(2020年整理)初升高数学衔接教材(完整).doc

合集下载

【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

2020初高中数学衔接教材爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。

由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。

面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。

现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式2 2 (a b)(a b) a b ;(2)完全平方公式 2 2 2(a b) a 2 a b .b我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2 2 3 3(a b) (a a b b ) a ;b(2)立方差公式 2 2 3 3(a b) (a a b b ) a ;b(3)三数和平方公式2 2 2 2 (a b c ) a b c 2 ( a b b c ;)a c(4)两数和立方公式 3 3 2 2 3(a b) a 3 a b 3 a b ;b(5)两数差立方公式3 3 2 2 (a b) a 3 a b 3 a b .b 对上面列出的五个公式,有兴趣的同学可以自己去证明.例 1 计算:2 2 (x 1)(x 1)(x x 1)(x x 1).解法一: 原式= 2 2 2 2(x 1) (x 1) x = 2 4 2 (x 1)(x x 1)= 6 1 x .解法二: 原式=2 2 (x 1)(x x 1)(x 1)(x x1)= 3 3 (x 1)(x1)= 6 1x .例 2 已知 a b c 4,ab bc ac 4,求2 2 2 a b c 的值.解:2 2 2 ( )22( ) 8a b c a b c ab bc ac .练 习1.填空:(1)1 1 1 12 2a b ( b a) ( ); 9 4 2 3(2)(4 m 22 ) 16m 4m ( ) ;(3 )2 2 2 2 (a 2b c) a 4b c ( ) . 2.选择题:(1)若2 1x mx k 是一个完全平方式,则k 等于()2(A )2m (B)142m (C)132m (D)1162m(2)不论 a,b 为何实数, 2 2 2 4 8a b a b 的值()(A )总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2 2(1)x -3x+2;(2)x +4x-12;2 ( ) 2(3)x a b xy aby ;(4)xy 1 x y .2解:(1)如图1.1-1,将二次项 x 分解成图中的两个x 的积,再将常数项 2 分解成-1初中升高中数学教材变化分析2与-2 的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x -3x+2 中的一次项,所以,有2-3x+2=(x-1)(x-2).xx 1-1 1 -2 x -ay-1x -2 x1 -2 6 -by1图 1.1-1 图 1.1-3 图1.1-4图 1.1-2说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1 中的两个x 用 1 来表示(如图1.1-2 所示).(2)由图 1.1-3,得2x +4x-12=(x-2)( x+6).(3)由图 1.1-4,得2 ( ) 2x a b xy aby =(x ay)( x by)x -1(4)xy 1 x y =xy+(x-y)-1=(x-1) (y+ 1) (如图 1.1-5 所示).课堂练习一、填空题:y图 1.1-511、把下列各式分解因式:2 x(1) 5 6x __________________________________________________ 。

初升高数学衔接教材(完整)(2020年8月整理).pdf

初升高数学衔接教材(完整)(2020年8月整理).pdf

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪−<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集例2.求不等式215x +>的解集例3.求不等式32x x −>+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>3、因式分解 乘法公式(1)平方差公式22()()a b a b a b +−=− (2)完全平方公式222()2a b a ab b ±=±+ (3)立方和公式2233()()a b a ab b a b +−+=+ (4)立方差公式2233()()a b a ab b a b −++=−(5)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式33223()33a b a a b ab b +=+++(7)两数差立方公式33223()33a b a a b ab b −=−+−因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1分解因式:(1)x 2-3x +2;(2)2672x x ++(3)22()x a b xy aby −++;(4)1xy x y −+−.2.提取公因式法例2.分解因式: (1)()()b a b a −+−552(2)32933x x x +++3.公式法例3.分解因式: (1)164+−a (2)()()2223y x y x −−+4.分组分解法例4.(1)x y xy x 332−+−(2)222456x xy y x y +−−+− 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x −−.例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2244x xy y +−.练习(1)256x x −−(2)()21x a x a −++(3)21118x x −+(4)24129m m −+(5)2576x x +−(6)22126x xy y +−(7)()()3211262+−−−p q q p (8)22365ab b a a +−(9)()22244+−−x x (10)1224+−x x (11)by ax b a y x 222222++−+−(12)91264422++−+−b a b ab a (13)x 2-2x -1(14)31a +;(15)424139x x −+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +−++−第二讲一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a,a0,| a | 0,a0,a, a0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数 a 和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0) ,去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。

② f (x) a(a 0) ,去掉绝对值后,保留其等价性的不等式是 f (x) a或 f ( x) a 。

③ f (x) g ( x) f 2 ( x)g 2 (x) 。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1段进行讨论.③将分段求得解集,再求它们的并集.例 1.求不等式3x 5 4 的解集例 2. 求不等式2x 1 5的解集例 3. 求不等式x 3 x 2 的解集例 4. 求不等式 | x+ 2| + | x- 1| > 3 的解集.例 5. 解不等式 | x- 1| + |2 -x| > 3-x.例 6. 已知关于x 的不等式| x-5|+| x-3|< a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2) | x+1|<| x-2|(3) | x- 1|+|2 x+1|<4(4)3x 2 7(5)5x 7 83、因式分解乘法公式( 1)平方差公式( a b)( a b)a2b2( 2)完全平方公式( a b) 2a22ab b2( 3)立方和公式( a b)(a2ab b2 )a3b3( 4)立方差公式( a b)(a2ab b2 )a3b3( 5)三数和平方公式( a b c)2a2b2c22(ab bc ac)33223( 7)两数差立方公式(a b)3a33a2b 3ab2b3因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例 1分解因式:( 1)x2-3x+ 2;(2)6x27 x2( 3)x2(a b) xy aby2;(4)xy1 x y .2.提取公因式法例 2. 分解因式:( 1)a2b 5 a 5 b( 2)x39 3x23x3.公式法例 3. 分解因式:(1)a416( 2)3x 2 y2x y 24.分组分解法例 4. ( 1)x2xy 3y 3x(2)2x2xy y24x 5y65.关于x的二次三项式ax2+bx+c( a≠0)的因式分解.若关于 x 的方程ax2bx c0(a 0) 的两个实数根是x1、 x2,则二次三项式 ax2bx c(a0) 就可分解为a( x x1 )( x x2 ) .例 5. 把下列关于x 的二次多项式分解因式:(1)x22x 1;(2)x24xy 4 y2.练习(1)x25x 6( 2)x2a 1 x a( 3)x211x18(4)4m212m9(5)57x6x2(6)12x2xy 6 y2( 7 )6 2 p q 211 q 2 p 38) a35a2 b 6ab 29 )4 x22((4x 2(10)x4 2 x21( 11)x2y 2 a 2b22ax2by(12)a 24ab4 2 6 12b9(13)x2-2x- 1b a(14)a31;( 15)4x413x29 ;(16)b2c22ab 2ac 2bc ;(17)3x25xy 2 y2x 9 y4第二讲一元二次方程与二次函数的关系1、一元二次方程(1)根的判别式对于一元二次方程ax2+ bx+ c=0( a≠0),有:( 1)当>0 时,方程有两个不相等的实数根x= b b24ac;1, 22a( 2)当= 0 时,方程有两个相等的实数根12b;x = x=-2a (3)当< 0 时,方程没有实数根.(2)根与系数的关系(韦达定理)如果 ax2+ bx+ c=0( a≠0)的两根分别是 x1, x2,那么 x1+ x2=b,x1·x2=c.这一关系也被称为韦达a a定理.2、二次函数y ax2bx c 的性质1.当 a0 时,抛物线开口向上,对称轴为x b ,顶点坐标为 b ,4ac b 2。

初中升高中数学衔接教材讲义(有例题最全最新word版)

初中升高中数学衔接教材讲义(有例题最全最新word版)

初升高衔接教材—数学2020.8目录1.1 数与式的运算1.1.1绝对值1.1.2. 乘法公式1.1.3.二次根式1.1.4.分式1.2 分解因式2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用2.3 方程与不等式2.3.1 二元二次方程组解法2.3.2 一元二次不等式解法3.1 相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2 三角形3.2.1 三角形的“四心”3.2.2 几种特殊的三角形3.3圆3.3.1 直线与圆,圆与圆的位置关系3.3.2 点的轨迹121.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 1A 0 C x|x -1||x -3| 图1.1-133.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如32a b21x ++,22x y ++,等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,一般地,b与b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公0,0)a b=≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2的意义a==,0,,0.a aa a≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1(20)a≥;(30)x<.解:(1=(20)a==≥;(3220)x x x==-<.例2(3-.解法一:(3-解法二:(345例3 试比较下列各组数的大小:(1(2. 解: (11===,1===,>.(2)∵1=== 又 4>22,∴6+4>6+22,例4化简:20042005+⋅.解:20042005⋅-=20042004⋅⋅=2004⎡⎤+⋅⋅⎣⎦=20041⋅例 5 化简:(1; (21)x <<. 解:(1)原式===2=2=.(2)原式1x x =-,∵01x <<, ∴11x x>>, 所以,原式=1x x-.6例 6已知x y ==22353x xy y -+的值 . 解:∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空: (1=__ ___;(2(x =-x 的取值范围是_ _ ___; (3)=__ ___; (4)若2x ==______ __. 2.选择题:=( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式7像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+=1121n -+,又n ≥2,且n 是正整数,∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,8∴e =12 <1,舍去;或e =2. ∴e =2.练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x y x y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2+-=________;(22=,则a 的取值范围是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __; 2.已知:11,23x y ==的值.C 组1.选择题:(1=( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )9(A(B(C) (D)2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.1.1.绝对值1.(1)5±;4± (2)4±;1-或3 2.D 3.3x -181.1.2.乘法公式1.(1)1132a b - (2)11,24 (3)424ab ac bc --2.(1)D (2)A1.1.3.二次根式1. (12 (2)35x ≤≤ (3)- (4. 2.C 3.1 4.>1.1.4.分式1.12 2.B 3. 1- 4.99100习题1.1 A 组1.(1)2x <-或4x > (2)-4<x <3 (3)x <-3,或x >3 2.1 3.(1)2-(2)11a -≤≤ (31-B 组1.(1)37 (2)52,或-15 2.4.C 组1.(1)C (2)C 2.121,22x x == 3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12;10(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法例2 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-. 解: (1)令221x x +-=0,则解得11x =-21x =-,-1 -2 x x 图1.2-1 -1 -2 1 1 图1.2-2 -2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5∴221x x +-=(1(1x x ⎡⎤⎡⎤-----⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +-++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).1.2分解因式1. B 2.(1)(x +2)(x +4) (2)22(2)(42)a b a ab b -++(3)(11x x --+ (4)(2)(22)y x y --+.习题1.21.(1)()()211a a a +-+ (2)()()()()232311x x x x +-+- (3)()()2b c b c a +++ (4)()()3421y y x y -++-2.(1)x x ⎛-- ⎝⎭⎝⎭; (2)(x x -;(3)3x y x y ⎛⎫⎛⎫++ ⎪⎪ ⎪⎪⎝⎭⎝⎭; (4)()3(1)(11x x x x -+--+.3.等边三角形 4.(1)()x a x a -++2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a-+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =, 2x = (3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根12b x a -+=,22b x a-=,则有1222b bx x a a-+===-;221222(4)42244b b b b ac ac cx x a a a a a-----=⋅===. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2, 所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7.所以,方程的另一个根为-35,k 的值为-7. 例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯-=254+6=494, ∴| x 1-x 2|=72. (2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x=,2x =, ∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0.② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4.练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += .(2)方程mx 2+x -2m =0(m ≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根? 4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 . 3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( ) (A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( ) (A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是 ( )(A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.1 一元二次方程练习1. (1)C (2)D2. (1)-3 (2)有两个不相等的实数根 (3)x 2+2x -3=0 3.k <4,且k ≠04.-1 提示:(x 1-3)( x 2-3)=x 1 x 2-3(x 1+x 2)+9习题2.1 A 组1. (1)C (2)B 提示:②和④是错的,对于②,由于方程的根的判别式Δ<0,所以方程没有实数根;对于④,其两根之和应为-23.(3)C 提示:当a =0时,方程不是一元二次方程,不合题意.2. (1)2 (2)174(3)6 (33.当m >-14,且m ≠0时,方程有两个不相等的实数根;当m =-14时,方程有两个相等的实数根;当m <-14时,方程没有实数根. 4.设已知方程的两根分别是x 1和x 2,则所求的方程的两根分别是-x 1和-x 2,∵x 1+x 2=7,x 1x 2=-1,∴(-x 1)+(-x 2)=-7,(-x 1)×(-x 2)=x 1x 2=-1,∴所求的方程为y 2+7y -1=0.B 组1.C 提示:由于k =1时,方程为x 2+2=0,没有实数根,所以k =-1. 2.(1)2006 提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=-1×(-2005-1)=2006. (2)-3 提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )( a 2+b 2)=(a +b )[( a +b ) 2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.(1)∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根. (2)∵x 1+x 2=k ,x 1x 2=-2,∴2k >-2,即k >-1.4.(1)| x 1-x 2|,122x x +=2b a -;(2)x 13+x 23=333abc b a -. 5.∵| x 1-x 2|2==,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.(1)B (2)A(3)C 提示:由Δ≥0,得m ≤12,∴α+β=2(1-m )≥1. (4)B 提示:∵a ,b ,c 是ΔABC 的三边长,∴a +b >c ,∴Δ=(a +b )2-c 2>0. 2.(1)12 提示:∵x 1+x 2=8,∴3x 1+2x 2=2(x 1+x 2)+x 1=2×8+x 1=18,∴x 1=2,∴x 2=6,∴m =x 1x 2=12.3.(1)假设存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立.∵一元二次方程4kx 2-4kx +k +1=0有两个实数根, ∴k ≠0,且Δ=16k 2-16k (k +1)=-16k ≥0,∴k <0. ∵x 1+x 2=1,x 1x 2=14k k+, ∴ (2x 1-x 2)( x 1-2 x 2)=2 x 12-51x 2+2 x 22 =2(x 1+x 2)2-9 x 1x 2=2-9(1)4k k+=-32,即9(1)4k k+=72,解得k =95,与k <0相矛盾,所以,不存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立.(2)∵1221x x x x +-2=222212121212121212()2()224x x x x x x x x x x x x x x ++-+-=-=- =444(1)44111k k k k k k -+-==-+++, ∴要使1221x xx x +-2的值为整数,只须k +1能整除4.而k 为整数,∴k +1只能取±1,±2,±4.又∵k <0,∴k +1<1, ∴k +1只能取-1,-2,-4,∴k =-2,-3,-5. ∴能使1221x x x x +-2的值为整数的实数k 的整数值为-2,-3和-5.(3)当k =-2时,x 1+x 2=1,① x 1x 2=18, ② ①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=, ∴3λ=± 4.(1)Δ=22(1)20m -+>;(2)∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0.①若x 1≤0,x 2≥0,则x 2=-x 1+2,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x -4=0,∴11x =21x =②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a , 由一根大于1、另一根小于1,得(x 1-1)( x 2-1)<0, 即 x 1x 2-(x 1+x 2)+1<0, ∴ a -(-1)+1<0,∴a <-2. 此时,Δ=12-4×(-2) >0, ∴实数a 的取值范围是a <-2.2.2 二次函数2.2.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象. 再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示)2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系? 同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a 224()24b b ac a x a a -=++,所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.1坐标、最大值(或最小值),并指出当x 减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4, ∴函数图象的开口向下; 对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x 大而减小;采用描点法画图,选顶点A (-1,4)),与x 和C (,与y 轴的交点为D (0,1),过这五点画出图象(如图2-5所示). 图2.2-3 图2.2-5说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之间关系元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩解得 k =-1,b =200.∴ y =-x +200.设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像. 由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论. 解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题. 练 习 1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = .(2)已知二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x= 时,函数取最 值y = ;当x 时,y 随着x 的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象. (1)y =x 2-2x -3; (2)y =1+6 x -x 2.4.已知函数y =-x 2-2x +3,当自变量x 在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:(1)x ≤-2;(2)x ≤2;(3)-2≤x ≤1;(4)0≤x ≤3.2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式: 1.一般式:y =ax 2+bx +c (a ≠0);2.顶点式:y =a (x +h )2+k (a ≠0),其中顶点坐标是(-h ,k ).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交点个数.当抛物线y =ax 2+bx +c (a ≠0)与x 轴相交时,其函数值为零,于是有ax 2+bx +c =0. ①①图2.2-6②③并且方程①的解就是抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b 2-4ac 有关,由此可知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与根的判别式Δ=b 2-4ac 存在下列关系:(1)当Δ>0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点(抛物线的顶点);反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点A (x 1,0),B (x 2,0),则x 1,x 2是方程ax 2+bx +c =0的两根,所以x 1+x 2=b a -,x 1x 2=c a, 即 b a =-(x 1+x 2), ca=x 1x 2.所以,y =ax 2+bx +c =a (2b c x x a a++)= a [x 2-(x 1+x 2)x +x 1x 2]=a (x -x 1) (x -x 2).由上面的推导过程可以得到下面结论: 若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1) (x -x 2) (a ≠0). 这样,也就得到了表示二次函数的第三种方法:3.交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上, 所以,2=x +1,∴x =1. ∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<, ∵二次函数的图像经过点(3,-1), ∴21(32)1a -=-+,解得a =-2. ∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初中升高中数学衔接教材(最新整理)

初中升高中数学衔接教材(最新整理)
第 1 页 共 100 页
பைடு நூலகம்
新知识顺利地同化于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,当知识信息量过大 时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。如表格化, 使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方 法。第四,要多做总结、归类,建立主体的知识结构网络。
第一部分,如何做好高、初中数学的衔接
● 第一讲 如何学好高中数学 ●
初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿 望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩, 有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。 相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测, 从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的, 但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。 希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
初升高中衔接教程
数学
典型试题 举一反三 理解记忆 成功衔接
第 1 页 共 101 页
第一部分 如何做好初高中衔接 1-3 页
第二部分 现有初高中数学知识存在的“脱节” 4 页
第三部分 初中数学与高中数学衔接紧密的知识点 5-9 页
第四部分 分章节讲解 10-66 页
第五部分 衔接知识点的专题强化训练 67-100 页
二 不良的学习状态 1 学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学 教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后 辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。 许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表 现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。 2 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习, 只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为 读高中也不过如此。高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会 考上一所理想的大学的。存有这种思想的同学是大错特错的。有多少同学就是因为高一、二不努力学习,临 近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。 3 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。 而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能 及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机 械模仿,死记硬背。还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是 事倍功半,收效甚微。 4 不重视基础。一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练, 经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远, 重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 5 进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这 就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求 高。如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列 组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏, 就必然会跟不上高中学习的要求。 三 科学地进行学习 高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学 习为主动学习,才能提高学习成绩。 1 培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习习惯 包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 (1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的 内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意 志。 (2)课前自学是上好新课、取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习

初高中数学衔接校本教材(Word版)

初高中数学衔接校本教材(Word版)

《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。

既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢提几点建议:一、“信心”是源泉。

人缺乏信心,就丧失了驱动力,终将一事无成。

二、“恒心”是保障。

人缺乏恒心,将“三天打鱼,两天晒网”。

:三、“巧心”是支柱。

人无巧心,就缺乏灵气和创造力。

最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!}$临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。

主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。

怎样学好数学。

A.要学好数学,就应该了解数学本身具有的三大特点。

(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。

(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。

罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。

”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。

B.要学好数学,就应该重视数学思想方法的学习。

数学思想方法的学习是一个潜移默化的过程,是在多次领悟、反复应用的基础上形成的,所以一道题做完后,就应该进行反思,回味解题中所使用的思想方法。

初高中数学衔接教材(完整版)

初高中数学衔接教材(完整版)

初高中数学衔接教材(完整版)篇一:初高中衔接教材数学《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。

既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢?提几点建议:一、“信心”是源泉。

人缺乏信心,就丧失了驱动力,终将一事无成。

二、“恒心”是保障。

人缺乏恒心,将“三天打鱼,两天晒网”。

三、“巧心”是支柱。

人无巧心,就缺乏灵气和创造力。

最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。

主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。

怎样学好数学?A.要学好数学,就应该了解数学本身具有的三大特点。

(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。

(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。

罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。

”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。

b.要学好数学,就应该重视数学思想方法的学习。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a|0, a 0,a, a 0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数a和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0), 去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。

② f (x) a(a 0) , 去掉绝对值后,保留其等价性的不等式是 f (x) a或f (x) a 。

③ 2 2f (x) g(x) f (x)g (x)。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1 段进行讨论.③将分段求得解集,再求它们的并集.例1. 求不等式3x 5 4的解集例2. 求不等式2x 1 5的解集例3. 求不等式x 3 x 2 的解集例4. 求不等式| x+2| +| x-1| >3 的解集.1例5. 解不等式| x-1| +|2 -x| >3-x.例6. 已知关于x 的不等式| x-5| +| x-3| <a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2)| x+1|<| x-2|(3)| x-1|+|2 x+1|<4(4)3x 2 7(5) 5x 7 83、因式分解乘法公式(1)平方差公式 2 2(a b)( a b) a b(2)完全平方公式 2 2 2(a b) a 2ab b(3)立方和公式 2 2 3 3(a b)(a ab b ) a b(4)立方差公式 2 2 3 3(a b)(a ab b ) a b(5)三数和平方公式 2 2 2 2(a b c) a b c 2(ab bc ac)(6)两数和立方公式 3 3 2 2 3(a b) a 3a b 3ab b2(7)两数差立方公式 3 3 2 2 3(a b) a 3a b 3ab b因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2(1)x -3x+2;(2)26x 7x 2(3) 2 ( ) 2x a b xy aby ;(4)xy 1 x y .2.提取公因式法例2. 分解因式:2 (2)x3 9 3x2 3x (1)ab 5 a 5 b3.公式法例3. 分解因式:(1)a4 16 (2) 23x 2y x y2 4.分组分解法2例4. (1)x xy 3y 3x (2)2 22x xy y 4x 5y 65.关于x 的二次三项式ax2+bx+c( a≠0) 的因式分解.若关于x 的方程 2 0( 0)ax bx c a 的两个实数根是x1 、x2 ,则二次三项式2 ( 0)ax bx c a 就可分解为a(x x )(x x ).1 2例5. 把下列关于x 的二次多项式分解因式:(1) 2 2 1x x ;(2)2 4 4 2 x xy y .3练习 (1) 25 6xx (2) 21 x ax a(3) 2 11 18xx (4)24m 12m 9(5)25 7x 6x(6) 2212xxy 6y2q p ( 7) 6 2p q 1123( 8 )35a 2b 6ab2a( 9 )24 2 4 xx2(10) x 42x 2 1 (11) x 2 y 2 a 2 b 2 2ax 2by(12) a 24ab 4b 2 6a 12b 9(13) x 2-2x -1(14) 31a;(15)4 24x 13x 9 ;(16)2 22 2 2b cab ac bc ;(17)2 23x 5xy 2y x 9y 4第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1) 根的判别式2对于一元二次方程 ax +bx +c =0(a ≠0),有:(1) 当Δ>0 时,方程有两个不相等的实数根x 1,2=,2=24 bbac 2a;(2)当 Δ=0 时,方程有两个相等的实数根 x 1=x 2=- b 2a;(3)当 Δ<0 时,方程没有实数根. (2) 根与系数的关系(韦达定理)2如果 ax +bx +c =0(a ≠0)的两根分别是 x 1,x 2,那么 x 1+x 2=b a ,x 1· x 2=c a.这一关系也被称为韦达 定理.2、二次函数2y ax bx c 的性质1. 当 a 0 时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4ac b , 。

初高中数学衔接教材(已整理)

初高中数学衔接教材(已整理)

2.二, a 0.
例1 将下列式子化为最简二次根式:
(1) 12b ; (2) a2b(a 0) ;
解: (1) 12b 2 3b ;
(2) a2b a b a b(a 0) ;
(3) 4x6 y (x 0) .
(3) 4x6 y 2 x3 y 2x3 y (x 0) .
2.3 方程与不等式 2.3.1 二元二次方程组的解法 第三章 相似形、三角形、圆 3.1 相似形 3.1.1 平行线分线段成比例定理 3.1.2 相似三角形形的性质与判定
3.2 三角形 3.2.1 三角形的五心 3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用
3.3 圆 3.3.1 直线与圆、圆与圆的位置关系:圆幂定理 3.3.2 点的轨迹 3.3.3 四点共圆的性质与判定 3.3.4 直线和圆的方程(选学)
与 a x b 互为有理化因式. 分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;
而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程 在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运
用公式 a b ab(a 0,b 0) ;而对于二次根式的除法,通常先写成分式的形式,然后通 过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括 号与合并同类二次根式.
(2)完全平方公式
(a b)2 a2 2ab b2 .
我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式
(a b)(a2 ab b2 ) a3 b3 ;
(2)立方差公式
(a b)(a2 ab b2 ) a3 b3 ;
(3)三数和平方公式

2020初升高数学衔接知识(word解析版)

2020初升高数学衔接知识(word解析版)

2020初高中数学衔接教程中考数学与初高中衔接的关系中考起着为高中选拔人才的作用,莘莘学子通过中考这一座桥梁走向高中.初中数学教材难度下降,初中教学跟着中考指挥棒,弱化了很多初高中数学学习中需要一直贯彻的数学思想方法,高中数学内容起点高、难度大、容量多,学生到了高中易衔接不上中考试题除了考察学生对初中知识的掌握程度以外,还为学生适应高中学习做适当的衔接,将会很好地体现“以学生的发展为根本”这一教学理念. 一、延伸高中数学思想方法在初高中数学学习中需要一直贯彻的数学思想方法有函数的思想、数形结合思想、对图形的认识与空间想象能力等例如函数思想,生长点在初中,而发展点在高中,是初高中数学衔接的重要内容初中教材中函数知识的考察重点在于函数的基本性质和如何求函数表达式,而高中数学重视各种函数间的关系、动态问题中融合函数知识等内容.中考试题中对这类问题加以重视,把高中数学思想方法渗入初中的学习,以达到初高中接轨. 例1如图1,在平面直角坐标系x0y 中,四边形ABCD 是菱形,顶点A 、C 、D 均在坐标轴上,且AB=5,4sin 5B =. (1)求过A 、C 、D 三点的抛物线的解析式;(2)记直线AB 的解析式为y 1=mx+n ,(1)中抛物线的解析式为22y ax bx c =++,求当12y y <时,自变量x 的取值范围;(3)设直线AB 与(1)中抛物线的另一个交点为E ,P 点为抛物线上,A ,E 两点之间的一个动点,当P 点在何处时,△PAE 的面积最大?并求出面积的最大值.类似的题型还有结合高中几何不等式考察数形结合思想;利用三视图延伸到高中立体几何,考察空间理解能力;渗透排列组合知识强化概率知识的理解能力等等.学生通过解这一类题目,可以把解题思想延伸到高中,利用高中思维方法解初中函数题,以达到初高中思维方法上的衔接. 二、滲透高中数学概念概念是基础知识的核心.初中概念简单,容易理解,从升学考看,学生只要记准概念公式及教师所讲例题类型,一般均可对号入座取得中考好成绩造成了轻知识形成过程、轻概念理解、重题量的情形.初、高中教师教学方法上的差异中间又缺乏过渡过程,至使高中新生在理解概念时,普遍感到吃力.把高中的概念理解渗透到中考试题,引导学生重视概念理解,正确理解和灵活运用概念,从而增强概念理解能力.例2如图3,对于平面直角坐标系中的任意两点()111,P x y ,()222,P x y ,我们把1212x x y y -+-叫做12,P P 两点间的直角距离记作()12,d P P .(1)已知O 为坐标原点,动点P (x ,y )满足d (O ,P )=1,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(2)设()000,P x y 是一定点,Q (x ,y )是直线上的动点,我们把()0,d P Q 的最小值叫做P 到直线y=ax+b 的直角距离试求点M (2,1)到直线y=x+2的直角距离.类似的题型有以下几种:直接利用高中数学概念解题如直接给出正弦函数、余弦函数解斜三角形;以高中数学概念为背景结合初中知识解题,如射影定理、圆幂定理的应用;或者改编高中概念,使其简单化,在初中背景下应用等这类试题要求学生通过阅读对概念的本质进行理解、概括在新背景下运用新概念,结合初中知识解决问题这类题目能很好地考查学生的数学阅读理解能力数学抽象概括能力和对概念的实际应用能力.三、衔接高中解题技巧高中数学解题有较多技巧,用高中解题技巧解初中数学题,很多时候能事半功倍,展现数学的奥妙之处中考题融人高中解题技巧,能促使师生更新原有的思维方式,为高中后续学习做铺垫.例3为解方程()()2221514x x ---+=0,我们可以将x 2-1视为一个整体然后设x 2-1=y ,则()2221x y -=,原方程化为y 2-5y+4=0 ①,解得121,4y y ==.当y=1时,211,2x x -==当y=4时,214,x x -==所以,原方程的解为1234x x x x ===-解答问题(1)填空:在由原方程得到①过程中,利用法达到了降次的目的,体现了的数学思想;(2)解方程:4260x x --=. 例4观察下列等式: 第1个等式:111111323a ⎛⎫==- ⎪⨯⎝⎭第2个等式111135235⎛⎫==- ⎪⨯⎝⎭ 第3个等式3111157257a ⎛⎫==- ⎪⨯⎝⎭第4个等式4111179279a ⎛⎫==- ⎪⨯⎝⎭请解答下列问题:(1)请按以上规律列出第5个等式:5a = = .(2)用含n 的代数式表示第n 个等式:n a ==.(n 为正整数)(3)求1234100a a a a a +++++的值.四、弥补初中知识层面的不足初中教材知识层面较简单,对能力要求不高,相对来说,高中对数学能力和数学思想的运用要求比较高,初高中知识存在着很多需要衔接的地方,中考题可以在这些方面加以重视.新高一学生的数学知识上看,明显在一元二次方程的解、二次函数根与系数的关系方面知识欠缺,遇到此类问题时,学生表现出思维能力、分析能力等方面的乏力,中考题中,可利用二次函数在开闭区间上的最值,十字相乘法分解因式,元二次不等式的解法等,作为初中数学学习的延伸,高中数学学习的阶梯,并依此为突破口,做好初、高中数学教学的衔接;射影定理,平行线分线段比例定理,圆幂定理等,初中深度不够,高中应用频繁,在考察相似三角形知识的中考题可引用此类知识;初中教材中没有关于含有字母系数的方程的解法和公式变形等内容,进入高中后进行公式推动有困难,这方面中考题可尝试渗透;直线与圆的位置关系的讨论,学生在初中掌握的很肤浅,可在中考题中利用几何法和代数法探讨,作进一步深化;含有参数的函数、方程、不等式,初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点,可在中考综合题(如动点问题)中涉及,作为区分度较高的拔高知识点;几何部分很多概念(如重心、垂心、外心、内心等),初中生大都没有学习,而高中教材多常常要涉及,这些也可以作为考察的内容.中考题的多方面、多层次变化,决定了初中教师要站在更高的平台上展望,初高中衔接的中考题,对初中知识和数学思想进行补充、对初中教师的教学起到指导性作用.初中老师在平时的教学中,或初三备考时,不妨多与高中知识、思想方法接轨,以崭新的视角看待中考,以达到中考的真正意义.中考数学与初高中衔接的关系例题答案解析中考起着为高中选拔人才的作用,莘莘学子通过中考这一座桥梁走向高中.初中数学教材难度下降,初中教学跟着中考指挥棒,弱化了很多初高中数学学习中需要一直贯彻的数学思想方法,高中数学内容起点高、难度大、容量多,学生到了高中易衔接不上中考试题除了考察学生对初中知识的掌握程度以外,还为学生适应高中学习做适当的衔接,将会很好地体现“以学生的发展为根本”这一教学理念. 一、延伸高中数学思想方法在初高中数学学习中需要一直贯彻的数学思想方法有函数的思想、数形结合思想、对图形的认识与空间想象能力等例如函数思想,生长点在初中,而发展点在高中,是初高中数学衔接的重要内容初中教材中函数知识的考察重点在于函数的基本性质和如何求函数表达式,而高中数学重视各种函数间的关系、动态问题中融合函数知识等内容.中考试题中对这类问题加以重视,把高中数学思想方法渗入初中的学习,以达到初高中接轨.例1如图1,在平面直角坐标系x0y 中,四边形ABCD 是菱形,顶点A 、C 、D 均在坐标轴上,且AB=5,4sin 5B =. (1)求过A 、C 、D 三点的抛物线的解析式;(2)记直线AB 的解析式为y 1=mx+n ,(1)中抛物线的解析式为22y ax bx c =++,求当12y y <时,自变量x 的取值范围;(3)设直线AB 与(1)中抛物线的另一个交点为E ,P 点为抛物线上,A ,E 两点之间的一个动点,当P 点在何处时,△PAE 的面积最大?并求出面积的最大值.【解答】 如图2,(1)由菱形ABCD 的边长和一角的正弦值,可求出OC ,OD ,OA 的长,进而确定A ,C ,D 三点坐标,通过待定系数法求出抛物线的解析式222433y x x =-++. (2)首先由A ,B 的坐标确定直线AB 的解析式143y x =--83,然后求出直线A 与抛物线的两个交点(-2,0)和285,3⎛⎫- ⎪⎝⎭,然后通过观察图象找出直线y 1在抛物线y 2图象下方的部分,由图可知:当y 1<y 2时,-2<x<5.(3)该题的关键点是确定点P 的位置,△APE 的面积最大,那么12APE S AE h ∆=⨯中h 的值最大,即点P 离直线AE 的距离最远,那么点P 为与直线AB 平行且与抛物线有且仅有的唯一交点的直线上的点. 若设直线4:3L y x b =-+,直线L ∥AB ,当直线L 与抛物线有且只有一个交点P 时,24224333x b x x -+=-++,且0∆=. 求得112b =,即直线411:32L y x =-+;可得点37,22P ⎛⎫⎪⎝⎭. 由(2)得285,3E ⎛⎫ ⎪⎝⎭,则直线11:93PE y x =-+.则点2749,0,1111F AF OA OF ⎛⎫=+=⎪⎝⎭.∴△PAE 的最大值:149211PAE PAF AEF S S S ∆∆∆=+=⨯⨯2873433212⎛⎫+=⎪⎝⎭, 综上所述,当P 为37,22⎛⎫⎪⎝⎭时,△PAE 的面积最大,为34312. 【点评】本题是一道二次函数综合题,初高中衔接性较强,问题(2)在初中求交点方法的基础上拓展了高中数学中直线与抛物线的交点问题,再利用了高中用图象解一元二次不等式的思维方法解题问题(3)突破了常规动点问题的模式,利用直线与抛物线相切找出平行线间的最大距离这一高中常见的数形结合思想解初中动点问题,从而求出三角形的最大面积.类似的题型还有结合高中几何不等式考察数形结合思想;利用三视图延伸到高中立体几何,考察空间理解能力;渗透排列组合知识强化概率知识的理解能力等等.学生通过解这一类题目,可以把解题思想延伸到高中,利用高中思维方法解初中函数题,以达到初高中思维方法上的衔接. 二、滲透高中数学概念概念是基础知识的核心.初中概念简单,容易理解,从升学考看,学生只要记准概念公式及教师所讲例题类型,一般均可对号入座取得中考好成绩造成了轻知识形成过程、轻概念理解、重题量的情形.初、高中教师教学方法上的差异中间又缺乏过渡过程,至使高中新生在理解概念时,普遍感到吃力.把高中的概念理解渗透到中考试题,引导学生重视概念理解,正确理解和灵活运用概念,从而增强概念理解能力.例2如图3,对于平面直角坐标系中的任意两点()111,P x y ,()222,P x y ,我们把1212x x y y -+-叫做12,P P 两点间的直角距离记作()12,d P P .(1)已知O 为坐标原点,动点P (x ,y )满足d (O ,P )=1,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(2)设()000,P x y 是一定点,Q (x ,y )是直线上的动点,我们把()0,d P Q 的最小值叫做P 到直线y=ax+b的直角距离试求点M (2,1)到直线y=x+2的直角距离. 【解答】 如图4,(1)由题意,得|x|+|y|=1,所有符合条件的点P 组成的图形如图所示,(2)(,)|2||d M Q x y =-+-1||2||21|x x =-++-|2||1|x x =-++,∴x 可取一切实数,|x-2|+|x+1|表示数轴上实数x 所对应的点到2和-1所对应的点的距离之和,其最小值为 3.∴点M (2,1)到直线y=x+2的直角距离为3.【点评】本题以高中数学平面两点间距离的知识为背景,将其和初中绝对值知识结合起来,以新概念的形式命题,让学生通过阅读理解“直角距离”这一新概念,转化为自己熟悉的绝对值几何意义,结合绝对值及一次函数的定义灵活结合解题问题(2)还渗透高中“点到直线距离”这一概念,体现初高中概念的紧密联系. 类似的题型有以下几种:直接利用高中数学概念解题如直接给出正弦函数、余弦函数解斜三角形;以高中数学概念为背景结合初中知识解题,如射影定理、圆幂定理的应用;或者改编高中概念,使其简单化,在初中背景下应用等这类试题要求学生通过阅读对概念的本质进行理解、概括在新背景下运用新概念,结合初中知识解决问题这类题目能很好地考查学生的数学阅读理解能力数学抽象概括能力和对概念的实际应用能力.三、衔接高中解题技巧高中数学解题有较多技巧,用高中解题技巧解初中数学题,很多时候能事半功倍,展现数学的奥妙之处中考题融人高中解题技巧,能促使师生更新原有的思维方式,为高中后续学习做铺垫.例3为解方程()()2221514x x ---+=0,我们可以将x 2-1视为一个整体然后设x 2-1=y ,则()2221x y -=,原方程化为y 2-5y+4=0 ①,解得121,4y y ==.当y=1时,211,x x -==当y=4时,214,x x -==所以,原方程的解为1234x x x x ===-解答问题(1)填空:在由原方程得到①过程中,利用 法达到了降次的目的,体现了的数学思想;(2)解方程:4260x x --=. 解:(1)换元法(2)由题意可得:()()22230x x+-=,由于220x +>,故230,x x -==.【点评】本题灵活地运用换元法解高次方程,利用变换思想将数学问题进行有效转化,使解法更加简单、直观,这是高中数学常常用到的解题技巧类似的还有利用换元法进行因式分解、解较复杂的分式方程或无理方程等.例4观察下列等式: 第1个等式:111111323a ⎛⎫==- ⎪⨯⎝⎭第2个等式111135235⎛⎫==- ⎪⨯⎝⎭ 第3个等式3111157257a ⎛⎫==- ⎪⨯⎝⎭第4个等式4111179279a ⎛⎫==- ⎪⨯⎝⎭请解答下列问题:(1)请按以上规律列出第5个等式:5a = = .(2)用含n 的代数式表示第n 个等式:n a ==.(n 为正整数)(3)求1234100a a a a a +++++的值.【解答】 (1)411119112911a ⎛⎫==- ⎪⨯⎝⎭(2)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭(3)1234100a a a a a +++++11111112335199201⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦100201=. 【点评】本题是初中常见的寻找规律题取材于高中数学中的数列结合高中数列求和常用的裂项相消法解题技巧性较强.中考题可渗透韦达定理、参数法数学归纳法反证法解题方法技巧等增加试题的灵活性,提高试题的丰富度这些创新的题型及解法可引导学生平时注重涉足课本以外知识开拓视野发展思维脱离“应试教育”的误区. 四、弥补初中知识层面的不足初中教材知识层面较简单,对能力要求不高,相对来说,高中对数学能力和数学思想的运用要求比较高,初高中知识存在着很多需要衔接的地方,中考题可以在这些方面加以重视.新高一学生的数学知识上看,明显在一元二次方程的解、二次函数根与系数的关系方面知识欠缺,遇到此类问题时,学生表现出思维能力、分析能力等方面的乏力,中考题中,可利用二次函数在开闭区间上的最值,十字相乘法分解因式,元二次不等式的解法等,作为初中数学学习的延伸,高中数学学习的阶梯,并依此为突破口,做好初、高中数学教学的衔接;射影定理,平行线分线段比例定理,圆幂定理等,初中深度不够,高中应用频繁,在考察相似三角形知识的中考题可引用此类知识;初中教材中没有关于含有字母系数的方程的解法和公式变形等内容,进入高中后进行公式推动有困难,这方面中考题可尝试渗透;直线与圆的位置关系的讨论,学生在初中掌握的很肤浅,可在中考题中利用几何法和代数法探讨,作进一步深化;含有参数的函数、方程、不等式,初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点,可在中考综合题(如动点问题)中涉及,作为区分度较高的拔高知识点;几何部分很多概念(如重心、垂心、外心、内心等),初中生大都没有学习,而高中教材多常常要涉及,这些也可以作为考察的内容.中考题的多方面、多层次变化,决定了初中教师要站在更高的平台上展望,初高中衔接的中考题,对初中知识和数学思想进行补充、对初中教师的教学起到指导性作用.初中老师在平时的教学中,或初三备考时,不妨多与高中知识、思想方法接轨,以崭新的视角看待中考,以达到中考的真正意义.专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂)n的异同.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x . 例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3. 参考阅读材料,解答下列问题: (1)方程|x +2|=3的解为 ; (2)解不等式:|x -2|<6; (3)解不等式:|x -3|+|x +4|≥9; (4)解方程: |x -2|+|x +2|+|x -5|=15.【训练】实数在数轴上所对应的点的位置如图所示:化简.【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围; (2)化简:. 高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +---【训练】计算:(1)0221( 3.14)(4)()3π--+-- (2)2(3)(2)(2)x x x --+-【能力提升】已知10x =a ,5x =b ,求: (1)50x 的值; (2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)高中必备知识点3:二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++等是有理式. 1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【例题】计算下面各题.(1)2163)1526(-⨯-;(2时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.【能力提升】先化简,再求值:(2a ba b-+-ba b-)÷a2ba b-+,其中,.高中必备知识点4:分式1.分式的意义形如AB的式子,若B中含有字母,且0B≠,则称AB为分式.当M≠0时,分式AB具有下列性质:A A MB B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【例题】先化简,再求值22122()121x x x xx x x x+++-÷--+,其中x满足x2+x﹣1=0.化简:22442x xy y x y-+-÷(4x 2-y 2)【能力提升】已知:112a b-=,则ab b a b ab a 7222+---的值等于多少?专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上2.观察下列各式及其展开式: (a+b )2=a 2+2ab+b 2 (a+b )3=a 3+3a 2b+3ab 2+b 3 (a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4 (a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45C .55D .663.已知1-1x x =,则221x x+等于( ) A .3B .2C .1D .04.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④B .②③C .①②④D .①③④5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1B .2C .7D .86.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .4317607.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-= D .2221a b a b a b a b+-=--- 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1B .2C .3D .411.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b >B .a b =C .a b <D .无法确定12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .913.已知226a b ab +=,且a>b>0,则a ba b+-的值为( ) A .2 B .±2C .2D .±214.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知a 为实数,则代数式227122a a -+的最小值为( ) A .0B .3C .33D .916.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C ,最小正方形的周长是2C ,则12C C =_____.19.对于整数a ,b ,c ,d ,定义a dbc =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______. 20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.21.若m 35223x y m x y m +--+-199199x y x y =---+m =________.22.若214x x x ++=,则2211x x ++= ________________. 23.已知22143134m n m n =--+,则11m n+的值等于______.24.已知函数1x f x x,那么1f_____.25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =+. 26.观察下列等式:1)131====-====回答下列问题:(1;(2;(3….270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y ①求2x y +的值;②已知10kx m -=+,其中k 是一个整数,且01m <<,求k m -的值. 28.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++.29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()c a b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++. (1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下: (1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b aa b ab b -----++++=______(n 为正整数,且2n ≥);(3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数。

初高中数学衔接教材 word版配答案(精品版)

初高中数学衔接教材 word版配答案(精品版)

数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。

在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。

这也是我们继续高中数学学习的基础。

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

2020年初高中数学衔接教材(已整理)

2020年初高中数学衔接教材(已整理)

2020年初高中数学衔接教材(已整理)2020初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类问题仅限于简单的通例运算,和难度不大的利用题,而在高中数学中,它们的相互转化屡屡频仍,且教材没有特地讲授,因此也脱节;7、图象的对称、平移变更初中只作简单介绍,而在高中讲授函数时,则作为必备的根本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去研究;10、圆中四点共圆的性质和判定初中没有研究。

高中则在利用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中淡化,甚至老师根本没有去延伸发掘,不利于高中数学的研究。

新的课程革新,难免会招致很多知识的脱节和毛病。

本书固然也没有详尽列举出来。

我们会不断的研讨新课程及其体系。

初高中数学衔接教材(已整理)(可编辑修改word版)(20201111075258)

初高中数学衔接教材(已整理)(可编辑修改word版)(20201111075258)

目录第一章数与式1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4 分式1.2 分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系2.2 二次函数2.2.1 二次函数y二ax2+bx+c的图像和性质2.2.2 二次函数的三种表达方式2.2.3 二次函数的应用2.3 方程与不等式2.3.1 二元二次方程组的解法第三章相似形、三角形、圆3.1 相似形3.1.1 平行线分线段成比例定理3.1.2 相似三角形形的性质与判定3.2 三角形3.2.1 三角形的五心3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3 圆3.3.1 直线与圆、圆与圆的位置关系:圆幕定理3.3.2 点的轨迹3.3.3 四点共圆的性质与判定3.3.4 直线和圆的方程(选学)1.1数与式的运算1. 1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V 0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3,x>4.综上所述,原不等式的解为x v0,或x>4.解法二:如图1. 1-1, x 1表示x轴上坐标为x的点P到坐标为1的点A 之间的距离I PA,即I PA = |x- 1| ; |x-引表示x轴上点P到坐标为2的点B 之间的距离| PB,即| PB = |x- 3| .所以,不等式x 1 x 3 >4的几何意义即为| PA +1 PB >4.由| AB = 2,可知点P在点q坐标为0)的左侧、或点P在点学习参考P C A B D丄L丄L Lx0134x V|x- 3||x- 1|图1. 1- 1D(坐标为4)的右侧.x v0,或x>4.练习1.填空:(1)若x5,则x=;若x4,贝y x= .(2)如果la b5,且a 1 11,则b= ;若|1 c 2 ,则C =2.选择题:1 1下列叙述正确的是( )(A)若a b则a b(B) 若a b,则 a b(C)若a b , 则a b(D) 若a 1),则 a b3.化简:| x- 5| - |2x —13|(x > 5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式(a b)(a b) a2b2;(2)完全平方公式(a b)2 a22ab b2.我们还可以通过证明得到下列一些乘法公式:(1) 立方和公式(a 2 2b)(a ab b ) 3a b3;(2)立方差公式(a b)(a2 ab b2) 3 a b3;(3)三数和平方公式(a b c)2a2 b2 2 c2(ab bc ac);(4)两数和立方公式(a b)3 a3 3a 2b3ab2.3b ;(5)两数差立方公式(a b)3 a3 3a 2b3ab2b3.对上面列出的五个公式,有兴趣的同学可以自己去证明.例 1 计算:(x 1)(x 1)(x2 x 1)(x2 x 1). 解法一:原式= (x21) (x21)2x2—(x21)(x4x21)=6 x 1 .解法二原式=(x1)(x2x21)(x 1)(x x 1) =(x31)(x31)=x61.例2已知a b c 4 , ab bc ac 4,求a2 b2c2的值解: 2a b2c2 ( ab c)22(ab bc ac) 8 .练习1. 填空:(1) 12 a1b2Qb 如( );9423(2) (4 m)216m24m ()(3 )(a2b c)2 2 2 2a 4bc ().2. 选择题:1.1.3 .二次根式一般地,形如.a(a 0)的代数式叫做二次根式.根号下含有字母、且不能 够开得尽方的式子称为无理式.例如3a2b ,.产号等是无理式,而 -、2x 2 2x 1 , x 2 . 2xy y 2,-. a 2 等是有理式.21. 分母(子)有理化把分母(子)中的根号化去,叫做 分母(子)有理化.为了进行分母(子) 有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果 它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如 2与 .2 , 与' a ,-. 3 与 '一3 & , 2.3 与 2、、3 3 &,等等. 一般地,a /X 与x , a 、、x b.,$与a 、、x b y , a . x b 与a. x b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的 根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分 子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行, 运算中要运用公式.a ,b ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加 减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-07的意义a, a 0, aa, a 0.例1 将下歹 J 式子化为最简一次根式:(1) 施; (2) VOb(a 0); (3) J 4x 6y(x 0).解: (1)2屈;(2) Ja 2b a 虑 aVb(a 0);(3) J4x 6y 2x 3 &2X 3T7(X 0).例2 计算 :爲 (3晶.(1 ) 21若 x -mx 2k 是——一个 ()(A )m 2(B ) 1 2 m4(2 ) 不论a ,b为 何 ( )(A 总是正数(C 可以是零数则k 等于(C )討2(D ) 4b 81 2m16的值(B )总是负数(D )可以是正数也可以是负完全平方式,实数,a 2 b 2 2a解法一:再(3、③=' 3_3典=.3 (3 . 3) (3 .3)(3 3)=3灵3 9 3=3“ 1)6=s/3 12解法二:.3 (3、、3) = —33罷.3 1 .3 1 ( 3 1)G 3 1).3 12例3 试比较下列各组数的大小:(1)A2 .仃和,n .10 ;解: (1) V,.^ 吊』111.不吊1(2)./ 4(、、12 .11)612 .11)和2逗_、、6 .(11 .10)(. 11 10);11 「101.12 、11 ,1、11 ■10,又,12 .11 .亍帀,二、、12 ..右V .11 .,10 .(2)・.・2运—76 2应-V6 (^2-46)(242+46)1又 4 >2 2,6 + 4> . 6+ 2 2,r2V 2、2-66 4化简:(、、3 J) 2004 ( 3、、2)20052、2+,6'例4解: 0.3 , 2 ) 2004(、3 ;2严=2 ) 2004 (G 2 ) 2004(、、3 .2) = 0 3 ' 2) 0-3 、.2) ^.3 . 2)=12004(..3 例5 化简: 、2) =、3 2 .(1).9 4;5 ;(2) 12 2(0 x 1).x解:(1)原式.(5)22 2 5 22、.(2 、5)245 45 2.(2)原式=,5 4 54-x1 x,所以,原式=-X已知x 律2,y J J ,求5xy 3/的值• ’x y 3 : '3 :(、3、2)2( 3、②210,xy 32歸 1 ,二 3x 2 5xy 3y 23(x y)2 11xy 3 1 0211 289 .1.1. 4 .分式1 .分式的意义形如A 的式子,若 BB 中含有字母,且B'则称13为分式.当心时,分式A 具有下列性质:BA A MA A MB B M ,B B M *上述性质被称为分式的基本性质. 2. 繁分式a像_^ , m n P 这样,分子或分母中又含有分式的分式叫做 繁分式. cd 2m1.习填空: 11若,(5 x)(x 3)2 (x 3) •.厂x ,则x 的取值范围是 4、/24 6.54 ^.96 2.1502(1) 2.选择题: 爪[| J X 1 J x1,则 x 1x1 x 、、x ■■■ x 2 厂2.立) (A ) x 23 .若ba 1_4.比较大小:2— 3(B ) x 01 a,求a b 的值._____ >/5—萌(填“〉”(C xV”)(D ) 0x2例6解:5例1若汙2)彳三,求常数A ,B 的值.A B 5, 2A 4,(1)试证: (2) 计算: 解得 A1 1n(n 1) n1 1 122 31又n >2’且n 是正整数」市一定为正数'1 n(n 1)例 3 设e c ,且 e > 1, 2c 2— 5ac + 2a 2= 0,求 e 的值. a 解:在2c 2— 5ac + 2a 2 = 0两边同除以a 2,得2 e 2 — 5e + 2=0,/. (2e —1)( e — 2) = 0,1二e = 2 v 1,舍去;或 e = 2. e = 2.练习1. 填空题:对任意的正整数n ,1__L 11);n(n 2)n n 22 选择题:解:A(x 2) Bx (A B)x 2A x(x 2)x(x 2)5x 4 x(x 2)(3)证明:对任意大于1的正整数n ,1 n(n 1). 1 1 1・ ・n(n 1) n n 1 (其中n 是正整数)成立.(2)解:由(1)可知1 1 1 1 1 1 1 1L(1 : > ( )L ( ) 1 2 2 39 102 23 9 10 (3)证明:v -1 1L1 =11 11 1 (--)(--)L(-(1)证明:••• 1 丄 e I 1 -n n 1 n(n 1) n(n 1)2 3 3 4 n(n 1)2 3 3 4n1110 101)若2x yx y2 3,则( )(A )1(B ) 5(C )-453.正数x,y 满足x 2 y 22xy ,求x y的值.x y(D )丄(其中n 是正整数);n 11 9 101 2 31 99 100习题1. 1A 组(1) x 1 3 ;(2)x 3⑶ x 1 x 16 .解不等式: 3xy 的值. 3y x 2 71,求 x 3.已知x y填空:(1) (2) (3)(2 J)18(2 ...3)19 = 若(112填空: (1) a (2)若 已知:x 选择题:( ) (A )a)2.(1 12 .3.3;4a)2 2 , 1___ ?则a 的取值范围是1 .4;5xy1 2,y3a 2 23a 5ab 2b 0,则 Jxy yx1 求 N 3, x y ab 22y 2 (B )22 _ ---------------------------y的值.x yC 组b 2、ab 、、b a(C) a b 0(D ) b) _(A ) ■ "a 2) x 1 2 4解方程2(x 2计算:九3(x 丄)x试证:对任意的正整数 (B )(C ) (D )n ,1 9 11 .有V n(n 1)( n 2) 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法.4.1. 2 3. 1.2. 1. ((2. 3. 4.7x 10 1十字相乘法例1分解因式:(1) X 2— 3x + 2; (2) X 2 + 4x — 12; (3) x 2 (a b)xy aby 2 ;(4) xy 1 x y .解:(1)如图1. 1 — 1,将二次项X 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2 — 3x + 2中的一次项, 所以,有x 2— 3x + 2 = (x —1)( x — 2).x —:1—:1- — 6x,. —ayx —by图 1. 1— 1 图 1 . 1—2 图 1. 1 — 3图 1 . 1 — 4说明:今后在分解与本例类似的二次三项式时,可以直接将图 1. 1 — 1中的两个x 用1来表示(如图1. 1 — 2所示).(2) 由图1. 1 — 3,得2x + 4x — 12 = (x — 2)( x + 6). (3) 由图1. 1 — 4,得2 2x (a b)xy aby = (x ay)(x by)(4) xy 1 x y = xy +(X — y ) — 1=(x — 1) ( y+1)(如图 1. 1 — 5 所示).课堂练习 一、填空题: 1、把下列各式分解因式: (1) 2 x 5x 6 _(2) 2 x 5x 6 _ (3) 2 x 5x 6 _ (4) 2 x 5x 6 _ (5) x 2 a 1 x a _ (6) 2 x 11x 18_ (7) 6x 2 7x 2 _ (8) 4m 2 12m 9 _ (9) 5 7x 6x 2_(10) 12x 2 xy 6y 2_x 2 4x ______________ x 3 x ________________3、若 x 2ax b x 2 x 4 贝卩 a _________________ , b _____________二、选择题:(每小题四个答案中只有一个是正确的)7x 6 (2) x 2 4x 3 (3) x 2 6x 8 (4) 15x 44中,有相同因式的是(B 、只有(3) (4) 1、在多项式(1) x 2(5) x 2 A 、只有(1) (2) C 只有(3) (5)D (1)和(2); (3)和(4); (3)和(5)3、2 y2 4 y 62.提取公因式法例2分解因式:(1) a2 b 5 a 5 b(2) x393x23x解:(1) . a2 b 5 a 5 b :=a(b5)(a1)(2) x39 3x2 3x =(x3 3x2)(3x9) =x2(x3)3(x3)(x 3)(x2 3).或3 2 3 2 3 3 3x 9 3x 3x = (x 3x 3x 1) 8 = (x 1) 8 = (x 1) 22 2 2=[(x 1) 2][(x 1) (x 1) 2 2 ] = (x 3)(x 3)课堂练习:一、填空题:1、多项式6x2y 2xy2 4xyz中各项的公因式是___________________ 。

初高中数学衔接教材(共28页)

初高中数学衔接教材(共28页)

初高中数学衔接教材(共28页)令狐采学创作令狐采学创作初高中数学衔接教材令狐采学目录引入乘法公式第一讲因式分解1.1提取公因式1.2.公式法(平方差,完全平方,立方和,立方差)1.3分组分解法1.4十字相乘法(重、难点)1.5关于某的二次三项式a某2+b某+c(a≠0)的因式分解.第二讲函数与方程2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系(韦达定理)2.2二次函数2.2.1二次函数y=a某2+b某+c的图象和性质2.2.2二次函数的三种表示方式2.2.3二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()ababab+-=-;(2)完全平方公式222()2abaabb±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()abaabbab+-+=+;(2)立方差公式2233()()abaabbab-++=-;(3)三数和平方公式2222()2()abcabcabbcac++=+++++;(4)两数和立方公式33223()33abaababb+=+++;(5)两数差立方公式33223()33abaababb-=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.令狐采学创作令狐采学创作例1计算:22(1)(1)(1)(1)某某某某某某+--+++.解法一:原式=2222(1)(1)某某某-+-=242(1)(1)某某某-++=61某-.解法二:原式=22(1)(1)(1)(1)某某某某某某+-+-++=33(1)(1)某某+-=61某-.例2已知4abc++=,4abbcac++=,求222abc++的值.解:2222()2()8abcabcabbcac++=++-++=.练习1.填空:(1)221111()9423abba-=+();(2)(4m+22)164(mm=++);(3)2222(2)4(abcabc+-=+++).2.选择题:(1)若212某m某k++是一个完全平方式,则k等于()(A)2m(B)214m(C)213m(D)2116m(2)不论a,b为何实数,22248abab+--+的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数第一讲因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法令狐采学创作令狐采学创作例1分解因式:(1)某2-3某+2;(2)某2+4某-12;(3)22()某ab某yaby-++;(4)1某y某y-+-.解:(1)如图1.1-1,将二次项某2分解成图中的两个某的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3某,就是某2-3某+2中的一次项,所以,有某2-3某+2=(某-1)(某-2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个某用1来表示(如图1.1-2所示).(2)由图1.1-3,得某2+4某-12=(某-2)(某+6).(3)由图1.1-4,得22()某ab某yaby-++=()()某ay某by--(4)1某y某y-+-=某y+(某-y)-1=(某-1)(y+1)(如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652某某__________________________________________________。

初升高数学衔接教材

初升高数学衔接教材

A.{x|﹣3<x<11,x∈Q}
4
初升高数学衔接教材
B.{x|﹣3<x<11} C.{x|﹣3<x<11,x=2k,k∈N} D.{x|﹣3<x<11,x=2k,k∈Z}
【题型强化】1.已知集合
,则集合 A 中元素的个数为( )
A.3
B.4
C.5
2.平面直角坐标系中纵轴上的点的坐标组成的集合为________.
4.已知集合

关系为( )
A.
B.
C.
, D.
,则 A, B, C 满足的
【题型强化】1.设集合
A.
B.
2.集合 与 的关系是( )
A. 0 ∅
B.
,则下列关系正确的是( )
C.
D.
C.0
D.
3.设集合 A={0,1,2},B={m|m=x+y,x∈A,y∈A},则集合 A 与 B 的关系为( )
(3)设集合 A 是“好集”,若 x∈A,y∈A,则 x+y∈A.
A.0
B.1
C.2
【题型强化】1.已知:集合
,定义集合运算 ※
※=
2.已知集合

.定义集合
D.3
,则 ,求集合 .
【名师点睛】 1.集合命题中与运算法则相关的问题已经成为新课标高考的热点.这类试题的特点:通过给出新的数学概 念或新的运算方法,在新的情况下完成某种推理证明或指定要求是集合命题的一个新方向.常见的有定义 新概念、新公式、新运算和新法则等类型. 2.解决这类问题的基本方法:仔细审题,准确把握新信息,想方设法将新定义的问题化归为已经解决的熟 悉问题,从而使问题得到解决.也就是“以旧带新”法.
【名师点睛】1.求解有限集合的子集问题,关键有三点: (1)确定所求集合; (2)合理分类,按照子集所含元素的个数依次写出; (3)注意两个特殊的集合,即空集和集合本身. 2.一般地,若集合 A 中有 n 个元素,则其子集有 2n 个,真子集有 2n-1 个,非空真子集有 2n-2 个.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1. 求不等式354x -<的解集 例2.求不等式215x +>的解集 例3.求不等式32x x ->+的解集 例4.求不等式|x +2|+|x -1|>3的解集. 例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x -+->4+x (2)|x +1|<|x -2|(3)|x -1|+|2x +1|<4 (4)327x -< (5)578x +> 3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+-5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x (10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,。

当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -。

2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,。

当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a -.3、二次函数与一元二次方程:二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根。

这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <。

例1.若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求| x 1-x 2|的值; (2)求221211x x +的值;(3)x 13+x 23. 例2.函数(是常数)的图像与轴的交点个数为()A.0个 B.1个C.2个 D.1个或2个例 3.关于的方程有两个相等的实数根,则相应二次函数与轴必然相交于点,此时.例4 .抛物线与轴交于两点和,若,要使抛物线经过原点,应将它向右平移个单位.例5.关于的二次函数的图像与轴有交点,则的范围是( ) A. B.且 C. D.且 22y mx x m =+-m x x 25mx mx m ++=25y mx mx m =++-x m =2(21)6y x m x m =---x 1(0)x ,2(0)x ,121249x x x x =++x 22(81)8y mx m x m =+++x m 116m <-116m -≥0m ≠116m =-116m >-0m ≠练习1.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +;(2)x 13+x 23. 2.如图所示,函数的图像与轴只有一个交点,则交点的横坐标 .3. 已知抛物线与轴交于点,与轴交于,两点,顶点的纵坐标为,若,是方程的两根,且.(1)求,两点坐标; (2)求抛物线表达式及点坐标;4. 若二次函数,当取、()时,函数值相等,则当取时,函数值为( )A. B. C. D. 5、已知二次函数,关于的一元二次方程的两个实根是和,则这个二次函数的解析式为第三讲 一元二次不等式的解法1、定义:形如ax 2+bx +c >0(a >0)(或ax 2+bx +c <0(a >0))的不等式做关于x 的一元二次不等式。

2、一元二次不等式的一般形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)3、一元二次不等式的解集:2(2)(5)y k x k =--+-x 0x =2y ax bx c =++y C x 1(0)A x ,212(0)()B x x x <,M 4-1x 2x 222(1)70x m x m --+-=221210x x +=A B C 2y ax c =+x 1x 2x 12x x ≠x 12x x +a c +a c -c -c 212y x bx c =-++x 2102x bx c -++=1-5-4、解一元二次不等式的一般步骤:(1)将原不等式化成一般形式ax2+bx+c>0(a>0)(或ax2+bx+c<0(a>0));(2)计算Δ=b2-4ac;(3)如果Δ≥0,求方程ax2+bx+c=0(a>0)的根;若Δ<0,方程ax2+bx+c=0(a>0)没有实数根;(4)根据上表,确定已经化成一般形式的不等式的解集,即为原不等式的解集。

例1.解下列不等式:(1)4x2-4x>15;(2)-x2-2x+3>0;(3)4x2-4x+1<0例2.自变量x在什么范围取值时,函数y=-3x2+12x-12的值等于0?大于0?小于0?例3.若关于x的方程x2-(m+1)x-m=0有两个不相等的实数根,求m的取值范围。

练习1.解下列不等式:(1)4x2-4x<15;(2)-x2-2x+3<0;(3)4x2-4x+1>0(3)4x2-20x<25;(4)-3x2+5x-4>0;(5)x(1-x)>x(2x-3)+102.m是什么实数时,关于x的方程mx2-(1-m)x+m=0没有实数根?3.已知函数y =12x 2-3x -34,求使函数值大于0的x 的取值范围。

含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答. 1.二次项系数含参数a (按a 的符号分类) 例1.解关于x 的不等式:2(2)10.ax a x +++>例2.解关于x 的不等式:2560(0)ax ax a a -+>≠ 2.按判别式∆的符号分类例3.解关于x 的不等式:240.x ax ++>例4.解关于x 的不等式:22(1)410.()m x x m +-+≥为任意实数3.按方程20ax bx c ++=的根12,x x 的大小分类。

相关文档
最新文档