拉格朗日插值matlab程序

合集下载

拉格朗日插值龙格现象的matlab实现

拉格朗日插值龙格现象的matlab实现

拉格朗日插值法在实践中的应 用
在数值分析中的应用
单击此处添加标题
插值法:拉格朗日插值法是数值分析中常用的插值方法之一,具有简单易 行、计算量小等优点。
单击此处添加标题
数据拟合:拉格朗日插值法可以用于数据拟合,通过对已知数据进行插值, 得到未知数据的近似值。
单击此处添加标题
数值微积分:拉格朗日插值法在数值微积分中也有广泛应用,例如在求解 函数的导数、积分等运算时,可以利用拉格朗日插值法进行近似计算。
龙格现象
龙格现象的定义
定义:当插值多项式的阶数过高时, 插值结果可能变得不可预测或出现 剧烈振荡
解决方法:在实际应用中,应避免 使用过高的插值多项式阶数,而应 选择合适的阶数以保证插值结果的 稳定性和准确性
添加标题
添加标题
添加标题
添加标题
原因:由于高阶插值多项式对数据 点的敏感性增强,导致插值结果不 稳定
拉格朗日插值龙格现象的 Matlab实现
汇报人:XX
单击输入目录标题 拉格朗日插值法 龙格现象 拉格朗日插值法在Matlab中的实现 拉格朗日插值法的龙格现象分析 拉格朗日插值法在实践中的应用
添加章节标题
拉格朗日插值法
插值法的定义
插值法是一种数学方法,通过已知的离散数据点,构造一个多项式函数,使得该函数在 数据点处的取值等于已知的数据点值。
算法收敛性:在某些情况下,龙格现象可能导致算法收敛速度减慢,增加计算时间和计算成本。
实际应用限制:由于龙格现象的存在,某些数值方法在实际应用中可能受到限制,无法处理某些 复杂问题。
算法改进需求:为了克服龙格现象的影响,需要研究和发展新的数值方法和算法,提高数值计算 的稳定性和精度。
拉格朗日插值法在Matlab中的 实现

matlab拉格朗日插值函数代码

matlab拉格朗日插值函数代码

matlab拉格朗日插值函数代码拉格朗日插值法是一种常用的函数逼近方法,可以用来对给定的一组离散数据进行求值,使得所求函数通过这些离散数据点。

在MATLAB中,可以通过编写函数来实现拉格朗日插值。

先介绍拉格朗日插值的基本原理。

设已知离散点(x0,y0),(x1,y1),...,(xn,yn),要求通过这些点的插值项L(x)作为函数y = f(x)的近似。

插值项L(x)可以表示为:L(x) = y0 * L0(x) + y1 * L1(x) + ... + yn * Ln(x)其中,Lk(x)是基本多项式,表示为:Lk(x) = (x - x0) * (x - x1) * ... * (x - xk-1) * (x - xk+1) ... * (x - xn) / (xk - x0) * (xk - x1) * ... * (xk - xk-1) * (xk - xk+1) ... * (xk - xn)可以看到,Lk(x)的分子为关于x的n次多项式,在点x = xk处取到值1,在其余各点处取值为0。

每个Lk(x)都可以视为基于xk的插值函数,这些插值函数可以线性组合得到整个插值项L(x)。

在MATLAB中,可以编写一个基于拉格朗日插值法的函数,输入为已知的离散数据点,输出为插值函数在给定点处的值。

具体步骤如下。

1. 定义输入参数。

需要输入已知的离散数据点,以及给定的点的位置。

function result = lagrange_interpolation(data, x)其中,data为matrix型,第一列为x值,第二列为y值;x为scalar型,表示给定点的位置。

2. 计算插值项L(x)。

对于每个k,计算其相应的基本多项式Lk(x),并将所有基本多项式与相应的y值线性组合得到插值项L(x)。

n = size(data,1);L = ones(n, 1);for k=1:nfor j=1:nif j ~=kL(k) = L(k) * (x - data(j,1)) / (data(k,1) - data(j,1));endendendresult = sum(data(:,2) .* L);3. 输出结果。

matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序

matlab实现拉格朗日插值,多项式插值,邻近插值,线性插值 程序

题 7:一维函数插值算法课题内容:课题 7:一维函数插值算法课题内容:对函数||e-y x=,取[-5,5]之间步长为 1 的值*10作为粗值,以步长0.1 作为细值,编写程序实现插值算法:最邻近插值算法,线性插值算法和三次多项式函数插值算法,并对比插值效果。

课题要求:1、设计良好的人机交互 GUI 界面。

2、自己编写实现插值算法。

3、在同一个图形窗口显示对比最后的插值效果。

附录一、界面设计二、图像结果三、程序设计1、线性插值function pushbutton1_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f1=[];for x1=-5:0.1:5a=(x1-floor(x1));%请读者认真逐一带入推导if x1==floor(x1)f1=[f1,y(floor(x1)+6)];elsef1=[f1,y(floor(x1)+6)+a*(y(floor(x1)+7)-y(floor(x1)+6))]; endendm=-5:0.1:5plot(m,f1,'-r',x,y,'+')axis([-5 5 0 10])legend('liner插值','原函数');xlabel('X');ylabel('Y');title('liner插值与原函数的对比');grid2、多项式插值x0=-5:1:-3;y0=10*exp(-abs(x0));x=-5:0.1:-3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-3:1:-1;y0=10*exp(-abs(x0));x=-3:0.1:-1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=-1:1:1;y0=10*exp(-abs(x0));x=-1:0.1:1;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=1:1:3;y0=10*exp(-abs(x0));x=1:0.1:3;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');gridhold onx0=3:1:5;y0=10*exp(-abs(x0));x=3:0.1:5;n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endaxis([-5 5 0 10])plot(x,y,'m',x0,y0,'+')legend('三次多项式插值','原函数');xlabel('X');ylabel('Y');title('三次多项式插值与原函数的对比');grid3、最邻近插值function pushbutton3_Callback(hObject, eventdata, handles) x=-5:5;y=10*exp(-abs(x));f2=[];for x1=-5:0.1:5if abs(x1-floor(x1))<0.5f2=[f2,y(floor(x1)+6)];elsef2=[f2,y(floor(x1)+7)];endendm=[-5:0.1:5];f4=10*exp(-abs(m));plot(m,f2,'-r',x,y,'+')axis([-5 5 0 10])legend('nearest插值','原函数');xlabel('X');ylabel('Y');title('nearest插值与原函数的对比');grid。

拉格朗日插值和牛顿插值matlab

拉格朗日插值和牛顿插值matlab

拉格朗⽇插值和⽜顿插值matlab1. 已知函数在下列各点的值为0.20.40.60.8 1.00.980.920.810.640.38⽤插值法对数据进⾏拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值。

程序:x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];[f,f0]=Lagrange(x,y,x0)function [f,f0] = Lagrange(x,y,x0)%求已知数据点的Lagrange插值多项式f,并计算插值多项式f在数据点x0的函数值f0syms t;n = length(x);f = 0.0;for i = 1:nl = y(i);for j = 1:i-1l = l*(t-x(j))/(x(i)-x(j));end;for j = i+1:nl = l*(t-x(j))/(x(i)-x(j));end;f = f + l;simplify(f);if(i==n)f0 = subs(f,'t',x0);f = collect(f);f = vpa(f,6);endend结果:>> Untitled3f =- 0.520833*t^4 + 0.833333*t^3 - 1.10417*t^2 + 0.191667*t + 0.98f0 =[ 49/50, 60137/62500, 56377/62500, 42497/62500, 19/50, 15017/62500]⽜顿:%y为对应x的值,A为差商表,C为多项式系数,L为多项式%X为给定节点,Y为节点值,x为待求节点function[y,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);endy(t) = polyval(C,z);endL = poly2sym(C);x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];m=1;[y,A,C,L]=newton(x,y,x0,m)结果:y =0.9800 0.9622 0.9020 0.6800 0.3800 0.2403A =0.9800 0 0 0 00.9200 -0.3000 0 0 00.8100 -0.5500 -0.6250 0 00.6400 -0.8500 -0.7500 -0.2083 00.3800 -1.3000 -1.1250 -0.6250 -0.5208C =-0.5208 0.8333 -1.1042 0.1917 0.9800L =- (25*x^4)/48 + (5*x^3)/6 - (53*x^2)/48 + (23*x)/120 + 49/502. 在区间上分别取,⽤两组等距节点对Runge函数作多项式插值(Lagrange插值和Newton插值均可),要求对每个值,分别画出插值多项式和函数的曲线。

用matlab编写拉格朗日插值算法的程序

用matlab编写拉格朗日插值算法的程序

用matlab编写拉格朗日插值算法的程序10[ 标签:matlab,插值算法,程序 ]用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果x -2.15 -1.00 0.01 1.02 2.03 3.25y 17.03 7.24 1.05 2.03 17.06 23.05匿名回答:1 人气:6 解决时间:2011-05-24 19:58满意答案好评率:83%做了一个测试,希望有所帮助。

代码:% 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果% x -2.15 -1.00 0.01 1.02 2.03 3.25% y 17.03 7.24 1.05 2.03 17.06 23.05function main()clc;x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6;f = Language(x,y,x0)function f = Language(x,y,x0)%求已知数据点的拉格朗日插值多项式%已知数据点的x坐标向量: x%已知数据点的y坐标向量: y%插值点的x坐标: x0%求得的拉格朗日插值多项式或在x0处的插值: f syms t l;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return; %检错endh=sym(0);for (i=1:n)l=sym(y(i));for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));end;h=h+l;endsimplify(h);if(nargin == 3)f = subs (h,'t',x0); %计算插值点的函数值elsef=collect(h);f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end结果:f =0.0201>>如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04满意答案好评率:100%拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endSOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endMatlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。

拉格朗日插值法matlab程序

拉格朗日插值法matlab程序

拉格朗日插值法matlab程序拉格朗日插值法是一种用于构造插值多项式的方法,它可以通过已知数据点来估计函数在其他位置的值。

在数值分析和工程应用中,拉格朗日插值法被广泛使用,尤其在数据处理和曲线拟合方面。

在本文中,我将为您介绍拉格朗日插值法的原理和应用,并共享一个用于实现该方法的简单matlab程序。

让我们来了解一下拉格朗日插值法的原理。

拉格朗日插值法是通过在已知数据点上构造一个插值多项式来实现的。

假设我们有n+1个不同的数据点(x0, y0), (x1, y1), ..., (xn, yn),我们希望通过这些数据点来估计函数在其他位置的值。

拉格朗日插值多项式的一般形式为:P(x) = Σ(yi * li(x))i=0 to n其中,li(x)是拉格朗日基础多项式,它的表达式为:li(x) = Π(x - xj) / (xi - xj)j=0 to n, j ≠ i通过以上公式,我们可以得到拉格朗日插值多项式P(x),从而实现对函数在其他位置的估计。

在matlab中,我们可以通过编写一个简单的程序来实现拉格朗日插值法。

下面是一个用于计算拉格朗日插值多项式的matlab程序:```matlabfunction [L, P] = lagrange_interp(x, y, xx)n = length(x);m = length(xx);L = zeros(n, m);for i = 1:nt = ones(1, m);for j = [1:i-1, i+1:n]t = t .* (xx - x(j)) / (x(i) - x(j));endL(i,:) = t;endP = y * L;end```在上面的程序中,x和y分别表示已知数据点的横纵坐标,xx表示我们希望估计函数值的位置。

程序返回的L矩阵存储了插值多项式的系数,P向量存储了估计函数值的结果。

通过这个简单的程序,我们就可以快速实现拉格朗日插值法的计算。

MATLAB编辑n次拉格朗日函数插值法的程序

MATLAB编辑n次拉格朗日函数插值法的程序

n次拉格朗日函数插值程序:function LagrangesNs() %用于求过n点的拉格朗日n-1次插值多项式options={'Name of data file'};title='Lagranges_points';lineNo=2;def={'Lagranges.dat'};outval=inputdlg(options,title,lineNo,def);if isempty(outval)==1,return,endfilename=outval{1};data=load(filename);x=data(:,1);y=data(:,2);lagrangesN(x,y);endfunction lagrangesN(x,y)%画出已知n个点的位置plot(x,y,'*');hold on%n次拉格朗日多项式为 y=a0+a1*x+a2*x^2+…+a(n-1)*x^(n-1)%其中a0 a1 a2…a(n-1)为待求系数n=length(x);X=Vandermonde(x,1);A=X\y;%绘制插值函数图象x1=linspace(0,max(x));x2=Vandermonde(x1',n);y1=x2*A;plot(x1',y1);hold on%显示公式func=['y= ',num2str(A(1))];for i=2:n;b=['+ ',num2str(A(i)),'*x^',num2str(i-1)];func=[func,b];endtext(0.8,0.8,func);end%创建一个Vandermonde行列式function XX=Vandermonde(x,m)%创建x的列向量if m==1n=length(x);XX=zeros(n);for i=1:nXX(:,i)=x.^(i-1); endelsen=length(x);XX=zeros(n,m);for i=1:mXX(:,i)=x.^(i-1); endendend运行情况:按“run ”运行时,弹出窗口注:在Lagranges 1.dat 文件中数据为: 0 11 0.36792 0.1353点击图框中的“OK ”,在“command window ”中输出结果为:将图框中的相关数据更改为:。

2、拉格朗日插值的matlab实现

2、拉格朗日插值的matlab实现
%x0处的插值:f0
syms t;
if(length(x)==length(y))
n=length(x);
else
disp('x和y的维数不相等!');
return;
end%检错
f=0.0;
for(i=1:n)
l=y(i);
for(j=1:i-1)
l=l*(t-x(j))/(x(i)-x(j));
end;
[f,f0]=Language(x,y,1.6)%计算输出的拉格朗日插值多项式
%计算x=1.6时的插值输出值f0
运行结果
f =
-799/3125*t*(t-1)*(t-3/2)*(t-2)*(t-5/2)*(t-3)+561/500*t*(t-1/2)*(t-3/2)*(t-2)*(t-5/2)*(t-3)-133/75*t*(t-1/2)*(t-1)*(t-2)*(t-5/2)*(t-3)+3031/2500*t*(t-1/2)*(t-1)*(t-3/2)*(t-5/2)*(t-3)-399/1250*t*(t-1/2)*(t-1)*(t-3/2)*(t-2)*(t-3)+1411/112500*t*(t-1/2)*(t-1)*(t-3/2)*(t-2)*(t-5/2)
for(j=i+1:n)
l=l*(t-x(j))/(x(i)-x(j));%计算拉格朗日基函数
end;
f=f+l;%计算拉格朗日插值函数
simplify(f);%化简
end
f0=subs(f,'t',x0);%计算插值点的函数值
运行程序;
x=0:0.5:3;
y=[0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411];

matlab实现拉格朗日函数,拉格朗日插值多项式

matlab实现拉格朗日函数,拉格朗日插值多项式
请求出错错误代码503请尝试刷新页面重试
matlab实 现 拉 格 朗 日 函 数 , 拉 格 朗 日 插 值 多 项 式
%拉格朗日插值多项式 利用矩阵求解 x=1:0.2:3;%已知数据点x坐标向量:x y=sin(x);%已知数据点x坐标向量:y x1=1.1:0.2:3.1;%插值点的x坐标:x1 L=zeros(11,11);%另L矩阵为0
for i=1:11 A=ones(10,1);%另A矩阵为10行1列的矩阵 x2=x; x2(i)=[]; x2';%10行一列 B=ones(1,11);%另B矩阵为1行11列的矩阵 A*x1;%10行11列 (x2')*B;%10行11列 A*x1-(x2')*B;%11行11列 ones(10,11); x(i);%提取x的第i个元素 ones(10,11)*x(i);%10行11列的矩阵 prod(A*x1-(x2')*B);%基函数的分子 ones(10,11)*(x(i))-(x2')*B;%基函数的分母 C=prod(A*x1-(x2')*B)./prod(ones(10,11)*(x(i))-(x2')*B);%对x2进行转置%C矩阵是一个1行11列的矩阵 L(i,:)=C; %将A的第一行元素全部变为10 %将得到的矩阵赋值基函数的1,2,3。。。。11行
end L;%11行11列 y;%1行11列 y1=y*L
结.9636 0.9975 0.9917 0.9463 0.8632 0.7457
8 至 11 列
0.5985 0.4274 0.2392 0.0416

拉格朗日插值matlab程序例题

拉格朗日插值matlab程序例题

拉格朗日插值是一种常用的数据拟合方法,它可以通过已知数据点来估计出未知数据点的值。

在数学和工程领域中,拉格朗日插值经常被用来进行数据的近似和预测。

在本文中,我们将深入探讨拉格朗日插值的原理和应用,并以Matlab程序例题来展示其实际运用。

1. 拉格朗日插值的原理拉格朗日插值是利用已知数据点来构造一个多项式,通过这个多项式来拟合数据并进行预测。

它的原理基于拉格朗日多项式的概念,即通过已知的n个点来构造一个n-1次的拉格朗日多项式,利用这个多项式来估计其他点的数值。

2. 拉格朗日插值的公式假设有n个已知的数据点(x1, y1), (x2, y2), …, (xn, yn),则拉格朗日插值多项式可以表示为:L(x) = Σ(yi * li(x)), i=1 to n其中li(x)是拉格朗日基函数,定义为:li(x) = Π((x - xj) / (xi - xj)), j=1 to n, j≠i利用这个公式,我们可以得到拉格朗日插值多项式,进而进行数据的拟合和预测。

3. 拉格朗日插值的Matlab程序实现下面我们将以一个具体的例题来展示如何使用Matlab来实现拉格朗日插值。

假设有如下数据点:y = [10, 5, 8, 3, 6];我们希望利用这些数据点来构造拉格朗日插值多项式,并使用这个多项式来估计x=3.5处的数值。

我们可以编写Matlab程序来实现拉格朗日插值。

代码如下:```matlabfunction result = lagrange_interpolation(x, y, xx)n = length(x);result = 0;for i = 1:ntemp = y(i);for j = 1:nif i ~= jtemp = temp * (xx - x(j)) / (x(i) - x(j));endendresult = result + temp;endend```我们可以调用这个函数来进行插值计算:```matlaby = [10, 5, 8, 3, 6];xx = 3.5;result = lagrange_interpolation(x, y, xx)disp(result);```通过这段程序,我们可以得到x=3.5处的插值结果为6.75。

拉格朗日插值龙格现象的matlab实现

拉格朗日插值龙格现象的matlab实现

拉格朗日插值龙格现象的MATLAB 实现姓名:袁宽 学号:2 专业:电气工程题目:对于函数211)(x x f +=,55≤≤-x 进行拉格朗日插值。

10=n ,按等距节点求分段线性插值,把)(x f 和插值多项式的曲线画在同一张图上进行比较。

观察Lagrange 插值及数值积分中的分段性插值。

f.m :function f= f( x )f=1./(1+x.^2);endLagrange.mfunction y=Lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;End拉格朗日插值的曲线:x=[-5:1:5];y=1./(1+x.^2);x0=[-5:0.001:5];y0=Lagrange(x,y,x0);y1=1./(1+x0.^2);plot(x0,y0,'b')hold onplot(x0,y1,'r')使用龙格现象观察分段性插值的曲线:syms y x lx;y=1/(1+x^2);x0=-5:1:5;y0=zeros(1,length(x0));for i=1:11x=x0(i);y0(i)=eval(y);endM = -5:0.01:5;y1 = zeros(1,length(M));n = 1;for i=2:11for x=-5:0.01:5if x<x0(i) && x>=x0(i-1)lx(1)=y0(i-1)*(x-x0(i))/(x0(i-1)-x0(i));lx(2)=y0(i)*(x-x0(i-1))/(x0(i)-x0(i-1));y1(n) = lx(1)+lx(2);n = n+1;endendendezplot(y,[-5,5])hold onA =-5:0.01:5;plot(A,y1,'r');分别运行两个文件后的得到两个图形曲线:拉格朗日插值曲线分段插值曲线。

matlab计算拉格朗日牛顿及分段线性插值的程序

matlab计算拉格朗日牛顿及分段线性插值的程序

end %检错 for k=1:n-1 if (x(k)<=x0&x0<=x(k+1)) temp=x(k)-x(k+1); f=(x0-x(k+1))/temp*y(k)+(x0x(k))/(-temp)*y(k+1); end; end
return;
四.程序运行结果 1.拉格朗日插值法 >> x=[0 3 5 7 9 11 12 13 14 15]; >> y=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6]; >> xi=0.5:0.5:14.5; >> yi=lang(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -5.4272 -1.2253 1.2000 2.1765 2.2666 Columns 9 through 16 1.9894 1.7000 1.5703 1.6249 1.7995 2.0000 2.1477 2.2040 Columns 17 through 24 2.1752 2.1000 2.0269 1.9904 1.9928 2.0000 1.9537 1.8000 Columns 25 through 29 1.5272 1.2000 0.9656 1.0000 1.3480 >> plot(x,y,'b:',xi,yi) 2.牛顿插值法 >> yi=newdun(x,y,xi) yi = Columns 1 through 8 -15.4117 -15.9238 -10.9898 -1.2253 1.2000 2.1765 Columns 9 through 16 1.9894 1.7000 1.5703 1.7995 2.0000 2.1477 Columns 17 through 24 2.1752 2.1000 2.0269 1.9928 2.0000 1.9537 Columns 25 through 29 1.5272 1.2000 0.9656 1.3480 >> plot(x,y,xi,yi,'g+')

拉格朗日差值、牛顿插值以及三次样条插值的matlab实现

拉格朗日差值、牛顿插值以及三次样条插值的matlab实现

拉格朗日差值、牛顿插值以及三次样条插值的matlab实现% Lagrange插值clearclc%-----------------------------n=10; %结点个数lb=-1; %下界ub=1; %上界step=0.01; %作图点步长%-----------------------------% 原始函数图形x0=lb:step:ub;y0=1./(1+25*x0.^2);plot(x0,y0,'r-');hold on%-----------------------------% 插值函数for i=1:n+1xi(i)=lb+(ub-lb)*(i-1)/n;yi(i)=1/(1+25*xi(i)^2);end%------------------------------count=1;for x=lb:step:ubfl=0;%--------------------------%求出pn(xk)for k=1:n+1up=1;dn=1;%----------------------%求出f(xk)for i=1:n+1if k~=iup=up*(x-xi(i));dn=dn*(xi(k)-xi(i));endend%----------------------fl=fl+yi(k)*up/dn;endpn(count)=fl;%--------------------------fi(count)=1/(1+25*x^2);%求原函数的值count=count+1;end%------------------------------% L插值函数图x=lb:step:ub;plot(x,pn,'g--')%------------------------------num=(ub-lb)/step+1;for i=1:nump_f(i)=pn(i)-fi(i);endcenter=fix(num/2);scale=fix(num/10);a=center-scale;b=center+scale;disp ' pn(i)-fi(i) 的值为:'p_f(a:b) %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %%clear allclc%Newton迭代法求解极小值点%===================================== disp '几点说明:'disp '1.程序中的函数采用课本P102例3.3.2。

拉格朗日插值法matlab程序代码

拉格朗日插值法matlab程序代码

拉格朗日插值法matlab程序代码拉格朗日插值法是一种常用的数值计算方法,用于在已知数据点的情况下,求解函数在其他点上的近似值。

它的基本思想是利用已知数据点构造一个多项式函数,使得该函数在这些点上与原函数完全相同。

在Matlab中实现拉格朗日插值法的代码如下:function [y] = LagrangeInterpolation(x, y, x0)% x为已知数据点的横坐标% y为已知数据点的纵坐标% x0为需要求解近似值的横坐标n = length(x); % 数据点个数L = ones(n, 1); % 初始化L矩阵for i = 1:nfor j = 1:nif i ~= jL(i) = L(i) * (x0 - x(j)) / (x(i) - x(j)); % 计算L(i)endendendy = sum(y .* L); % 计算插值结果end以上代码实现了拉格朗日插值法的核心部分。

首先定义了一个L矩阵,用于存储每个数据点对应的L(i)系数。

接着使用两层循环计算每个L(i)系数,并将它们乘起来得到多项式中第i项对应的系数。

最后将所有项相加即可得到插值结果。

需要注意的是,该代码只适用于已知数据点的横坐标互不相同的情况。

如果存在相同的横坐标,则需要对代码进行一定的修改。

在使用该代码时,可以先将已知数据点的横纵坐标存储在两个数组中,然后调用函数计算需要求解近似值的横坐标对应的插值结果即可。

例如:x = [1, 2, 3, 4];y = [1, 4, 9, 16];x0 = 2.5;y0 = LagrangeInterpolation(x, y, x0);以上代码将计算出在x=2.5处对应的近似值y0=6.25。

MATLAB编辑n次拉格朗日函数插值法的程序

MATLAB编辑n次拉格朗日函数插值法的程序

n次拉格朗日函数插值程序:function LagrangesNs() %用于求过n点的拉格朗日n-1次插值多项式options={'Name of data file'};title='Lagranges_points';lineNo=2;def={'Lagranges.dat'};outval=inputdlg(options,title,lineNo,def);if isempty(outval)==1,return,endfilename=outval{1};data=load(filename);x=data(:,1);y=data(:,2);lagrangesN(x,y);endfunction lagrangesN(x,y)%画出已知n个点的位置plot(x,y,'*');hold on%n次拉格朗日多项式为 y=a0+a1*x+a2*x^2+…+a(n-1)*x^(n-1)%其中a0 a1 a2…a(n-1)为待求系数n=length(x);X=Vandermonde(x,1);A=X\y;%绘制插值函数图象x1=linspace(0,max(x));x2=Vandermonde(x1',n);y1=x2*A;plot(x1',y1);hold on%显示公式func=['y= ',num2str(A(1))];for i=2:n;b=['+ ',num2str(A(i)),'*x^',num2str(i-1)];func=[func,b];endtext(0.8,0.8,func);end%创建一个Vandermonde行列式function XX=Vandermonde(x,m)%创建x的列向量if m==1n=length(x);XX=zeros(n);for i=1:nXX(:,i)=x.^(i-1); endelsen=length(x);XX=zeros(n,m);for i=1:mXX(:,i)=x.^(i-1); endendend运行情况:按“run”运行时,弹出窗口注:在Lagranges 1.dat 文件中数据为:0 11 0.36792 0.1353点击图框中的“OK ”,在“command window ”中输出结果为:将图框中的相关数据更改为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档