比例线段及性质

合集下载

比例线段及有关定理

比例线段及有关定理

射影定理
总结词
射影定理是指在直角三角形中,斜边的平方等于两直角边的平方和减去两直角边的乘积。
详细描述
射影定理是几何学中的一个重要定理,它描述了直角三角形中斜边与两直角边之间的关系。具体来说 ,在直角三角形中,斜边的平方等于两直角边的平方和减去两直角边的乘积。这个定理在解决实际问 题中具有广泛的应用,如测量、建筑等领域。
03
比例线段的计算方法
利用平行线分线段成比例定理计算平行线分线段成比例定理如果一组平行线被一组横截线所截,那么这些截线段之比是相等的。
应用
通过已知的比例线段,利用平行线分线段成比例定理,可以计算出其他相关的 比例线段长度。
利用相似三角形的性质和判定定理计算
相似三角形的性质
两个三角形对应角相等, 则这两个三角形相似。相 似三角形对应边之比为相 似比。
成比例的线段具有传递性,即如果a:b:c:d且b:c:d:e,则必有 a:b:c:e。
比例线段的性质
01
02
03
比例线段的性质
如果线段a、b、c、d成比 例,那么它们的长度之比 是常数,即|a/b|=|c/d|。
比例线段的性质
如果线段a、b、c、d成比 例,那么它们的面积之比 是常数的平方,即 |a×d/b×c|=1。
判定定理
如果两个三角形两组对应 角相等,则这两个三角形 相似。
应用
通过已知的比例线段,利 用相似三角形的性质和判 定定理,可以计算出其他 相关的比例线段长度。
利用射影定理计算
射影定理
在直角三角形中,斜边上的高将直角三角形分为两个小三角形,这两个小三角形 是相似的,且它们的边长之比等于原三角形的边长之比。
利用面积关系计算线段长度
通过已知的线段和面积比例关系,可以计算出未知线段的长度。

线段的比与比例线段的概念

线段的比与比例线段的概念

线段的比与比例线段的概念、比例的性质和黄金分割I 梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分 线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1. 线段的比的定义 在同一单位长度下,两条线段2. 比例线段的定义在四条线段中,如果其中两条线段的_______________________________________ 等于另外两条线段的 _____ ,那么这四条线段叫做 成比例线段,简称 ____________ .在 a : b = c : d 中,a 、d 叫做比例的 ___ , b 、c 叫做比例 的 _____ ,称d 为a 、b 、c 的 _____________ .3. 比例的性质(1)比例的基本性质:如果a : b = c : d ,那么 则b 叫a , c 的比例中项.⑵合份)比性质:若a⑶等比性质:若一b4.黄金分割(1) 黄金分割的意义:如图,点 那么称线段 AB 被点C 黄金分割.其中点C 叫做线段AB 的 做 .(2) 黄金分割的作法【例题讲解】 例1.(1)已知1,厉,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 ___________ .⑵在比例尺为1: n 的某市地图上,规划出一块长 5cm X 2cm 的矩形工业区,则该工业区的实际面积是平方米.例 2.(1)已知 X : y : z = 3 : 4 : 5,①求-—y的值;②若 x +y + z = 6, za(2)已知a 、b 、c 、d 是非零实数,且 --------b c d的值•的比叫做这两条线段的比•特别地,若a : b = b : C,即 ,则C 把线段AB 分成两条线段 AC 和BC,如果 __________________ , ,AC 与AB 的比叫求 X 、y 、z.C bad一d一k ,求 ka b c求x 的值.黄金分割点吗为什么【同步测试】 一、选择题1. 已知一矩形的长 a = 1.35m , (A)9 : 400(B)9 : 402. 下列线段能成比例线段的是( b = 60cm ,贝U a : b 的值为((C)9 : 4(D)90 : 4)(A)1cm,2cm,3cm,4cm (B)1cm, 72 cm,V 2 cm,2cm (C b/2 cm,亦cm, J 3 cm,1cm(D)2cm,5cm,3cm,4cm3. 如果线段a = 4, (A)84. 已知- b 3 (A)- 25. 已知 (A)— 2(B)16 2 2,则3 4 (B)4 y : z = 1 (B)2b = 16,c = 8, (C)24 「 的值为b5 (C)5 :2 : 3,且 (C)3 那么a 、b 、c 的第四比例项d 为( (D)32 3 (D)- 5 2x + y — 3z =— 15,贝U x 的值为( (D)— 3 6. 在比例尺为1 : 38000的南京交通游览图上,玄武湖隧道长约为 7cm ,它的实际长度约为()(A)0.226km (B)2.66km (C)26.6km (D)266km 7. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是 影长是1米,旗杆的影长是 8米,则旗杆的高度是( ) (A)12 米 8. 已知点 1.5 米, (B)11 米 (C)10 米 C 是AB 的黄金分割点(AC >BC , (B)(6 — 2也)cm (D)9 米 若AB = 4cm ,贝U AC 的长为( (C)詰—1)cm AD AE (A)(2A /5 — 2)cm )(D)(3 —75 )cm 9.若D 、E 分别是△ ABC 的边AB 、AC 上的点,且AB =疋,那么下列各式中正确的是 ((3)若a 、b 、c 是非零实数,并满足ab c ,且 xa(a b)(b c)(c a)abc例3.(1 )已知线段AB = a ,在线段 AB 上有一点C,若则点 C 是线段AB 的(A)AD DEDB = BCAB(B)A DAE=A CDB AB(C)Ec = ACAD AE(D)DB = AC10.若k丄空 b 2c a + b+ CM0,k的值为((A)—1 (B)2 (C)1 (D) —二、填空题11.在(5 +x):2中的x= (5—x) : x 中的x=12.若10 813.若a : 3 = b : 4 = c : 5 ,且a + b —c= 6,贝U a=,b= c=14.已知x : y :z= 4 : 5 ,且x+ y+ z= 12,那么x= ,y=z=15.若b16.已知ace,②(x + y) : (y + z)17.若x 2y18.图纸上画出的某个零件的长是是32 mm,如果比例尺是 1 : 20,这个零件的实际长19.如图,已知AB : DB = AC:EC, AD = 15 cm , AB = 40 cm , AC = 28 cm ,贝U AEA20.已知,线段 2 cm, c (2 73) cm, 则线段a、c的比例中项b是三、解答题21.已知x3 0,求下列各式的值:(1)2x 3y 4z⑵5x 3y za22.已知——x0,求x+y+ z 的值.23.若△ ABC 的三内角之比为 1 : 2 : 3,求^ ABC 的三边之比.24.已知 a 、b 、c 为^ ABC 的三边,且 a + b + c = 60cm , a : b : c = 3 : 4 : 5,求^ ABC 的面 积.25.已知线段AB = 10cm , C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考DE = 12 , BC = 15, GH = 4,求 AH .ABCD,取 AB 的中点 P ,连结 PD ,在BA 的延 长线上取点F ,使PF =PD,以AF 为边作正方形 AMEF ,点M 在AD 上(1)求AM 、MD 的长;1、若一c-a bA . 12B . 1C .— 1则k 的值为()D .-或一12AGABC 中,2、如图,△ 匹,且。

比例线段及其应用

比例线段及其应用

比例线段及其应用比例线段是数学中重要的概念,它在几何图形的构造和测量中有广泛的应用。

本文将详细介绍比例线段的定义、性质以及它在实际问题中的应用。

一、比例线段的定义和性质比例线段是指两个线段的比值等于另外两个线段的比值。

设有线段AB和CD,若有AB/CD = EF/GH,其中EF和GH是对应的线段,则称AB和CD为比例线段。

比例线段有以下重要性质:1. 若等式AB/CD = EF/GH成立,则有AB/CD = (EF+GH)/(GH+EF)。

2. 若等式AB/CD = EF/GH成立,则有AB/EF = CD/GH。

二、比例线段的应用举例1. 海报制作在海报制作中,比例线段用于确定原图与放大或缩小后图形之间的比例关系。

例如,如果要将一幅长宽比为3:2的原始海报缩小为A4尺寸,首先需要计算出原始海报与A4尺寸之间的比例关系,然后按比例缩小图片。

2. 地图测量在地图测量中,比例线段用于确定地图上的距离与实际距离之间的比例关系。

通过在地图上测量两个地点的实际距离,并计算出对应的地图上线段的长度,可以得到地图上的比例尺,从而在实际使用中准确测量距离。

3. 建筑设计在建筑设计中,比例线段用于确定建筑物的尺寸和比例关系。

比例线段可以帮助建筑师在设计初期对建筑物进行草图设计,并确认各个部分的比例关系,保证整体设计的协调性。

4. 经济分析在经济分析中,比例线段可以用于计算不同产品或指标之间的比例关系。

例如,通过计算消费者支出与收入之间的比例,可以分析出不同收入阶层的消费结构和消费倾向,为市场营销和财务规划提供依据。

5. 统计调查在统计调查中,比例线段可以用于测量样本数据与总体数据之间的比例关系。

通过在样本中抽取一定数量的数据,并计算出对应的总体数据,可以推断出总体的特征和趋势,从而进行全面的统计分析。

三、总结比例线段是数学中重要的概念,它在几何图形的构造和测量、经济分析、地图测量以及统计调查等领域有广泛的应用。

正确理解和应用比例线段可以帮助我们解决实际问题,提高数学应用能力和实践能力。

初中数学相似三角形基础知识精讲--比例线段

初中数学相似三角形基础知识精讲--比例线段

A
E
F
B
D
C
作业
姓名: 作业等级: . 1.美是一种感觉,当人体下半身长与身高的比值越接近 0.618 时,越给人一种美感.如图,某女士 身高 165cm,下半身长 x 与身高 l 的比值是 0.60,为尽可能达到好的效果,她应穿 的高跟鞋的高度大约为( ) A.4cm B.6cm C.8cm D.10cm
3.在△ABC 中,AB=12,AC=10,BC=9,AD 是 BC 边上的高.将△ABC 按如图所示的方式折叠, 使点 A 与点 D 重合,折痕为 EF,则△DEF 的周长为( ) A.9.5 B.10.5 C.11 D.15.5
10.在△ABC 中,D 是 BC 上一点,若 AB=15 cm,AC=10 cm,且 BD∶DC=AB∶AC, BD-DC=2cm,求 BC.
◆----平行线分线段成比例定理 质定理(推论):平行于三角形一边的直线截其他两边(或两边的 延长线) ,所得的对应线段成比例。 2、三角形一边的平行线的判定定理 1:如果一条直线截三角形的两边(或两边的延长线)所 得的对应线段成比例,那么这条直线平行于三角形的第三边。 3、三角形一边的平行线的性质定理 2:平行于三角形的一边,并且和其他两边(或两边的延 长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 例 、 如 图 5, 在 △ABC 中 , D 是 BC 上 的 点 , E 是 AC 上 的 点 , AD 与 BE 交 于 点 F, 若 AE:EC=3:4, BD:DC=2:3,求 BF:EF 的值。
1 2
a b c ,则 x 的值一定是( bc ac ab 1 3 B、-1 C、 或-1 D、 2 2

2.已知一次函数 y kx 1 中,比例系数 k 满足 k 试求直线 y kx 1 与 x 轴的交点坐标.

比例线段及比例的基本性质

比例线段及比例的基本性质

[文件] sxc2jja0001.doc[科目] 数学[年级] 初二[章节][关键词] 比例线段/比例的基本性质[标题] 比例线段及比例的基本性质[内容]教学目标1.理解比例线段的概念,能说出比例关系式中比例的内项、外项、第四比例项或比例中项.2.掌握比例的基本性质,初步会用它进行简单的比例变形,并会判断四条线段是否成比例.3.培养学生将比例式看成是关于末知数的方程的观点,利用方程思想来解决问题. 教学重点和难点重点是比例线段的概念及基本性质的应用;难点是应用比例的基本性质进行比例变形. 教学过程设计一、复习四个数成比例的有关知识1.四个数a ,b ,c ,d 成比例的定义,比例的项、内项及外项的含义.2.比例的基本性质的内容.二、类比联想、定义比例线段的有关概念1.复习两条线段的比的有关知识.投影:如图5-4,矩形ABCD 与矩形A 'B 'C 'D '中,AB=50,CD=25,A 'B '=20,C 'D '=10.求出''''C B B A BC AB 及的值,并回答它们的大小关系. 答:12''''==C B B A BC AB 由此引出比例线段的概念. 2.用类比的方法学习比例线段的概念.(1)比例线段的概念.在四条线段中,如果其中两条线段比等于另外两条线段比,那么这两条线段叫做成比例线段,简称比例线段.(2)比例线段的符号表示及有关名称.① 四条线段 a ,b ,c ,d 成比例,记作a :b=c :d .组成比例的项是a ,b ,cd ,其中比例外项为a ,b ,比例内项为b ,c ,d 称为a ,b ,c 的第四比例项.② 特殊情况:若作为比例内项的两条线段相同,即a :b=c :d .则线段b 叫a ,c 的比例中项.③ (3)教师应强调四条线段才能成比例,而且有顺序关系.如图5-4中,''''BA CB BC AB ≠,即AB ,BC ,B 'C ',A 'B '四条线段不成线段,而AB ,BC ,A 'B ' ,B 'C '四条线段成比例.三、比例的基本性质的证明及应用教师应指出,将四条线段成比例转化成四条线段的长度成比例,它具有数的成比例的所有性质,本节先学习比例的基本性质对于线段的应用.1.比例的基本性质的内容及推导.(1) 内容:bc ad dc b a =<=>= (2) 特例:ac b c b b a =<=>=2 (3) 说明:①引导学生根据等式的性质从正、反两方面进行证明.②教师强调,它的作用是将等积式与比例式互化,由于线段的长度都是正数,因此由一个等积式可得到八种比例式.2.比例基本性质的应用.应用(1) 判断四条线段是否成比例:将已知四条线段按大小顺序排列,如a >b >c >d ,若最长(a )和最短(d )的两条线段长之积等于其余两条线段长(b,c )之积,则这四条线段a ,b ,c ,d 成比例.例1 判断下列四条线段是否成比例.① a=2,b=5,c=15,d=32;② a=2,b=3, c=2,d=3;③ a=4,b=6, c=5,d=10;④ a=12,b=8, c=15,d=10.说明:教师示范一个例子,其余请学生来巩固练习.如第①题排序时,将a 改写成4,d 改写成12ab <b <d <c ,而ac =4×15;bd=5×12,ad=bd ,a ,b ,c ,d 四条线段成比例.答案:②不成比例;③不成比例;④b ,d ,a ,c 四条线段成比例.应用(2)按要求将等积式改写成比例式.教给学生等积式化比例式的方法.按照分类讨论的思想以及“内项积等于外项积”,同时可写出8个比例式,也可根据需要写出其中某一个比例式,要求学生熟练掌握这种比例变形. 例2已知:ad=bc .(1) 将其改写成比例式;(2) 写出所有以a ,d 为内项的比例式;(3) 写出使b 作为第四项比例项的比例式;(4)若db c a =;写出以c 作第四比例项的比例式; 分析:教给学生等积式化比例式的方法.(1)分类讨论.认准等积式中的一条线段,它可以在比例的内项、外项共四个位置出现,以a 为例: ()()()()()()()()()()()()a a a a ====,,, (2)找出与a 作乘积的项d ,放在相应位置上 . ()()()()()()()()ad a d d a d a====,,, (3)写出其余两项,分别有两种情况,同时交换比例的内项或外项,共可得到八个比例式: ①()()d c b a =②()()d b c a = ③()()c d a b = ④()()b d a c = ⑤()()c d a b = ⑥()()b d ac = ⑦()()a c b d = ⑧()()ab c d = 解(1)见分析(3)(2)(4)可以先将比例式化为等积式ab=bc ,转化为第(3)题再处理,也可以这样处理:①直接同时交换每个比的前项和后项,②交换比例的内项或外项.应用(3)检查所作的比例变形是否正确,把比例式化为等积式,看与原式所得的等积式是否 桢即可. 如将d c b a =变形为bc d a =,由于各自可化为等积式ad=bc ,ad=cd ,它们不相等,因此所作的比例变形不正确.四、应用举例、变式练习例3 计算.(1)已知:x ∶y=5∶4,y ∶z=3∶7.求x ∶y ∶z.(2)已知:a ,b ,c 为三角形三边长,(a-c) ∶(c+b) ∶(c-d)=2∶7∶(-1),周长为24.求三边长.分析:将比例式转化为方程(或方程组)来解决问题.第(1)题可将已知分别看成含同一字母y 的方程,表示出x=45y ,z=37y ,得x ∶y ∶z=45∶1∶37=15∶12∶28.或利用分数的基本性质,将两个比例式中y 的对应项系数化成它们的最小公倍数,如x ∶y=5∶4=15∶12,y ∶z=3∶7=12∶28,得出x ∶y ∶z=15∶12∶28. 第(2)小题可将比例式改为两个等积式,结合周长得到关于a ,b ,c 的三元一次方程组;例4 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为1.5m 的测竿的影长为2.5m ,那么,古塔的高是多么米?分析:(1)利用比例的知识测量不可直接到达的物体的高度,是比例的很重要的一个应用;(2)“相同时刻的物高与影长成比例”的实际含义是指同一时刻,两物体的高与它们对应的影长的比相等;(3)列出比例式,得到关于古塔高度的方程求解(古塔高为30m).例5(选用)已知:如图5-5,EFBE AD AB =,AB=10cm ,AD=2cm ,BC=7.2cm ,E 为BC 中点.求EF,BF的长.(答:0.72cm,2.88cm)分析:应着重培养学生的分析能力,分析图中哪些线段可知长度,并列出关于一个末知数的方程来解决问题.练习课本第204页第1,2题.补充练习如图5-6,AG·BC=DE·AH.(1) 写出由以上等积式得到的八个比例式;(2)若DE=12,BC=15,GH=3.求AH的长.(15)五、师生共同小结在学生尝试总结的基础上,教师强调:1.比例线段的有关概念和注意事项.2.比例的基本性质的内容.它是怎样证明的?有哪些应用?应用时有哪些需要注意的问题?3.将比例式看成方程解决问题的观点.六、作业课本第207页第4题,第203页第1,2,3题.1.成比例线段的顺序性课本虽然强调了,但学生体会不深,需要教师课堂举例让学生理解透彻,而且如何判断四条线段成比例,最好教给学生切实可行的措施.2.比例的基本性质是后边证明三角形相似以及证明等积式、比例式经常用到的基础知识,教师应教给学生如何熟练利用性质进行比例变形,如何检查变形是否正确.例如根据需要化乘积式为比例式的方法,使学生能逐渐熟练巩固这些性质,为后边“相似三角形”的学习扫清障碍,打好基础.。

九年级成比例线段知识点

九年级成比例线段知识点

九年级成比例线段知识点成比例线段在九年级的数学课程中占据了重要的地位。

本文将对九年级学生需要掌握的成比例线段的相关知识点进行介绍和解析。

一、成比例线段的定义成比例线段指的是在同一直线上的两个线段,它们的长度比相等。

即若线段AB与线段CD成比例,记作AB∶CD,那么有AB/CD=常数k。

二、成比例线段的特性1. 定比分点性质:若在线段AB上有一点M,使得AM/MB=k,则称M为AB的一个定比分点。

定比分点的特性是,若M是AB的定比分点,则AM/MB=k或MB/AM=1/k。

2. 分段问题:设线段AB上有一点E,使得AE为AB的α部分(即AE/AB=α),则BE为AB的β部分(即BE/AB=β)。

若已知α和β,求线段AE和BE的具体长度时,可以使用分段比例定理:AE/BE=α/β。

3. 三点共线问题:若已知A、B、C三点共线,且AB∶BC=k,那么可以得出结论,点A、B、C是成比例线段。

三、成比例线段的性质和定理1. 外分比例定理:在线段AB的延长线上取一点C,使得AC为AB的α倍,BC为AB的β倍,则有AC/BC=α/β。

2. 内分比例定理:在线段AB上取一点C,使得AC为AB的α倍,BC为AB的β倍,那么有AC/BC=α/β。

3. 同位角定理:若两条平行线被一条交叉线所切分,那么所得的各对共线点所构成的线段成比例。

四、成比例线段的应用成比例线段在实际问题中具有广泛的应用。

以下举例说明:例1:已知在一条长为10cm的铁丝上,从一端开始分别距离1cm和9cm的两个固定点,现在要找到距离这两个固定点等距离的一个点M,该点在铁丝上的位置离起点较近。

求点M在铁丝上的位置。

解:设点M在铁丝上的位置离离起点距离为x cm,则根据定比分点的特性可知,x/9=(10-x)/1,解得x=0.9cm。

所以点M在铁丝上的位置离起点0.9cm处。

例2:已知线段AB和线段CD成比例,且AB=6cm,CD=15cm,在线段AB上取一点E,使得AE/EB=1/3,求线段CE 的长度。

比例的基本性质、平行线分线段成比例

比例的基本性质、平行线分线段成比例

精心整理数学辅导11: 比例的基本性质一、知识点:1. 成比例线段:线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dc b a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 2.(1d 都不为(2(3(4(5.(1,则yx(2 已知572c b a ==,则a cb a -+=______________.已知75==d c b a ,那么db ca 3232--=_____________.(3)在△ABC 与△DEF 中,若43===FD CA EF BC DE AB ,且△ABC 的周长为36cm ,则△DEF 的周长为______.(4)已知543cb a ==,且6=-+c b a ,则a =__________. (5)如果d c b a =(0≠+b a ,0≠+d c ),那么cd ca b a +=+成立吗?请说明理由. (6)已知a ,b ,c ,d 是成比例线段,其中cm a 3=,cm b 2=,cm c 6=,则线段d =___________.(7)已知2:4:3::=c b a ,且182=-+c b a ,求c b a 23+-的值. 练习12. ∶c =d 3. 4 A 5 A 、511=+y y x B 、51=-y y x C 、6=-y x x D 、5=-x y y6.若2:1:::===d c c b b a ,则=d a :( )A 、1:2B 、1:4C 、1:6D 、1:87.若3:2:1::=c b a ,则c b a cb a +---的值为( )A 、-2B 、2C 、3D 、-38.已知875c b a ==,且20=++c b a ,则=-+c b a 2( ) A 、11 B 、12 C 、314D 、99.若4:3:2::=c b a ,且5=-+c b a ,则b a -的值是( )A10.11.12.m ,1314151617.18. 如果线段a ,b ,c 的长度之和是32cm ,且457ac c b b a +=+=+,那么这三条线段能否围成一个三角形?数学辅导12: 平行线分线段成比例一、知识点:如图1,∵L 1∥L 2∥L 3,∴EF DE BC AB =; 如图2,∵L 1∥L 2∥L 3,∴EFDEBC AB =.。

比例线段解题方法解题技巧经典例题与练习题

比例线段解题方法解题技巧经典例题与练习题

比 例 线 段◆比例线段1.相似形:在数学上,具有相同形状的图形称为相似形2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段3. 比例的项:已知四条线段a 、b 、c 、d ,如果a ∶b =c ∶d ,那么a 、b 、c 、d 叫做组成比例的项,线段a 、d 叫做比例的外项,线段b 、c 叫做比例的内项,线段d 叫做a 、b 、c 的第四比例项;比例中项:如果比例内项是两条相同的线段a ∶b =b ∶c ,即,那么线段b 叫做线段a 和c 的比例中项。

4. 比例的性质(1)基本性质:bc ad dc b a =⇔=, a ∶b =b ∶c ⇔b 2=ac 例1:6∶x = (5 +x )∶2 中的x = ;2∶3 = ( 5x -)∶x 中的x = 例2:若,则=________(2)合、分比性质:dd c b b a d c b a d d c b b a d c b a -=-⇒=+=+⇒=或 注意:此性质是分子加(减)分母比分母,不变的是分母.想想是否可以拓展呢?即分母加(减)分子,不变的是分子例1:若43=-b b a ,则ba =_________ 例2:如果,则=________(3)等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则ba n f db m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 例1:若9810z y x ==, 则 ______=+++z y z y x 例2:已知:,则=________;如果,那么=________例3:若a b+c =b c+a =c a+b=k ,求k 的值.(4)比例中项:若c a b c a b cb b a ,,2是则即⋅==的比例中项. 例1:已知:线段,若线段b 是线段a,c 的比例中项,则c =________例2: 2:)3(-a = )3(-a :8,则a =【练一练】1、 若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , ___________,____,===c b a ;2、 已知x ∶y ∶z = 3∶4∶5 , 且12=++z y x , 那么_________,____,===z y x ;3、已知dc b a ==f e =2 (b +d +f ≠0),求:(1)f d be c a ++++;(2)f d b e c a +-+-; (3)f d b ec a 3232+-+-;(4)f b ea 55--.4、 已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② )(y x +∶____)(=+z y ;5、 若322=-y y x , 则_____=yx ; 6、若345x y z ==,则x y z z ++= .若x:y:z=2:3:4,则=+-+y x z y x 232 .7、如果 ,则 ,。

比例性质及比例线段

比例性质及比例线段

比例性质及比例线段(初二4.16)一、知识点与方法概述:1、比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.2、(成)比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.3、黄金分割:如图,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.注意:1、AC 0.618AB;2、0.618叫做黄金比;3、一条线段有两个黄金分割点.4、平行线分线段成比例定理:三条平行线截两条直线,所得的线段对应成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(三角形一边平行线的性质)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(三角形一边平行线的判定定理)5、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况(如图1-图5):推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.已知:在梯形ACFD 中,CF AD //,AB=BC求证:DE=EF推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.已知:在△ACF 中,CF BE //,AB=BC 求证:AE=EF6、三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。

初三数学--线段的比和比例线段

初三数学--线段的比和比例线段

初三数学 线段的比和比例线段一、线段的比:1.在同一单位长度下,两条线段的倍数关系叫做这两条线段的比。

即两条线段的长度的比。

如:线段a 与b 的比,记作b a (或a :b ),若b a =31,则说明a 是b 的31,b 是a 的3倍。

2.n 1=实际距离图上距离,我们称为比例尺,进行有关比例尺的计算时,要注意统一单位。

[练习]1.已知一矩形的长a=1.35m ,宽b=60cm ,则a ∶b 的值为2.图纸上画出的某个零件的长是32mm ,如果比例尺是 1∶20,这个零件的实际长是 .a ,b 的长度分别为8㎝,32㎝,则a ∶b = 。

4.如图,点C 是AB 的中点,点D 在BC 上,AB=24,BD=5, (1)AC ∶CB = ;AC ∶AB = ;(2)_____=BD BC ;_____=AB CD ;_____=CD AD。

5..如图延长线段AB 到C ,使BC=4,若AB=8,则线段AC•:BC=6.延长线段AB 到C ,使BC=2AB ,则AC :AB 为( ) A .1:2 B .2:1 C .1:3 D .3:17.等边三角形的一边与这边上的高的比是( ) A.3∶2 B. 3∶1 C. 2∶3 D. 1∶3,等边三角形的一边与这一边的高的比是△ABC 中,D 是BC 上一点,若AB =15 cm ,AC =10 cm ,且BD ∶DC =AB ∶AC ,BD -DC =2 cm ,则BC= . 10.如图所示,已知直角三角形的两条直角边的长的比为a ∶b =1∶2,其斜边长为45cm , 那么这个三角形的面积是( )cm 2.A. 32B. 16C. 8D. 411.已知A 、B 两地相距300km ,在地图上量得两地相距15cm ,则图上距离与实际距离之比为 .∶30000的地图上,如果两点的图上距离为5厘米,那么两点的实际距离为 千米.在一张地图上,甲、乙两地的图上距离是3cm,而两地的实际距离为1500m ,那么这张地图的比例尺为________.13.已知在同一时刻物高与影长成比例.12时整,1.5m 的标杆在地上的影子长3m ,•现在量得一建筑物的影长20m ,则该建筑物有多高? 二、比例线段AD CBb a的值叫做线段b a ,的比,若d c b a =,则称线段d c b a ,,,成比例线段。

线段的长度与比例关系

线段的长度与比例关系

线段的长度与比例关系在数学中,线段是由两个点确定的有限长的直线部分。

线段的长度是指这个直线部分的实际长度,而线段的比例关系则是指两个线段之间的长度比值。

在本文中,我们将探讨线段的长度与比例关系,并介绍一些相关的数学定理和概念。

一、线段的长度线段的长度是指由两个端点确定的直线部分的实际长度。

通常用字母l表示线段的长度。

对于平面上的线段,我们可以使用勾股定理来计算其长度。

假设线段的两个端点分别为A(x1, y1)和B(x2, y2),那么线段AB的长度l可以通过以下公式计算得出:l = √[(x2 - x1)² + (y2 - y1)²]例如,如果线段的两个端点为A(1, 2)和B(4, 6),则线段AB的长度为l = √[(4 - 1)² + (6 - 2)²] = √[3² + 4²] = √[9 + 16] = √25 = 5。

二、线段的比例关系线段的比例关系指的是两个线段之间的长度比值。

假设有两个线段AB和CD,其长度分别为l1和l2。

那么线段AB与线段CD的比例关系可以表示为l1:l2或者l1/l2。

在数学中,线段比例关系有如下三种情况:1. 线段比例关系为1:1,表示两个线段的长度相等。

例如,如果线段AB的长度为6,线段CD的长度也为6,则可以表示为AB:CD = 1:1。

2. 线段比例关系为1:n,表示其中一个线段的长度是另一个线段长度的n倍。

例如,如果线段AB的长度为4,线段CD的长度为8,则可以表示为AB:CD = 1:2。

3. 线段比例关系为m:n,表示两个线段的长度不成比例。

例如,如果线段AB的长度为3,线段CD的长度为5,则可以表示为AB:CD = 3:5。

根据线段的比例关系,我们可以推导出一些有关线段长度的性质和定理。

三、线段长度与比例关系的定理和性质1. 线段等分定理:当一个直线段由某个点O等分为两段时,各段的长度之比等于它们所对应的线段在直线上的投影的长度之比。

24.1比例线段及比例的基本性质

24.1比例线段及比例的基本性质
比例线段
两条线段的比是它们的长度的比, 也就是两个数的比. 关于成比例的数具有下面的性质.
比例式是等式, 因而具有等式的各个性质, 此外还有一些特殊性质:
(1)比例的基本性质
如果 a:b =c:d ,那么ad =bc.
比因为例a的:内b=c项:d乘,积即等于ab =外dc项, 乘积.
两边同乘以 bd,得 ad=bc; 上述性质反过来也对,就是
BE CF EA = FA

E
F
那么
AE AB =
AF AC

B
C
理由:
BE CF
EA = FA
AE+BE AE
=
AF+CF AF
AB AC AE = AF
AE AF AB = AC .
练习3—5:
如图,已知
BE AB
=
CF AC

那么
AE AB =
AF AC

E
理由:
B
A F C
BE CF
=
a b
.
练习3—5:
A
如图,已知
BE AB
=
CF AC

那么
AE AB =
AF AC

E
F
理由:
B
C
BE CF
AB = AC
AC CF AB = BE
AC AB
=
–CF –BE
AB–BE≠0
AC–CF AB–BE
=
AC AB
AF AC AE = AB
AF AE AC = AB
AC BC =
DF EF

自学初中数学资料 比例线段、相似的性质

自学初中数学资料 比例线段、相似的性质

自学资料一、比例线段【知识探索】1.比例线段的基本性质:(1)如果,那么.(2)比例线段的比例式中,只要乘积形式不变,、、、的位置可以灵活变化.若,则、、、、、、.【注意】(1)对于实数、、、,如果成立,则不一定成立;如果,则一定成立.(2)对于线段长度、、、,如果成立,则一定成立;如果,则也一定成立.第1页共24页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第3页 共页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项.求线段c的长.【答案】解:(1)∵a、b、c、d是成比例线段,∴a:b=c:d,∵a=3cm,b=2cm,c=6cm,∴d=4cm;(2)∵线段c是线段a和b的比例中项,a=4cm,b=9cm,∴c2=ab=36,解得:c=±6,又∵线段是正数,∴c=6cm.4.已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比.(2)如果线段a、b、c、d成比例,求线段d的长.(3)b是a和c的比例中项吗?为什么?【答案】解:(1)∵a=0.3m=30cm;b=60cm,∴a:b=30:60=1:2;(2)∵线段a、b、c、d是成比例线段,∴ab =c d,∵c=12dm=120cm,∴12=120d,∴d=240cm;(3)是,理由:∵b2=3600,ac=30×120=3600,∴b2=ac,∴b是a和c的比例中项.二、黄金分割【知识探索】1.与的比值称为黄金分割数,简称黄金数.第4页共24页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第5页 共24页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【说明】黄金分割数是一个无理数,在应用时常取它的近似值.【注意】 (1)不是黄金分割数; (2).(3)称为黄金分割数或简称黄金数;它的倒数称为黄金比.【错题精练】例1.已知如图,点C 是线段AB 的黄金分割点(AC >BC ),AB=2,则AC 的长为( ) A. √5−1 B. √5+1C. √5−2D. 3−√5【解答】解:∵C 为线段AB=5的黄金分割点,且AC >BC ,AC 为较长线段, ∴AC=√5−12×2=√5−1,故选:A .【答案】A例2.把1米的线段进行黄金分割,则分成的较短的线段长为( ) A. 3−√52 B. √5−12 C.1+√52D.3+√52【解答】解:较短的线段长=1×(1-√5−12)=3−√52; 故选:A .【答案】A例3.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉.如果某女士身高为1.65 m ,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为( ) A. 2.5 cm B. 5.3 cm C. 7.8 cm D. 8.5 cm【解答】解:根据已知条件得下半身长是165×0.6=99cm ,第6页 共24页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训设选的高跟鞋的高度是xcm ,则根据黄金分割的定义得:99+x165+x =0.618, 解得:x≈7.8cm . 故选:C .【答案】C例4.如果C 是线段AB 一点,并且AC >CB ,AB =1,那么AC 的长度为( )时,点C 是线段AB 的黄金分割点. A. 0.618; B. 1−√52; C.√5−12; D.3−√52.【答案】C例5.实数a,n,m,b 满足a <n <m <b ,这四个数在数轴上对应的点为A ,N ,M ,B (如图),若AM 2=BM·AB ,BN 2=AN·AB ,则称m 为a,b 的“大黄金数”,n 为a,b 的“小黄金数”,当b −a =2时,a,b 的大黄金数和小黄金数只差m −n =__________【答案】2√5−4例6.如图,在△ABC 中,AC=BC ,在边AB 上截取AD=AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是______.【解答】解:∵点D 是线段AB 的一个黄金分割点, ∴AD 2=BD•AB , ∵AD=AC=BC , ∴BC 2=BD•AB ,即BC :BD=AB :BC , 而∠ABC=∠CBD , ∴△BCD ∽△BAC ,∴∠A=∠BCD,设∠A=x,则∠B=x,∠BCD=x,∴∠ADC=∠BCD+∠B=2x,而AC=AD,∴∠ACD=∠ADC=2x,∴x+2x+x+x=180°,解得x=36°.故答案为36°.【答案】36°例7.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.【答案】(1)证明:∵AB=AC,∠A=36°,∴∠ACB=12(180°-36°)=72°,∵CE平分∠ACB,∴∠BCE=12∠ACB=12×72°=36°,∴∠BCE=∠A=36°,∴AE=BC,又∵∠B=∠B,∴△ABC∽△CBE,∴ABBC =BC BE,∴BC2=AB•BE,即AE2=AB•BE,∴E为线段AB的黄金分割点;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=180°-72°-36°=72°,∴BC=CE,由(1)已证AE=CE,∴AE=CE=BC,第7页共24页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第8页 共24页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴BC=√5−12•AB=√5−12×4=2√5-2.【举一反三】1.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A. ACAB =BCAC B. BC 2=AB•BC C. ACAB =√5−12D. BCAC ≈0.618【解答】解:∵AC >BC , ∴AC 是较长的线段,根据黄金分割的定义可知:AB :AC=AC :BC ,故A 正确,不符合题意; AC 2=AB•BC ,故B 错误,AC AB=√5−12,故C 正确,不符合题意;BCAC≈0.618,故D 正确,不符合题意.故选:B .【答案】B2.如图是著名画家达芬奇的名画《蒙娜丽莎》.画中的脸部被包在矩形ABCD 内,点E 是AB 的黄金分割点,BE >AE ,若AB=2a ,则BE 长为( )A. (√5+1)aB. (√5-1)aC. (3-√5)aD. (√5-2)a【解答】解:∵点E 是AB 的黄金分割点,BE >AE , ∴BE=√5−12AB=√5−12•2a=(√5-1)a . 故选:B .【答案】B3.如图,P是线段AB的黄金分割点,PA>PB,若S1表示以AP为边正方形的面积,S2表示以AB为长PB为宽的矩形的面积,则S1、S2大小关系为()A. S1>S2B. S1=S2C. S1<S2D. 不能确定【解答】解:∵P是线段AB的黄金分割点,且PA>PB,∴PA2=PB•AB,又∵S1表示以PA为一边的正方形的面积,S2表示以长为AB,宽为PB的矩形的面积,∴S1=PA2,S2=PB•AB,∴S1=S2.故选:B.【答案】B4.已知点C在线段AB的黄金分割点,且AB=10cm,则线段AC的长为______【答案】5√5−5或15−5√55.如图,AD是△ABC的外角平分线,且ABAC =√5+12,求证:C是BD的黄金分割点.【答案】证明:过C作CE∥AD,交AB于点E,∵CE∥AD,∴∠1=∠3,∠2=∠4,∵AD平分外角,∴∠1=∠2,∴∠3=∠4,∴AE=AC,第9页共24页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∵CE∥AD,∴ABAE =BD CD,∴ABAC =BD CD,∵ABAC =√5+12,∴BDDC =√5+12,∴BD=√5+12CD,∴CD=√5−12BD,即C是BD的黄金分割点.6.如图,在△ABC中,AB=AC,∠A=36°,CD是∠ACB的平分线.(1)△ABC和△CBD相似吗?为什么?(2)AD、AB、BD之间有什么关系?为什么?【答案】解:(1)相似,理由如下:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵CD平分∠ACB,∴∠DCB=∠DCA=∠A,且∠ABC=∠CDB,∴△ABC∽△CBD;(2)由(1)可得△ABC∽△CBD,∴CDAB =BD BC,又由(1)可知AD=CD=CB,∴AD2=AB•BD.三、平行线分线段成比例定理【知识探索】第10页共24页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训1.平行线等分线段定理:两条直线被三条平行直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.【说明】“平行线等分线段定理”是“平行线分线段成比例定理”的特例.【错题精练】例1.已知直线a//b//c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若ABBC =12,则()A. 13B. 12C. 23D. 1【答案】C例2.D、E分别为△ABC中BC、AC边上的点,且BD:DC=1:3,AE:EC=2:1,则AF:FD=()A. 3:1B. 5:1C. 8:1D. 9:1【解答】解:过点A作AG平行BC交BE延长线与G,∴△AGE∽△CEB,∴AGBCEC=2,∴AG=2BC,∵BD:CD=1:3,∴BC=4BD,∴AG=8BD,∵△AGF∽△DBF,∴AFDF=AGBD=8,故选:C.【答案】C例3.如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是()A. 8cmB. 12cmC. 30cmD. 50cm【解答】解:∵BC∥PQ,∴△ABC∽△APQ,∴ABAP=ACAQ∵AB:AP=2:5,AQ=20cm,∴AC20=25,解得:AC=8cm,∴CQ=AQ-AC=20-8=12(cm),故选:B.【答案】B例4.如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=4,BC=8,EF=12,求DE的长.(2)如果DE:EF=2:3,AB=6,求AC的长.【答案】解:(1)∵l1∥l2∥l3.∴DEEF=ABBC例5.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A. DEBC =23;B. DEBC =25;C. AEAC =23;D. AEEC =25.【答案】B【举一反三】1.如图,已知直线a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F,若AB=2,AD=BC=4,则BECF的值应该()A. 等于13; B. 大于13;C. 小于13; D. 不能确定.【答案】B2.如图,在△ABC中,AB∥EF∥GH,AE=GC,EF=14,GH=5,那么∴y=95x,∴5AB=x2x+y=x2x+x95=519,∴AB=19.故答案为:19.【答案】193.如图,在△ABC中,DE∥FG∥BC,AD:DF:BF=1:2:3,BC=10cm.(1)求AE:EG:GC的值;(2)求DE与FH的比.,∴FH=25×10=4,∴DEFH=53534=512.4.如图,D是BC上一点,E是AB上一点,AD、CE交于点P,且AE:EB=3:2,CP:CE=5:6,那么DB:CD=()A. 1:2B. 1:3C. 2:3D. 1:4【解答】解:作EF∥BC交AD于F,如图,∵EF∥BD,AE:EB=3:2,∴EF:BD=AE:AB=3:5,∴BD=53EF,∵EF∥CD,∴EF:CD=EP:PC,而CP:CE=5:6,∴EF:CD=1:5,∴CD=5EF,∴BD:CD=53EF:5EF=1:3.故选:B.【答案】B5.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A. 5B. 6C. 7D. 8【解答】解:∵l1∥l2∥l3,AB=4,AC=6,DF=9,∴ABAC =DEDF,即46=DE9,可得;DE=6,故选:B.【答案】B6.如图,在△ABC中,点D、E分别在边AB、AC上,AE2=AD•AB,∠ABE=∠ACB.(1)求证:DE∥BC;(2)如果S△ADE:S四边形DBCE=1:8,求S△ADE:S△BDE的值.【答案】(1)证明:∵AE2=AD•AB,∴AEAD =ABAE,又∵∠EAD=∠BAE,∴△AED∽△ABE,∴∠AED=∠ABE,∵∠ABE=∠ACB,∴∠AED=∠ACB,∴DE∥BC;(2)解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADES△ABC =(ADAB)2,∵S△ADES四边形DBCE =18,∴S△ADES△ABC =19,∴(ADAB )2=19,∴ADAB =13,∴ADDB =12,∴S△ADES△BDE =12.7.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A. 5;B. 6;C. 7;D. 8.【答案】B1.△ABC中,已知点D、E分别为BC、AC的中点,△ABC的面积是12,则△CDE的面积为________【答案】3.2.(浙江杭州市中考22)(本题满分12分)如图,在△中(),,点在边上,于点.(1)若,,求的长;(2)设点在线段上,点在射线上,以,,为顶点的三角形与△有一个锐角相等,交于点.问:线段可能是△的高线还是中线?或两者都有可能?请说明理由.【解答】【答案】(1)(2)略.3.如图,梯形ABCD中,AD∥BC,对角线的交点为O,CE∥AB交BD的延长线于E,若OB=6,OD=4,则DE=()A. 12B. 9C. 8D. 5【解答】解:在梯形ABCD中,由分析可知BO:OE=AO:OC=OD:OB,即:OD:OB=BO:OE,又OB=6,OD=4,即4:6=6:OE,解得OE=9,又OD=4,所以DE=5,故选D.【答案】D。

比例的性质与比例线段定理

比例的性质与比例线段定理

比例的性质与比例线段定理比例是数学中非常重要的概念之一,它描述了两个或多个量之间的关系。

在实际生活中,我们常常会遇到各种各样的比例问题,比如比例尺、相似三角形等等。

本文将探讨比例的性质以及比例线段定理,希望能够对读者更好地理解比例的概念和应用。

1. 比例的基本性质比例关系是指两个或多个数或量之间存在着相等关系。

如果两个比例相等,我们可以称之为“比例相等”。

比如,若a/b=c/d,我们可以说a 与b的比例等于c与d的比例。

基于此,我们可以得出比例的三个基本性质:性质一:如果a/b=c/d,那么a/c=b/d,即比例的两对比例项可以交叉相乘。

性质二:如果a/b=c/d,那么a/(b+c)=c/(d+a),即比例的两对比例项可以组合相加。

性质三:如果a/b=c/d,那么(a+b)/b=(c+d)/d,即比例的两对比例项可以组合相加后再除以一个比例项。

这些性质为我们解决比例问题提供了方便和灵活性,可以通过灵活运用来求解各种复杂的比例关系。

2. 比例线段定理比例线段定理是比例的一个重要应用,它可以帮助我们求解线段上的未知点坐标。

比例线段定理可以描述为:定理一:在一条直线上,如果有两点A、B将这条直线分成了三个部分,设AC:CB= m:n,则m/n等于点A到点B的距离的比例。

这个定理可以用数学表达式表示为AC/BC=m/n。

根据这个定理,我们可以通过已知点的坐标和比例关系来求解未知点的坐标。

除了比例线段定理外,我们还可以利用相似三角形来解决比例问题。

在相似三角形中,对应边的比例是相等的,这一点也可以用于比例问题的求解。

总结:比例的性质与比例线段定理在数学中扮演着重要的角色。

比例的基本性质使得我们能够更加灵活地运用比例关系来解决问题,而比例线段定理则为我们提供了一种求解线段上未知点坐标的方法。

通过理解和掌握比例的性质与比例线段定理,我们可以更好地应用数学知识解决实际生活中的问题,提升自己的数学能力。

(以上内容仅供参考,具体格式和表达方式请根据实际需要进行调整。

八年级数学比例线段;平行线分线段成比例定理人教版知识精讲

八年级数学比例线段;平行线分线段成比例定理人教版知识精讲

初二数学比例线段;平行线分线段成比例定理人教版【本讲教育信息】一. 教学内容:比例线段;平行线分线段成比例定理二. 重点、难点:重点:比例的基本性质、合比性质、等比性质;黄金分割点的性质;平行线分线段成比例定理、推论。

难点:比例的性质的应用,黄金分割点的性质,平行线分线段成比例定理、推论的应用。

三. 知识结构:1. 比例线段:2. 比例中的项:a :b a —比的前项,b —比的后项a b c d=a b c d 、、、——比例的项 a b c d ::比的内项↓=↓ d ——比的第四比例项比的外项3. 比例中项:若a b b c ::=,则b 叫a 、c 的比例中项。

4. 比的性质:比的基本性质:a b c d ad bc a b b c b ac ::::=⇔==⇔=⎫⎬⎭2内项之积=外项之积 比的合比性质: a b c d a b b c d d=⇒±=±(注意:在分子上加分母) 比的等比性质:a b c d m n b d n a c m b d n a b===+++≠⇒++++++=…………()0 5. 黄金分割点A C B若AC 是AB 、BC 的比例中项,点C 叫做线段AB 的黄金分割点。

AC AB BC AB AC AC BCAC AB BC AC20618=⋅==≈⎧⎨⎪⎪⎪⎩⎪⎪⎪. 6. 平行线分线段成比例定理:l 1l 2l 3三条平行线截两条直线,所得的对应线段成比例。

AB BC A B B C AB AC A B A C AB A B BC B C ===⎧⎨⎪⎪⎪⎩⎪⎪⎪''''''''''''7. 平行线分线段成比例定理的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段成比例。

AD E AAB C B C(1)(2)(3)【典型例题】例1. 已知x y a b c d ===23,求(1)x a c y b d++++(2)x a c y b d -+-+22 解:(1)由合比性质x a c y b d ++++=23 (2) x y a b c d==, ∴=--==x y a b c d 2223 ∴-+-+=x a c y b d 2223例2. 已知a b c 234==,求a b c a b c++++232。

比例线段及相似性质和判定

比例线段及相似性质和判定

比例线段与相似性质和判定一、比例的性质1.,a c ad bc b d =⇔=这一性质称为比例的基本性质,由它可推出许多比例形式; 2.a c b db d ac =⇔=(反比定理); 3.a c a b b d c d =⇔=(或d cb a =)(更比定理); 4.ac a b c db d b d ++=⇔=(合比定理); 5.a c a b c db d b d --=⇔=(分比定理); 6.a c a b c db d a bcd ++=⇔=--(合分比定理); 7.(0)a c m a c m a b d n b d n b d n b ++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+(等比定理).二、成比例线段1.比例线段对于四条线段a b c d ,,,,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a cb d=(即::a b c d =),那么这四条线段a b c d ,,,叫做成比例线段,简称比例线段.2.比例的项在比例式a cb d=(::a b c d =)中,a d ,称为比例外项,b c ,称为比例内项,d 叫做a b c ,,的第四比例项.三条线段a bb c=(::a b b c =)中,b 叫做a 和c 的比例中项.3.黄金分割BAC如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中510.6182AC AB AB -=≈,350.3822BC AB AB -=≈,AC 与AB 的比叫做黄金比.三、平行线分线段成比例定理1.定理两条直线被三条平行线所截,截得的对应线段成比例. 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 3.推论的逆定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.三角形一边的平行线性质平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.如图,AB CD EF ∥∥,则AC BD CE DF AC BD CE DFCE DF AC BD AE BF AE BF====,,,.若将AC 称为上,CE 称为下,AE 称为全,上述比例式可以形象地表示为====上上下下上上下下,,,下下上上全全全全.AB C D E FFEDC B A当三条平行线退化成两条的情形时,就成了“A ”字型,“X ”字型.则有AE AF AE AF EFBC EF EB FC AB AC BC⇔===∥,. A BCE F F ECB A考点一:比例的性质☞考点说明:如果要考查多以选择和填空为主,重点掌握等比性质 【例1】 若345x y z==,则2332x y z x y z ++--的值为________【巩固】设14a c e b d f ===,则a c e b d f +-=+-_______【拓展】若a b a c b ck c b a+++===,则k 的值为_________【例2】 已知::1:3:5x y z =,求33x y zx y z+--+的值【巩固】已知:234x y z==.求33x y z x y -+-.考点二:黄金分割☞考点说明:如果要考查可能出现在22题之中,需要掌握黄金分割的定义【例3】 如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC =________cm ,DC =________cm .DBAC【例4】 如图所示,在黄金分割矩形ABCD 512AB BC ⎛⎫-= ⎪ ⎪⎝⎭中,分出一个正方形ABFE ,求FCCD . F EDB AC考点三:平行线分线段成比例定理☞考点说明:平行线分线段成比例定理的考查多数以选择或填空的形式展开 【例5】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长.EDCBA【例6】 如图,已知DE BC ∥,EF AB ∥,则下列比例式中错误的是( )FEDCB AA .AD AEAB AC =B .CE EACF FB =C .DE AD BC BD =D .EF CF AB CB =【拓展】如图,ABC ∆中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P .若2A D D E =,求证:3AP AB =.PEDCBA【例7】 已知,如图边长为2的等边ABC ∆,DE BC ∥,:1:4BCD ABC S S ∆∆=,则EC 的长为_____【例8】 如图,在OCE ∆中,AD BE ∥、BD CE ∥,若3OA =,9AC =,则AB 的长为________【例9】 已知,如图在平行四边形ABCD ,P 为BC 上任一点,连接DP 交AB 的延长线于Q求证:1BC ABBP BQ-=E D CBAEDC BA O QPDC BA考点四:梅涅劳斯定理☞考点说明:梅涅劳斯型在选择和填空中考察较多,需要熟练掌握该定理以提高解题速度梅涅劳斯定理:如果一条直线与ABC △的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点,那么1AF BD CEFB DC EA⋅⋅=.这条直线叫ABC △的.梅氏线,ABC △叫梅氏三角形. GF EDCBAGFE DCBAH3H 2H 1F E DCBA证法一:如左图,过C 作CG ∥DF∵DB FB DC FG =,EC FGAE AF= ∴1AF BD CE AF FB FGFB DC EA FB FG AF⋅⋅=⋅⋅=. 证法二:如中图,过A 作AG BD ∥交DF 的延长线于G ∴AF AG FB BD =,BD BD DC DC =,CE DCEA AG= 三式相乘即得:1AF BD CE AG BD DCFB DC EA BD DC AG⋅⋅=⋅⋅=. 证法三:如右图,分别过A B C 、、作DE 的垂线,分别交于123H H H 、、. 则有123AH BH CH ∥∥,所以3122311CH AH BH AF BD CE FB DC EA BH CH AH ⋅⋅=⋅⋅=.【例10】 如图,在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =,连接EM 并延长,交BC 的延长线于D ,则BCCD=_______.MEDCBA【例11】 如图,在ABC ∆中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD 的值; (2)当11A 34AE C =、时,求AOAD的值; (3)试猜想11AE AC n =+时AO AD 的值,并证明你的猜想. E OD CBA【巩固】如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由. AB CDEF【拓展】在ABC ∆中,底边BC 上的两点E 、F 把BC 三等分,BM 是AC 上的中线,AE 、AF 分别交BM于G 、H 两点,求证:::5:3:2BG GH HM =MH G FECBA考点五:相似三角形的性质☞考点说明:利用相似三角形的性质如对应边成比例,求线段的长,或者转化角度。

数学比例线段的概念和性质

数学比例线段的概念和性质

数学比例线段的概念和性质数学中,比例线段是指具有相等比例关系的线段。

比例线段具有以下性质:1. 相似性:比例线段的长度比是相等的。

如果两个线段AB和CD成比例,即AB/CD=k,则两个线段是相似的。

相似的线段具有相似的性质和形状。

2. 约束性:比例线段是有限制的,即如果一条线段成比例于其他两条线段,那么这两条线段的关系也是成比例的。

例如,如果AB/CD=k,CD/EF=m,那么AB/EF=(AB/CD)*(CD/EF)=k*m。

3. 反比关系:比例线段的倒数也是成比例的。

如果AB/CD=k,则CD/AB=1/k。

这意味着如果一个线段是另一个线段的倍数,那么这两个线段的倒数也是成比例的。

4. 比例线段的比例可乘性:如果有三个比例线段AB、BC和CD,且AB/BC=k,BC/CD=m,那么AB/CD=(AB/BC)*(BC/CD)=k*m。

这个性质可以用于求解比例线段之间的未知量。

5. 分离性:如果有两个比例线段AB/CD=k,EF/CD=m,则AB/EF=k/m。

这意味着两个比例线段之间的比例关系不受其他线段的影响,可以独立分析。

6. 平行性:如果两条平行线上的线段成比例,那么这些线段上的任意线段也成比例。

例如,如果ABCD,且AB/CD=k,则对于平行线段EF和GH,有EF/GH=k。

7. 三角形的角平分线:在一个三角形中,角的平分线把相对边分割成比例线段。

例如,如果BE是三角形ABC中角B的平分线,那么AE/EC=AB/BC。

8. 重心和垂心:在三角形中,重心到各个顶点的距离成比例,垂心到各个顶点的距离也成比例。

这是由重心和垂心的特殊性质决定的。

具体来说,如果G是三角形ABC的重心,D是三角形ABC中BC边上的垂足,则AG/GC=BD/DC。

9. 正弦定律和余弦定律:在三角形中,正弦定律和余弦定律也可以看作是比例线段的定理。

正弦定律可以表示为a/sin(A)=b/sin(B)=c/sin(C),其中a、b和c是对应的边长,A、B和C是对应的角度。

九年级线段成比例知识点

九年级线段成比例知识点

九年级线段成比例知识点一、什么是线段成比例?线段成比例是指两个线段之间的比值相等。

即如果两个线段的长度之比等于另外两个线段的长度之比,那么这四个线段就成比例。

二、线段成比例的判定方法1. 基于长度的判定方法:设有四个线段AB、CD、EF和GH,我们可以使用以下方法判定它们是否成比例。

(1)如果AB/CD = EF/GH,即两个比值相等,那么线段AB 和CD与线段EF和GH成比例。

(2)如果AB/CD = EF/GH = k(常数),即三个比值相等,那么线段AB和CD与线段EF和GH成比例。

2. 基于相似三角形的判定方法:我们也可以利用相似三角形的性质来判定线段成比例。

(1)如果三角形ABC与三角形DEF相似,那么线段AB和CD与线段AC和DF成比例。

(2)如果三角形ABC与三角形DEF相似,并且线段AB与线段DE相等,那么线段AB和CD与线段AC和DF成比例。

三、线段成比例的性质1. 线段成比例的交叉乘积性质:设AB/CD = EF/GH,那么有以下等式成立:AB × GH = CD × EF这条性质可以用来解决一些与线段成比例相关的问题。

2. 平行线段上的线段成比例性质:如果线段AB与线段CD平行,并且线段AD与线段BC相交于点O,那么有以下等式成立:AO/OD = BO/OC这个性质可以帮助我们在平行线段上找到线段成比例的关系。

四、线段成比例的应用线段成比例广泛应用于几何学和代数学中。

在几何学中,我们可以使用线段成比例来证明两个三角形相似或者证明平行线段之间的关系。

在代数学中,线段成比例可以用来求解未知长度和方程的解等问题。

简单来说,线段成比例在数学中是一个重要的概念,它帮助我们理解和解决与线段长度和比值有关的问题。

在学习几何学和代数学的过程中,我们需要掌握线段成比例的判定方法、性质和应用,以便能够灵活运用这一概念解决各种数学问题。

以上就是九年级线段成比例的相关知识点,希望能够帮助你更好地理解和掌握这一概念。

比例性质和平行线分线段成比例定理

比例性质和平行线分线段成比例定理

4,如图,
AB BD AC DC
AB=4,AC=2,BC=3,
A
求DC,BD的长.
B D
C
AE AD 5,如图,AD=2,AB=5,且 EC DB
求AC.
A
D
E
B
C
四、平行线分线段成比例定理及推论
定理:三条平行线截两条直线,所得的对 应线段成比例. 推论:平行于三角形一边的直线截其他两 边(或两边的延长线),所得的对应线段成比 例. 推论的逆定理:如果一条直线截三角形的 两边(或两边的延长线)所得的对应线段成比 例,那么这条直线平行于三角形的第三边.
16 3 3.若4是x和 3 的比例中项,则x= 3
x y z ≠0,那么 x y z = = 【例1】如果 x yz 2 3 4 的值是( C )
A.7 B.8 C.9 D.10
典型例题解析
【解析】方法1:设x=2k,y=3k,z=4k,代入求值,这种 方法比较适用,故选C.
x y z 23 4 9 9 方法2:利用比例的性质, x yz 234 1
课时训练
4.如图,在梯形ABCD中,AD//BC, E、F分别是AB、CD的中点,EF 分别交BD、AC于G、H,设 BC-AD=m,则GH的长为 ( D ) A.2m B.m C.2m/3 D.m/2 5. 如 图 , 在 平 行 四 边 形 ABCD 中 , AE:EB=1:2,BF//DE,SΔAGE=6cm2, 则 四 边形FDGH的面积为 ( A ) A.48cm2 B.24cm2 C.18cm2 D.12cm2
图6-1-3
【例4】如图6-1-4所示,在梯形ABCD中,AD∥BC, AB=CD=3,P是BC上一点,PE∥AB交AC于E,PF∥CD交BD于F, 设PE,PF的长分别为m,n,x=m+n,那么当P点在BC边上移 动时,x值是否发生变化?若变化,求出x的取值范围;若 不变,求出x的值,并说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档