的路径AB.【分析】根据平行线的判断与性质以及角平分线的定义解答即可.【详解】解:球经过两次反弹后所滚的路径CD平行于原来的路径AB.理由如下:∵PQ∥RS,∠ABC的平分线BN垂直于PQ,∠BCD的平分线CM垂直于RS,∴BN∥CM,∴∠CBN =∠BCM ,又∵∠ABC =2∠CBN ,∠BCD =2∠BCM ,∴∠ABC =∠BCD ,∴CD ∥AB .【点睛】本题考查了角平分线的定义,垂线,平行线的判定和性质,正确的识别图形是解题的关键.21.完成下面的证明:如图,BE 平分ABD Ð,DE 平分BDC ∠,且90a b Ð+Ð=°,求证//AB CD .证明:∵BE 平分ABD Ð(已知),∴2ABD a Ð=Ð( ).∵DE 平分BDC ∠(已知),∴BDC Ð=________( ).∴22)2(ABD BDC a b a b Ð+Ð=Ð+Ð=Ð+Ð( ).∵90a b Ð+Ð=°(已知),∴Ð+Ð=ABD BDC ________().∴//AB CD ( ).【答案】角的平分线的定义;2b Ð;角的平分线的定义;等式性质;180°;等量代换;同旁内角互补,两直线平行.【分析】根据角平分线的性质,等式性质,等量代换,平行线判定逐个求解即可.【详解】解:BE Q 平分ABD Ð(已知)∴2ABD a ÐÐ=(角平分线的定义)DE Q 平分BDC ∠(已知)∴BDC Ð=2∠β(角平分线的定义)∴222()ABD BDC a b a b Ð+ÐÐ+ÐÐ+Ð==(等式性质)90a b °Ð+ÐQ =(已知)∴ABD BDC Ð+Ð=180°(等量代换)∴//AB CD (同旁内角互补,两直线平行).故答案为:角的平分线的定义;2b Ð;角的平分线的定义;等式性质;180°;等量代换;同旁内角互补,两直线平行.【点睛】本题考查平行线的判定、角平分线的定义,等式性质等,熟练掌握平行线的判定是解决本题的关键.22.已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25°,求∠AOC 与∠EOD 的度数.【答案】∠AOC =115°,∠EOD =25°【分析】由OF ⊥CD ,得∠DOF =90°,根据条件可求出∠BOD 的度数,即可得到∠AOC 的度数;由OE ⊥AB ,得∠BOE =90°,可以推出∠EOF 和∠EOD 的度数.【详解】解:∵OF ⊥CD ,∴∠DOF =90°,又∵∠BOF =25°,∴∠BOD =∠DOF+∠BOF=90°+25°=115°,∴∠AOC =∠BOD =115°,又∵OE ⊥AB ,∴∠BOE =90°,∵∠BOF =25°,∴∠EOF =∠BOE -∠BOF =65°,∴∠EOD =∠DOF ﹣∠EOF =90°-65°=25°.【点睛】此题考查的知识点是垂线、角的计算及对顶角知识,关键是根据垂线的定义得出所求角与已知角的关系.23.如图,A 、B 、C 三点在同一直线上,12,3D Ð=ÐÐ=Ð,试说明 //BD CE .证明:∵12Ð=Ð(已知)∴________//________(________________)∴D Ð=Ð________(________________)又∵3D Ð=Ð(________)∴Ð________=Ð________(________________)∴//BD CE (________________).【答案】,AD BE ,内错角相等,两直线平行;DBE ,两直线平行,内错角相等;已知,DBE ,3,等量代换;内错角相等,两直线平行.【分析】由12Ð=Ð,根据内错角相等,两直线平行,可证得//AD BE ,继而证得D DBE Ð=Ð,又由3D Ð=Ð,可证得3DBE Ð=Ð,继而证得//BD CE .【详解】证明:12(Ð=ÐQ 已知),//AD BE \ ( 内错角相等,两直线平行),(D DBE \Ð=Ð 两直线平行,内错角相等 ),又∵3D Ð=Ð(已知),3(DBE \Ð=Ð等量代换),//(BD CE \ 内错角相等,两直线平行).故答案为:AD ,BE ,内错角相等,两直线平行;DBE ,两直线平行,内错角相等;已知,DBE ,3,等量代换;内错角相等,两直线平行.【点睛】本题考查了平行线的性质与判定,熟悉相关证明过程是解题的关键.24.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)求种花草的面积;(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?【答案】(1)种花草的面积为42平方米;(2)每平方米种植花草的费用是110元【分析】(1)将道路直接平移到矩形的边上,进而根据长方形的面积公式得出答案;(2)根据(1)中所求,代入计算即可得出答案.【详解】解:(1)()()8281-´-67=´42=(平方米)答:种花草的面积为42平方米;(2)462042110¸=(元)答:每平方米种植花草的费用是110元.【点睛】此题考查了生活中的平移现象,解题的关键是要利用平移的知识,把要求的所有道路平移到矩形的边上进行计算.25.如图,某工程队从A 点出发,沿北偏西67°方向修一条公路AD ,在BD 路段出现塌陷区,就改变方向,在B 点沿北偏东23°的方向继续修建BC 段,到达C 点又改变方向,使所修路段//CE AB ,求ECB Ð的度数.【答案】90°【分析】先根据平行线的性质求出∠2的度数,再由平角的定义求出CBA Ð的度数,根据CE ∥AB 即可得出结论.【详解】∠ECB=90°.理由:∵∠1=67°,∴∠2=67°.∵∠3=23°,∴∠CBA=180°-67°-23°=90°.∵CE ∥AB ,∴∠ECB=∠CBA=90°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.26.探究题:(1)已知:三角形ABC ,求证:180A B ACB Ð+Ð+Ð=°;小明同学经过认真思考,他过点C 作//CE AB ,利用添加辅助线的方法成功解决了这个问题.你能说出小明是怎么解决这个问题的吗?写出论证过程.(2)利用以上结论或方法,解决如下问题:已知:六边形ABCDEF ,满足A B C D E F Ð+Ð+Ð=Ð+Ð+Ð,求证://AF CD .【答案】(1)见解析;(2)见解析【分析】(1)根据平行线的性质及平角的性质即可求解;(2)连结,,AC FC FD ,利用三角形内角和将A B C D E F Ð+Ð+Ð=Ð+Ð+Ð转化为AFC DCF Ð=Ð,从而得出//AF CD .【详解】(1)∵//CE AB∴1A Ð=Ð,2B Ð=Ð∵B 、C 、D 在同一直线上∴∠ACB +∠1+∠2=180°∴180A B ACB Ð+Ð+Ð=°;(2)如图,连结,,AC FC FD ,得到△ABC 、△ACF 、△CDF 、△DEF∴∠B +∠BAC +∠ACB =∠ACF +∠AFC +∠CAF =∠FCD +∠CDF +∠CFD =∠E +∠EDF +∠DFE =180°∵BAF B BCD CDE E EFAÐ+Ð+Ð=Ð+Ð+Ð∴BAC ACB ACF F F B CD CA Ð+Ð+ÐÐ+Ð+Ð+=CDF EDF E CFD AFCEFD +Ð+ÐÐ+Ð+Ð+Ð化解得360°-∠AFC +∠FCD =360°-∠FCD +∠AFC∴2∠FCD =2∠AFC则∠FCD =∠AFC∴//AF CD .【点睛】此题主要考查平行线的判断与性质,解题的关键是熟知三角形的内角和为180°.。
(专题精选)初中数学相交线与平行线难题汇编附答案解析
(专题精选)初中数学相交线与平行线难题汇编附答案解析一、选择题1.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.4.如图,已知AB ∥DC ,BF 平分∠ABE ,且BF ∥DE ,则∠ABE 与∠CDE 的关系是( )A .∠ABE =2∠CDEB .∠ABE =3∠CDEC .∠ABE =∠CDE +90°D .∠ABE +∠CDE =180°【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.6.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD ,D G ∴∠=∠,//BF DE ,G ABF ∴∠=∠,D ABF ∴∠=∠, BF 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.7.如图所示,b ∥c ,a ⊥b ,∠1=130°,则∠2=( ).A .30°B .40°C .50°D .60°【答案】B【解析】【分析】 证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a 交c 于点M ,∵b ∥c ,a ⊥b ,∴a ⊥c ,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B .【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。
人教版七年级数学下册期末复习:相交线与平行线(附练习答案).doc
期末复习(一) 相交线与平行线01各个击破命题点1命题【例1】已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个【思路点拨】命题①、③、④显然成立,对于命题②,当a=2、b=-2时,虽然有a≠b,但a2=b2,所以②是假命题.【方法归纳】要判断一个命题是假命题,只需要举出一个反例即可.和命题有关的试题,多以选择题的形式出现,以判断命题真假为主要题型.1.下列语句不是命题的是()A.两直线平行,同位角相等B.锐角都相等C.画直线AB平行于CDD.所有质数都是奇数2.(兴化三模)说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=________.3.(日照期中)命题“同旁内角互补”的题设是_____________________,结论是____________,这是一个________命题(填“真”或“假”).命题点2相交线中的角【例2】如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系;(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.【思路点拨】(1)根据∠DOE=∠BOD,OF平分∠AOE,求得∠FOD=90°,从而判断OF与OD的位置关系.(2)根据∠AOC,∠AOD的度数比以及邻补角性质,求得∠AOC.然后利用对顶角性质得∠BOD的度数,从而得∠EOD的度数.最后利用∠FOD=90°,求得∠EOF的度数.【解答】【方法归纳】 求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.4.(滕州校级模拟)如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于( )A .40°B .120°C .140°D .100°5.如图,直线AB ,CD 相交于点O ,已知:∠AOC =70°,OE 把∠BOD 分成两部分,且∠BOE ∶∠EOD =2∶3,求∠AOE 的度数.6.如图所示,O 是直线AB 上一点,∠AOC =13∠BOC ,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说出理由.命题点3平行线的性质与判定【例3】已知:如图,四边形ABCD中,∠A=106°-α,∠ABC=74°+α,BD⊥DC 于点D,EF⊥DC于点F.求证:∠1=∠2.【思路点拨】由条件得∠A+∠ABC=180°,得AD∥BC,从而∠1=∠DBC.由BD⊥DC,EF⊥DC,可得BD∥EF,从而∠2=∠DBC,所以∠1=∠2,结论得证.【解答】【方法归纳】本题既考查了平行线的性质又考查了平行线的判定.题目的证明用到了“平行线迁移等角”.7.(燕山区一模)如图,∠1=∠B,∠2=25°,则∠D=()A.25°B.45°C.50°D.65°8.(山亭区期末)如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于________时,BC∥DE.()A.40°B.50°C.70°D.130°9.已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.命题点4平移【例4】(晋江中考)如图,在方格纸中(小正方形的边长为1),三角形ABC的三个顶点均为格点,将三角形ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的三角形A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,三角形ABC扫过的面积.【思路点拨】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观察图形可得三角形ABC扫过的面积为四边形AA′B′B的面积与三角形ABC的面积的和,然后列式进行计算即可.【解答】【方法归纳】熟练掌握网格结构,准确找出对应点的位置是解题的关键.10.(宁德中考)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°11.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB方向向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于________.12.如图,在长方形草地内修建了宽为2米的道路,则草地面积为________米2.02整合集训一、选择题(每小题3分,共30分)1.图中,∠1、∠2是对顶角的为()2.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()A.∠1 B.∠2 C.∠4 D.∠5 3.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是()A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2 D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是() A.80°B.100°C.110°D.120°5.如图,“龟兔赛跑”的故事图案的形成过程叙述不正确的是()A.它可以看作是一个龟兔图案作为“基本图案”经过平移得到的B.它可以看作是上面三个龟兔图案作为“基本图案”经过平移得到的C.它可以看作是相邻两个龟兔图案作为“基本图案”经过平移得到的D.它可以看作是左侧两个龟兔图案作为“基本图案”经过平移得到的6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个7.以下关于距离的几种说法中,正确的有()①连接两点间的线段长度叫做这两点的距离;②连接直线外的点和直线上的点的线段叫做点到直线的距离;③从直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.1个B.2个C.3个D.4个8.下列图形中,由AB∥CD,能得到∠1=∠2的是()9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°10.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是_______________________________.12.将线段AB平移1 cm,得到线段A′B′,则点A到点A′的距离是________.13.(1)如图1,村庄A到公路BC最短的距离是AD,根据是________________;(2)如图2,建筑工人常在一根细绳上拴上一个重物,做成一个“铅锤”,挂铅锤的线总垂直于地面内的任何直线,当这条线贴近墙壁时,说明墙与地面垂直,请说出它的根据是________________________________________.图1图214.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=________.15.(温州中考)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=________度.三、解答题(共50分)16.(7分)如图,∠1=60°,∠2=60°,∠3=85°,求∠4的度数.解:∵∠1=60°,∠2=60°,∴∠1=∠2.∴a∥________(________________).∴∠4=∠________(________________).∵∠3=85°,∴∠4=________.17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE,垂足为E;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD 和∠DOE 互余,且∠AOD =13∠AOE ,请求出∠AOD 和∠COE 的度数.19.(12分)如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF.(1)AE 与FC 平行吗?说明理由;(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么?20.(12分)探究题:(1)如图1,若AB ∥CD ,则∠B +∠D =∠E ,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?图1图2图3图4参考答案各个击破例1 C例2 (1)∵OF 平分∠AOE ,∴∠AOF =∠EOF =12∠AOE. 又∵∠DOE =∠BOD =12∠BOE , ∴∠DOE +∠EOF =12(∠BOE +∠AOE)=12×180°=90°,即∠FOD =90°.∴OF ⊥OD. (2)设∠AOC =x °,∵∠AOC ∶∠AOD =1∶5,∴∠AOD =5x °.∵∠AOC +∠AOD =180°,∴x +5x =180,解得x =30.∴∠DOE =∠BOD =∠AOC =30°.又∵∠FOD =90°,∴∠EOF =90°-30°=60°.例3 证明:∵∠A =106°-α,∠ABC =74°+α,∴∠A +∠ABC =180°.∴AD ∥BC.∴∠1=∠DBC.∵BD ⊥DC ,EF ⊥DC ,∴∠BDF =∠EFC =90°.∴BD ∥EF.∴∠2=∠DBC.∴∠1=∠2.例4 (1)平移后的三角形A′B′C′如图所示;点A′、B′、C′的坐标分别为(-1,5)、(-4,0)、(-1,0).(2)由平移的性质可知,四边形AA′B′B 是平行四边形,∴S =S 四边形AA′B′B +S 三角形ABC =B′B·AC +12BC ·AC =5×5+12×3×5=652. 题组训练1.C 2.-3 3.两个角是两条直线被第三条直线所截得到的同旁内角 这两个角互补 假4.C5.解:∵∠AOC =70°,∴∠BOD =∠AOC =70°.∵∠BOE ∶∠EOD =2∶3,∴∠BOE =22+3×70°=28°. ∴∠AOE =180°-28°=152°.6.解:(1)∵∠AOC +∠BOC =180°,∠AOC = 13∠BOC , ∴13∠BOC +∠BOC =180°.∴∠BOC =135°.∴∠AOC =45°. ∵OC 平分∠AOD ,∴∠COD =∠AOC =45°.(2)OD ⊥AB.理由如下:∵∠COD =∠AOC =45°,∴∠AOD =∠COD +∠AOC =90°.∴OD ⊥AB.7.A 8.B9.解:AB ⊥CD.理由:∵∠1=132°,∠ACB =48°,∴∠1+∠ACB =180°.∴DE ∥BC.∴∠2=∠DCF.又∵∠2=∠3,∴∠3=∠DCF.∴FH ∥CD.∴∠BHF =∠BDC.又∵FH ⊥AB ,∴∠BHF =90°.∴∠BDC =90°.∴AB ⊥CD.10.B 11.8 12.144整合集训1.C 2.B 3.B 4.B 5.C 6.C 7.A 8.B 9.A 10.D11.如果两直线平行,那么同位角相等12.1 cm13.(1)垂线段最短 (2)过一点有且只有一条直线与已知直线垂直14.42°15.8016.b 同位角相等,两直线平行 3 两直线平行,同位角相等 85°17.解:(1)、(2)如图.(3)PE<PO<FO ,依据是垂线段最短.18.解:(1)∵OD 平分∠AOC ,∠AOC =60°,∴∠AOD =12×∠AOC =30°,∠BOC =180°-∠AOC =120°.(2)∵∠AOD 和∠DOE 互余,∴∠AOE =∠AOD +∠DOE =90°.∵∠AOD =13∠AOE ,∴∠AOD =13×90°=30°. ∴∠AOC =2∠AOD =60°.∴∠COE =90°-∠AOC =30°.19.解:(1)AE ∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB =180°,∴∠1=∠CDB.∴AE ∥FC.(2)AD ∥BC.理由:∵AE ∥CF ,∴∠C =∠CBE.又∠A =∠C ,∴∠A =∠CBE.∴AD ∥BC.(3)BC 平分∠DBE.理由:∵DA 平分∠BDF ,∴∠FDA =∠ADB.∵AE ∥CF ,AD ∥BC ,∴∠FDA =∠A =∠CBE ,∠ADB =∠CBD.∴∠CBE =∠CBD. ∴BC 平分∠DBE.20.解:(1)理由:过点E 作EF ∥AB ,∴∠B =∠BEF.∵CD ∥AB ,∴CD ∥EF.∴∠D =∠DEF.∴∠B +∠D =∠BEF +∠DEF =∠BED.(2)AB ∥CD.(3)∠B +∠D +∠E =360°.(4)∠B =∠D +∠E.(5)∠E +∠G =∠B +∠F +∠D.。
七年级下册相交线与平行线练习题及答案
七年级下册相交线与平行线练习题及答案第五章相交线与平行线一、典型例题例1.如图1,直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
图1例2.已知:如图2,AB∥EF∥CD,EG平分∠XXX,∠B+∠BED+∠D=192°,求∠EGD的度数。
图2例3.如图3,已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。
图3例4.平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?例6.10条直线两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条。
A。
6B。
7C。
8D。
92.平面上三条直线相互间的交点个数是()。
A。
3B。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()。
A。
36条B。
33条C。
24条D。
21条4.已知平面中有n个点,A、B、C三个点在一条直线上,A、D、F、E四个点也在一条直线上,除这些之外,再没有三点共线或四点共线,以这n个点作一条直线,一共可以画出38条不同的直线,这时n等于()。
A。
9B。
10C。
11D。
125.若平行直线AB、CD与相交直线EF、GH相交成如图所示的图形,则共得同旁内角()。
A。
4对B。
8对C。
12对D。
16对6.如图,已知FD∥BE,则∠1+∠2-∠3=()。
图4A。
90°B。
135°C。
(完整版)相交线与平行线常考题目及答案(绝对经典)
一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
初中数学相交线与平行线难题汇编及答案
初中数学相交线与平行线难题汇编及答案一、选择题1.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.2.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.3.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.5.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.6.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.7.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°.故选B .8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=,∵153C ∠=,∴27DBC ∠=,则99.ABC ABD DBC ∠=∠+∠=故选B.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A .10B .22C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC∴2142EF AF AE FB FC BC ====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A.60︒B.70︒C.80︒D.100︒【答案】C【解析】【分析】首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a∥b,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C.【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.【答案】B【解析】略12.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C .从直线外一点作这条直线的垂线段叫做点到这条直线的距离D .在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A 、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A 选项错误;B 、过直线外一点有且只有一条直线与已知直线平行,故B 选项错误;C 、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D 、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D 选项正确.故选:D .【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.16.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135° 【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.20.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.。
相交线与平行线测试题及答案难
相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。
A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。
A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。
A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。
答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。
答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。
()答案:正确7. 垂直于同一直线的两条直线一定平行。
()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。
证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。
9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。
证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
因此,直线m平行于直线p。
五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。
证明:首先,我们可以将两个方程联立求解。
\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。
11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。
证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
人教版七年级下册数学第五章 相交线与平行线含答案(附解析)
人教版七年级下册数学第五章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图A(﹣2,2),B(﹣2,﹣2),C(﹣6,0),将三角形ABC向右平移两个单位,得到的新三角形A′B′C′,下列各图中表示三角形A′B′C′正确的是()A. B. C.D.2、在同一平面内,三条直线的交点个数不能是()A.1个B.2个C.3个D.4个3、体育课上,老师测量跳远成绩的依据是()A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.平行线间的距离相等4、下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角大于内角C.三角形的一个外角等于它的两个内角之和D.直角三角形的两锐角互余5、如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为()A.2B.4C.D.26、如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )A.55°B.65°C.75°D.125°7、下列命题是假命题的是( )A.有一个角为60°的等腰三角形是等边三角形B.等角的补角相等 C.锐角三角形每个角都小于90° D.内错角相等8、如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠39、如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE 等于()时,BC∥DE.A.40°B.50°C.70°D.130°10、先用剪纸剪出两个相同的三角形,将它们完全重合在一起,下列图形可以通过平移其中一个三角形得到另一个三角形的是()A. B. C.D.11、下列说法错误的是()A.同角的余角相等B.内错角相等C.垂线段最短D.平行于同一条直线的两条直线平行12、如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有()A.2对B.4对C.6对D.8对13、如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)14、如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是( )A.24B.18C.16D.1215、如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为________.17、如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为________.18、如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为________.19、“等角对等边”的逆命题是________20、如图,图形①经过________变换成图形②,图形②经过________变换成图形③,图形③经过________变换成图形④(选填“轴对称”“平移”或“旋转”).21、如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.22、如图,AB∥CD,∠B=26°,∠D=39°,则∠BED的度数为________.23、命题“等腰三角形两底角相等”的逆命题是________,这个逆命题是________命题;24、如图,AB∥CD,AC⊥BC,∠ABC=35°,则∠1的度数为________25、如图,,,,则的度数是________.三、解答题(共6题,共计25分)26、如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?27、已知:如图,五边形ABCDE中,AE∥CD,∠A=107°,∠B=121°,求∠C 的度数.28、已知,如图,AD∥BE,∠1=∠2,求证:∠A=∠E.证明:∵AD∥BE(已知),∴∠A=∠▲(▲)又∵∠1=∠2(已知),∴AC∥▲(▲),∴∠3=∠▲(▲),∴∠A=∠E(等量代换).29、如图,在四边形中,与互补,、分别平分、,且∥ ,判断与的位置关系,并说明理由.30、如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、D6、A7、D8、C9、B10、B11、B12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
七年级下册数学相交线与平行线难题及答案
1、如图,折叠宽度相等的长方形纸条,若∠1=63°,则∠2=()度2、如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠CO F(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,•找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.1、542、解:(1)因为CB∥OA,∠C=∠OAB=100°,所以∠COA=180°-100°=80°,又因为E、F在CB上,∠FOB=∠AOB,OE平分∠COF,所以∠EOB=∠COA=×80°=40°.(2)不变,因为CB∥OA,所以∠CBO=∠BOA,又∠FOB=∠AOB,所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,所以∠OBC:∠OFC=1:2.(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.理由如下:因为∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,所以∠COE =∠BOA,又因为∠FOB=∠AOB,OE平分∠COF,所以∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°,所以∠OEC=∠OBA=60°.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH 于Q,求证:PQ∥AB。
证明:延长AM至A',使AM=MA',连结BA',如图∠A'BQ=180°-(∠HBA+∠BAH+∠CAP)= 180°-90°-∠CAP=90°-∠BAP=∠ABQ ∵∴∵∴∴∴∴PQ∥AB如图已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠BFD = 112°,求∠E的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线拔高题
1、如图,折叠宽度相等的长方形纸条,若∠1=63°,则∠2=()度
2、如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度数.
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,•找出变化规律;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
3.如图已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠BFD = 112°,求∠E的度数。
1、54
2、解:(1)因为CB∥OA,∠C=∠OAB=100°,
所以∠COA=180°-100°=80°,
又因为E、F在CB上,∠FOB=∠AOB,OE平分∠COF,
所以∠EOB=∠COA=×80°=40°.
(2)不变,
因为CB∥OA,
所以∠CBO=∠BOA,
又∠FOB=∠AOB,
所以∠FOB=∠OBC,而∠FOB+∠OBC=∠OFC,即∠OFC=2∠OBC,
所以∠OBC:∠OFC=1:2.
(3)存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.
理由如下:
因为∠COE+∠CEO+∠C=180°,∠BOA+∠OAB+∠ABO=180°,且∠OEC=∠OBA,∠C=∠OAB=100°,
所以∠COE =∠BOA,
又因为∠FOB=∠AOB,OE平分∠COF,
所以∠BOA=∠BOF=∠FOE=∠EOC=∠COA=20°,
所以∠OEC=∠OBA=60°.
解:作GE∥AB,FH∥CD
∴∠ABF=∠BFH ∠HFD=∠CDF
∵FB为∠ABE 的平分线
∴∠ABF=∠FBE=∠ABE
∵FD为∠CDE 的平分线∴∠CDF=∠EDF=∠CDE
∵∠BFD = 112°
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2∠BFH+2∠HFD=2∠BFD ∴∠ABE+∠CDE=2×112°=224°
∵AB∥CD ∴EG∥CD
∴∠ABE+∠BEG=180°∠CDE+∠GED=180°
∴ABE+∠BEG+∠CDE+∠GED=360°∴∠BEG+∠GED=136°。