2019年吉林省吉林市中考数学一模试卷含答案解析

合集下载

2019年吉林省吉林市中考数学一模试卷 解析版

2019年吉林省吉林市中考数学一模试卷  解析版

2019年吉林省吉林市中考数学一模试卷一.选择题(共6小题)1.下列计算结果等于0的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1)C.(﹣1)×(﹣1)D.(﹣1)÷(﹣1)2.如图是一个水平放置的纸杯示意图,它的左视图是()A.B.C.D.3.计算(﹣x2y)3的结果是()A.﹣x5y3B.﹣x6y C.x6y3D.﹣x6y34.如图,直线AE,BF经过含30°角的三角板的两个顶点,若AE∥BF,∠CBF=20°.则∠CAE的度数为()A.50°B.60°C.70°D.80°5.如图,AB是⊙O的直径,AC=BC,若∠CBD=70°,则∠BAD的度数为()A.65°B.60°C.35°D.25°6.如图,菱形ABCD的边长为2,∠A=60°,点E是对角线BD的中点.点G是AB边上一动点,GE延长线交CD于点H,则GH长度可能为()A.1.5B.2.5C.3.5D.4.5二.填空题(共8小题)7.习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为.8.因式分解:a3﹣a=.9.计算﹣=.10.不等式组的解集是.11.如图,a,b是两根木条,用A,B两根钉子钉在墙上,其中木条a可以绕点A转动,木条b被固定不动.这一生活现象用你学过的数学知识解释为.12.如图,⊙O的半径为4,直线AB与⊙O相切于点A,AC平分∠OAB,交⊙O于点C.则的长为.13.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为.14.如图1,矩形纸片ABCD,AB=a,BC=b,满足.将此矩形纸片按下列顺序折叠,则图4中MN的长为(用含a,b的代数式表示).三.解答题(共12小题)15.先化简,再求值:,其中x=3.16.以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?17.一个不透明的口袋中有四个小球,上面分别标有数字1,2,3,4,除所标数字不同外,其它完全相同.从中随机摸出一个小球,不放回,再随机摸出一个小球用画树状图(或列表)的方法,求两次摸出小球所标数字和小于5的概率,18.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:(1)△ADE≌△CBF;(2)AB=CD.19.如图是4×5的小正方形网格,△ABC的顶点都在格点上.按下列要求作图(所画△DEF的顶点都在格点上,并标注对应字母);(1)在图1中,画出△DEF,使△DEF与△ABC关于直线MN成轴对称;(2)在图2中,将△ABC绕某一格点O旋转得到△DEF,使△DEF与△ABC成中心对称,画出△DEF,并在图中标出旋转中心O.20.如图1是一辆吊车的实物图,图2是其工作示意图,其转动点A离地面BD的高度AH 为3.4m,AC是可以伸缩的起重臂,当AC长度为9m,张角∠HAC为138°时,求起重(参考数据:sin48°≈0.74,cos48°臂顶点C离地面BD的高度(结果保留小数点后一位).≈0.67,tan48°≈1.11)21.我市某校组织“学经典,用经典”知识竞赛,每班参加比赛的学生人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩“C级”的人数为;(2)请你将下表补充完整;平均数(分)中位数(分)众数(分)一班87.690二班87.6100(3)请你对这次两班成绩统计数据的结果进行分析(写出一条结论即可).22.如图,直线与x轴,y轴分别交于A,B两点,与反比例函数交于点C,点A的坐标为(3,0),CD⊥x轴于点D.(1)点B的坐标为;(2)若点B为AC的中点,求反比例函数的解析式;(3)在(2)条件下,以CD为边向右作正方形CDEF,EF交AC于点G,直接写出△CGF的周长与△ABO的周长的比.23.甲乙两个工厂同时加工一批机器零件.甲工厂先加工了两天后停止加工,维修设备,当维修完设备时,甲乙两厂加工的零件数相等,甲工厂再以原来的工作效率继续加工这批零件.甲乙两厂加工零件的数量y甲(件),y乙(件)与加工件的时间x(天)的函数图象如图所示,(1)乙工厂每天加工零件的数为件;(2)甲工厂维修设备的时间是多少天?(3)求甲维修设备后加工零件的数量y甲(件)与加工零件的时间x(天)的函数关系式,并写出自变量x的取值范围.24.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=.25.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q 沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.(1)求DQ的长(用含t的代数式表示);(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.26.已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1(1)若k=2,则新函数y=;(2)若新函数y的解析式为y=x2+bx﹣2,则k=,b=;(3)设新函数y顶点为(m,n).①当k为何值时,n有大值,并求出最大值;②求n与m的函数解析式;(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.参考答案与试题解析一.选择题(共6小题)1.下列计算结果等于0的是()A.(﹣1)+(﹣1)B.(﹣1)﹣(﹣1)C.(﹣1)×(﹣1)D.(﹣1)÷(﹣1)【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣2,不符合题意;B、原式=﹣1+1=0,符合题意;C、原式=1,不符合题意;D、原式=1,不符合题意,故选:B.2.如图是一个水平放置的纸杯示意图,它的左视图是()A.B.C.D.【分析】根据从左往右看水平放置的纸杯所得的图形进行判断即可.【解答】解:该纸杯的左视图为,故选:B.3.计算(﹣x2y)3的结果是()A.﹣x5y3B.﹣x6y C.x6y3D.﹣x6y3【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:(﹣x2y)3=﹣x6y3,故选:D.4.如图,直线AE,BF经过含30°角的三角板的两个顶点,若AE∥BF,∠CBF=20°.则∠CAE的度数为()A.50°B.60°C.70°D.80°【分析】由AE∥BF,利用“两直线平行,同旁内角互补”可得出∠CAE+∠BAC+∠ABC+∠CBF=180°,再代入∠ABC=30°,∠CBF=20°,∠BAC=60°,即可求出∠CAE 的度数.【解答】解:∵AE∥BF,∴∠BAE+∠ABF=180°,即∠CAE+∠BAC+∠ABC+∠CBF=180°.∵∠ABC=30°,∠CBF=20°,∠BAC=60°,∴∠CAE=180°﹣∠BAC﹣∠ABC﹣∠CBF=70°.故选:C.5.如图,AB是⊙O的直径,AC=BC,若∠CBD=70°,则∠BAD的度数为()A.65°B.60°C.35°D.25°【分析】先根据圆周角定理得到∠ADB=∠ACB=90°,则可判断△ACB为等腰直角三角形,所以∠ABC=45°,再计算出∠ABD,然后利用互余计算∠BAD的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵AC=BC,∴△ACB为等腰直角三角形,∴∠ABC=45°,∵∠ABD=∠CBD﹣∠ABC=70°﹣45°=25°,∴∠BAD=90°﹣25°=65°.故选:A.6.如图,菱形ABCD的边长为2,∠A=60°,点E是对角线BD的中点.点G是AB边上一动点,GE延长线交CD于点H,则GH长度可能为()A.1.5B.2.5C.3.5D.4.5【分析】确定GH的最大值和最小值后即可确定GH的长度的取值范围,从而可以确定正确的选项.【解答】解:过E点作MN⊥AB于点N,此时MN的长是GH的最小值,∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴MN为△ABD的AB边上的高,∵AD=2,∴MN=,∴GH的最小值为,连接AC,此时AC是GH的最大值,AC=2AE=2MN=2,∴<MN<2,故选:B.二.填空题(共8小题)7.习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为 1.17×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11 700 000=1.17×107,故答案为:1.17×107.8.因式分解:a3﹣a=a(a+1)(a﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)9.计算﹣=.【分析】先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:原式=2﹣=﹣.故答案为10.不等式组的解集是﹣1<x≤3.【分析】先求出每一个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,解不等式①得:x≤3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤3,故答案为﹣1<x≤3.11.如图,a,b是两根木条,用A,B两根钉子钉在墙上,其中木条a可以绕点A转动,木条b被固定不动.这一生活现象用你学过的数学知识解释为两点确定一条直线(过所点有且只有一条直线:或过一点不能确定一条直线).【分析】根据“两点确定一条直线”的数学公理确定答案即可.【解答】解:这一生活现象用你学过的数学知识解释为:两点确定一条直线(过所点有且只有一条直线:或过一点不能确定一条直线),故答案为:两点确定一条直线(过所点有且只有一条直线:或过一点不能确定一条直线).12.如图,⊙O的半径为4,直线AB与⊙O相切于点A,AC平分∠OAB,交⊙O于点C.则的长为2π.【分析】由切线的性质和角平分线的定义得到∠OAC=45°,则∠AOC=90°,所以根据弧长公式解答即可.【解答】解:∵直线AB与⊙O相切于点A,∴∠OAB=90°.∵AC平分∠OAB,∴∠OAC=∠OAB=45°.∵OA=OC,∴∠OAC=∠OCA=45°,∴∠AOC=90°.∴的长为:=2π.故答案是:2π.13.如图,A(4,0),B(0,3),点C为AB中点,以点B为圆心,BC长为半径作圆弧,交线段OB于点D.则点D的坐标为(0,).【分析】先根据勾股定理计算AB的长,由同圆的半径相等可得BD的长,最后计算OD 的长,可得点D的坐标.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得:AB==5,∵点C为AB中点,∴BC=AB==BD,∴OD=OB﹣BD=3﹣=∴D(0,);故答案为:.14.如图1,矩形纸片ABCD,AB=a,BC=b,满足.将此矩形纸片按下列顺序折叠,则图4中MN的长为2b﹣2a(用含a,b的代数式表示).【分析】根据折叠的性质得到A1F=a﹣b,EG=a﹣2(a﹣b)=b﹣a,根据相似三角形的性质得到=,依此可求MN的长.【解答】解:如图,由折叠的性质得到A1F=a﹣b,EG=a﹣2(a﹣b)=b﹣a,则=,解得MN=2b﹣2a.故答案为:2b﹣2a.三.解答题(共12小题)15.先化简,再求值:,其中x=3.【分析】先算括号内的减法,把除法变成乘法,算乘法,最后代入求出即可.【解答】解:=•=•=,当x=3时,原式==3.16.以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?【分析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:设井深为x尺,则绳长为:3(x+5),依题意得:3(x+5)=4(x+1).解得x=11,则4(x+1)=48尺.答:井深为11尺,绳长48尺.17.一个不透明的口袋中有四个小球,上面分别标有数字1,2,3,4,除所标数字不同外,其它完全相同.从中随机摸出一个小球,不放回,再随机摸出一个小球用画树状图(或列表)的方法,求两次摸出小球所标数字和小于5的概率,【分析】根据题意列出图表得出所有等情况数,找出两次摸出小球所标数字和小于5的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:1234 1345235634574567从表中可以看出,所有等可能出现的结果共有12种.其中数字和小于5有4种则两次摸出小球所标数字和小于5的概率是=.18.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:(1)△ADE≌△CBF;(2)AB=CD.【分析】(1)根据平行线性质得出∠ADE=∠CBF,求出∠EAD=∠FCB=90°,根据AAS证出△ADE≌△CBF即可;(2)根据全等得出AD=BC,根据SAS证△ABD≌△CDB,根据全等三角形性质推出即可.【解答】证明:(1)∵AD∥BC,∴∠ADE=∠CBF,∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,在△ADE和△CBF中∴△ADE≌△CBF(AAS);(2)∵△ADE≌△CBF,∴AD=BC,在△ABD和△CDB中∴△ABD≌△CDB(SAS),∴AB=CD.19.如图是4×5的小正方形网格,△ABC的顶点都在格点上.按下列要求作图(所画△DEF的顶点都在格点上,并标注对应字母);(1)在图1中,画出△DEF,使△DEF与△ABC关于直线MN成轴对称;(2)在图2中,将△ABC绕某一格点O旋转得到△DEF,使△DEF与△ABC成中心对称,画出△DEF,并在图中标出旋转中心O.【分析】(1)利用轴对称的性质和网格特点画出A、B、C关于直线MN的对称点D、E、F即可;(2)为了在图2中画出△DEF,先找号对称中心O点,然后利用中心对称的性质画出A、B、C的对称点D、E、F即可.【解答】解:(1)如图1,△DEF为所作;(2)如图2,点O和△DEF为所作;20.如图1是一辆吊车的实物图,图2是其工作示意图,其转动点A离地面BD的高度AH 为3.4m,AC是可以伸缩的起重臂,当AC长度为9m,张角∠HAC为138°时,求起重(参考数据:sin48°≈0.74,cos48°臂顶点C离地面BD的高度(结果保留小数点后一位).≈0.67,tan48°≈1.11)【分析】作CE⊥BD于E,AF⊥CE于F,则四边形AHEF为矩形,得出EF=AH=3.4m,∠HAF=90°,求出∠CAF=48°,在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:过点C作CE⊥BD于E.过点A作AF⊥CE于F.∵矩形AHEF,AH=3.4,AC=9,∠CAH=138°.∴EF=AH=3.4,∠CAF=138°﹣90°=48°.在Rt△ACF中,CF=AC sin∠CAF=9×0.74=6.66≈6.7(m).∴CE=CF+EF=6.7+3.4=10.1(m),∴点C离地面的高度为10.1m.21.我市某校组织“学经典,用经典”知识竞赛,每班参加比赛的学生人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩“C级”的人数为;(2)请你将下表补充完整;平均数(分)中位数(分)众数(分)一班87.69090二班87.680100(3)请你对这次两班成绩统计数据的结果进行分析(写出一条结论即可).【分析】(1)根据每班参加比赛的学生人数相同和条形统计图中的数据,可以得到一班的人数,从而得到二班的总人数,然后即可得到此次竞赛中二班成绩“C级”的人数;(2)根据统计图中的数据,可以得到一班的众数和二班的中位数;(3)本题答案不唯一,只要合理即可.【解答】解:(1)(6+12+2+5)×36%=25×36%=9(人),答:此次竞赛中二班成绩“C级”的有9人;(2)由统计图可得,一班的众数为90,二班的中位数是80,故答案为:90,80;(3)从平均数和中位数的角度来比较,一班的成绩好(从平均数和众数的角度来比较,二班的成绩好;从B级以上(包括B级)的人数的角度来比较,一班的成绩好).22.如图,直线与x轴,y轴分别交于A,B两点,与反比例函数交于点C,点A的坐标为(3,0),CD⊥x轴于点D.(1)点B的坐标为;(2)若点B为AC的中点,求反比例函数的解析式;(3)在(2)条件下,以CD为边向右作正方形CDEF,EF交AC于点G,直接写出△CGF的周长与△ABO的周长的比.【分析】(1)把点A的坐标为(3,0)代入得,解方程即可得到结论;(2)根据三角形的中位线定理得到C(﹣3,2),由点C在上,于是得到结论;(3)根据正方形的性质得到GF=CD=3,根据平行线的性质得到∠FCG=∠BAO,根据相似三角形的性质即可得到结论.【解答】解:(1)把点A的坐标为(3,0)代入得,0=﹣+b,解得:b=1,∴点B的坐标为(0,1);(2)∵AB=BC,OB∥CD,∴OA=OD,CD=2OB,∵A(3,0),B(0,1),∴C(﹣3,2),∵点C在上,∴,∴y=﹣6,∴反比函数解析式为;(3)∵C(﹣3,2),∴CD=2,∵四边形CDEF是正方形,∴GF=CD=3,∵CF∥AD,∴∠FCG=∠BAO,∵∠F=∠AOB=90°,∴△CFG∽△AOB,∴△CGF的周长与△ABO的周长的比==.23.甲乙两个工厂同时加工一批机器零件.甲工厂先加工了两天后停止加工,维修设备,当维修完设备时,甲乙两厂加工的零件数相等,甲工厂再以原来的工作效率继续加工这批零件.甲乙两厂加工零件的数量y甲(件),y乙(件)与加工件的时间x(天)的函数图象如图所示,(1)乙工厂每天加工零件的数为20件;(2)甲工厂维修设备的时间是多少天?(3)求甲维修设备后加工零件的数量y甲(件)与加工零件的时间x(天)的函数关系式,并写出自变量x的取值范围.【分析】(1)根据乙工厂16天加工的件数和时间列式计算即可得解;(2)利用待定系数法求出甲工厂的函数解析式,再求出y=80时的x的值,然后减去2即可;(3)先求甲的工作效率为40件/天,再设y甲与x的函数关系式为y甲=40x+b,利用待定系数法求一次函数解析式解答.【解答】解:(1)160÷8=20(件),即乙工厂每天加工零件的数为20件;故答案为:20.(2)∵y甲=20x,∴当y=80时,x=4,∴4﹣2=2(天),∴甲工厂维修设备的时间为2天.(3)∵甲的工作效率为(件/天),∴设y甲=40x+b.∵过点(4,80),∴40×4+b=80,∴b=﹣80,∴y甲=40x﹣80(4≤x≤8).24.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=45°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=3.【分析】(1)利用等腰三角形的性质求出∠ABC,∠ABF即可解决问题.(2)①根据要求画出图形即可.②证明FB=FC,∠BFC=90°即可判断.③如图3中,作EH⊥DF交DF的延长线于H.利用全等三角形的性质证明EH=AD=3,再证明△EFH是等腰直角三角形即可解决问题.【解答】解:(1)如图1中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵AE⊥AC,∴∠EAC=90°,∴∠BAE=30°+90°=120°,∵AB=AE,∴∠ABE=∠E=(180°﹣120°)=30°,∴∠FBC=∠ABC﹣∠ABF=75°﹣30°=45°.故答案为:45.(2)①图形如图2所示.②结论:△BCF是等腰直角三角形理由如下:如图2中,∵AB=AC,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线,∴FB=FC,又AB=AC,AF=AF,∴△ABF≌△ACF(SSS),∴∠1=∠2,由旋转可知AE=AC,又AB=AC,∴AB=AE,∴∠1=∠3,∴∠2=∠3.又∠4=∠5,∴∠CFE=∠CAE=90°即∠CFB=90°,又FB=FC,∴△BCF为等腰直角三角形.③如图3中,作EH⊥DF交DF的延长线于H.∵AB=AC=5,BD=CD=4,∴AD⊥BC,∴∠ADB=90°,∴AD===3,∵∠ADC=∠EAC=∠H=90°,∴∠DAC+∠ACD=90°,∠DAC+∠HAE=90°,∴∠ACD=∠HAE,∵AE=AC,∴△ADC≌△EHA(AAS),∴EH=AD=3,∵△BDF是等腰直角三角形,FD⊥BC,∴∠DFB=∠BFC=45°,∴∠EFH=∠DFB=45°,∵∠H=90°,∴∠EHF=∠HFE=45°,∴EH=FH=3,∴EF=EH=,故答案为:3.25.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P,Q同时从点C出发,均以1cm/s的速度运动,其中点P沿CA向终点A运动;点Q 沿CB向终点B运动.过点P作PE∥BC,分别交AD,AB于点E,F,设动点Q运动的时间为t秒.(1)求DQ的长(用含t的代数式表示);(2)以点Q,D,F,E为顶点围成的图形面积为S,求S与t之间的函数关系式;(3)连接PQ,若点M为PQ中点,在整个运动过程中,直接写出点M运动的路径长.【分析】(1)分当0≤t≤3时,当3<t≤5时,两种情形分别求解.(2)分三种情形:a.当0≤t≤3时,如图1.b.当3<t≤4时,如图2,c.当4<t≤5时,如图3,分别求解即可.(3)如图4中,在CB上取一点J,使得CJ=CA,连接AJ,作CR⊥AJ于R,RT∥BC 交AB于T.由题意点M的运动路径是C→R→T,求出CR,RT即可解决问题.【解答】解:(1)当0≤t≤3时,DQ=3﹣t;当3<t≤5时,DQ=t﹣3.(2)a.当0≤t≤3时,如图1,∵PC=t,AC=4,∴,,,∴.b.当3<t≤4时,如图2,∴.c.当4<t≤5时,如图3,∴.综上所述(3)点M运动的路径长为2+,如图4中,在CB上取一点J,使得CJ=CA,连接AJ,作CR⊥AJ于R,RT∥BC交AB 于T.由题意点M的运动路径是C→R→T,∵CA=CJ=4,CR⊥AJ,∠ACJ=90°,∴AJ=4,AR=RJ,∴CR=AJ=2,∵RT∥BJ,AR=RJ,∴AT=TB,∴RT=BJ=,∴点M的运动路径的长为2+.26.已知函数y1=2kx+k与函数,定义新函数y=y2﹣y1(1)若k=2,则新函数y=x2﹣6x+1;(2)若新函数y的解析式为y=x2+bx﹣2,则k=5,b=﹣12;(3)设新函数y顶点为(m,n).①当k为何值时,n有大值,并求出最大值;②求n与m的函数解析式;(4)请你探究:函数y1与新函数y分别经过定点B,A,函数的顶点为C,新函数y上存在一点D,使得以点A,B,C,D为顶点的四边形为平行四边形时,直接写出k的值.【分析】(1)将k=2代入函数y1=2kx+k中得出函数y1=4x+2,即可得出结论;(2)新函数y的解析式为y=x2﹣2(k+1)x+3﹣k,即可得出结论;(3)①先得出新函数y=(x﹣k﹣1)2﹣k2﹣3k+2,进而得出,即可得出结论;②在中消去k即可得出结论;(4)分分三种情况,利用平行四边形的对角线互相平分和中点坐标公式,求出点D的坐标,即可得出结论.【解答】解:(1)当k=2时,y1=2kx+k=4x+2,∵函数,定义新函数y=y2﹣y1,∴y=x2﹣2x+3﹣4x﹣2=x2﹣6x+1,故答案为:x2﹣6x+1;(2)函数y1=2kx+k与函数,定义新函数y=y2﹣y1,∴新函数y的解析式为y=x2﹣2x+3﹣2kx﹣k=x2﹣2(k+1)x+3﹣k,∵新函数y的解析式为y=x2+bx﹣2,∴b=﹣2(x+1),3﹣k=﹣2,∴k=5,b=﹣12,故答案为:5,﹣12;(3)①由(2)知,新函数y=x2﹣2(k+1)x+3﹣k=(x﹣k﹣1)2﹣k2﹣3k+2,∵新函数y顶点为(m,n),∴,∴,当时,;②由①知,,将k=m﹣1代入n=﹣k2﹣3k+2得:∴n=﹣m2﹣m+4;(4)∵函数y1=2kx+k=k(2x+1),当2x+1=0即x=﹣时,y=0,∴A(﹣,0),∵新函数y=x2﹣2(k+1)x+3﹣k=x2﹣2(k+1)x﹣(k+1)+4=x2﹣(k+1)(2x+1)+4,当2x+1=0,即x=﹣时,y=+4=,∴B(﹣,),∵函数=(x﹣1)2+2,∴C(1,2),设D(c,d),∵以点A,B,C,D为顶点的四边形为平行四边形,∴①当BC与AD为对角线时,(﹣+1)=(﹣+c),(+2)=(0+d),∴c=1,d=,∴D(1,),将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k得,1﹣2(k+1)+3﹣k=,∴k=﹣,②当AB与CD是对角线时,(﹣﹣)=(1+c),(+0)=(2+d),∴c=﹣2,d=,∴D(﹣2,),将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k得,4+4(k+1)+3﹣k =,∴k=﹣,③当AC与BD为对角线时,(﹣+1)=(﹣+c),(0+2)=(+d),∴c=1,d=﹣,∴D(1,﹣),将点D坐标代入新函数y=x2﹣2(k+1)x+3﹣k得,1﹣2(k+1)+3﹣k=﹣,∴k=,即满足条件的k的值为或﹣或﹣.。

2019年吉林中考数学试题(解析版)

2019年吉林中考数学试题(解析版)

{来源}2019年吉林中考数学试卷{适用范围:3.九年级}2019年吉林初中毕业生学业水平考试数学试卷考试时间:120分钟满分:120分{题目}1.(2019年吉林)1.如图,数轴上蝴蝶所在点表示的数可能为()(第1题)A.3 B.2 C.1 D.-1{答案}D{解析}本题考查了数轴上有理数的表示,因为负数在原点的左侧,因此本题选D.{分值}2{章节: [1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年吉林)2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()(第2题)A.B.C.D.{答案}D{解析}本题考查了俯视图,因为该组合图形俯视图由四个正方体连成一排,因此本题选D.{分值}2{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}3.(2019年吉林)3.若a为实数,则下列各式的运算结果比a小的是()A.1a⨯D.1a÷a-C.1a+B.1{答案}B{解析}本题考查了数值大小比较,a-1比a小,因此本题选B.{分值}2{章节:[1-2-2]整式的加减}{考点:实数的大小比较}{类别:常考题}{难度:1-最简单}{题目}4.(2019年吉林)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°(第4题){答案}C{解析}本题考查了图形的旋转运动,因为图形可以分解成三份完全相同的图形,360°÷3=120°,因此本题选C . {分值}2{章节:[1-23-1]图形的旋转} {考点:与旋转有关的角度计算} {类别:常考题} {难度:1-最简单}{题目}5.(2019年吉林)5.如图,在⊙O 中,AB 所对的圆周角∠ACB =50°,若P 为AB 上一点,∠AOP =55°,则∠POB 的度数为( ) A .30° B .45° C .55° D .60°OPC BA (第5题){答案}B{解析}本题考查了圆内角度计算,同弧所对的圆周角是圆心角的一半,因此本题选B . {分值}2{章节:[1-24-1-3]弧、弦、圆心角} {考点:直径所对的圆周角} {类别:常考题} {难度:3-中等难度}{题目}6(2019年吉林)6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光。

2019届吉林省长春市九年级毕业一诊数学试卷【含答案及解析】

2019届吉林省长春市九年级毕业一诊数学试卷【含答案及解析】

2019届吉林省长春市九年级毕业一诊数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 的绝对值是()A. B. C. D. ﹣22. 如图,AB∥CD,AD=CD,∠2=40°,则∠1的度数是()A. 80°B. 75°C. 70°D. 65°3. 在学校开展的“爱我中华”的一次演讲比赛中,编号1,2,3,4,5,6的五位同学最后成绩如表所示.那么这五位同学演讲成绩的众数与中位数依次是()A. 92,88B. 88,90C. 88,92D. 88,914. 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是()A. B. C. D.5. 下列各式计算正确的是()A. a+2a2=3a3B. (a+b)2=a2+ab+b2C. 2(a﹣b)=2a﹣2bD. (2ab)2÷(ab)=2ab(ab≠0)6. 如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′是()A. 46°B. 45°C. 44°D. 43°7. 已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于:A. 0B. 1C. 2D. 38. 如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为()A. 1010B. 2C. 1D. ﹣10069. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,经过点C,则图中阴影部分的面积为()A. B. C. D.10. 如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数(x>0)的图象上,若△OAB的面积等于6,则k的值为()A. 2B. 4C. 6D. 8二、填空题11. 一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为________.12. 计算:=_______.13. 甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意列方程 _______.14. 如图,AB是⊙O的直径,已知AB=2,C,D是⊙O的上的两点,且,M是AB上一点,则MC+MD的最小值是__________.15. 如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为_________米.16. 如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A—C—B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C—B—A向A点运动,当其中一点运动到终点时,两点同时停止运动。

2019年吉林省长春市中考数学一模试卷(精品解析版)

2019年吉林省长春市中考数学一模试卷(精品解析版)

2019年吉林省长春市中考数学一模试卷一、选择题1.-的绝对值是( )A.B. 2019C.D.【答案】D 【解析】【分析】:直接利用绝对值的定义进而得出答案. 【详解】的绝对值是.故选D .【点睛】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( )A.B. C.D.【答案】C 【解析】【分析】:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】421 0000=4.21×106,故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图是一个正六棱柱的茶叶盒,其俯视图为( )A.B.C.D.【答案】B 【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.4.不等式的解集在数轴上表示正确的是( )A. B.C. D.【答案】A【解析】【分析】:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式3x-1≤2,得:x≤1,解不等式x+2>0,得:x>-2,则不等式组的解集为-2<x≤1,故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A. B. C. D.【答案】B【解析】【分析】:利用三角形内角与外角关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.6.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为( )A. B. C. 11m D.【答案】A【解析】如图,作DE⊥FC于点E,∴△ABC∽△CED,∴.设AB=x米,由题意得DE=6米,EF=2.2米.∴,解得x=5.5.故选A.7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升200米到达A处,在A处观察B地的俯角为α,则B,C两地之间的距离为()A.米 B. 米 C. 米 D. 米【答案】D【解析】【分析】:根据正切的定义解答即可.【详解】由题意得,∠B=,在Rt△ACB中,tanB=,则BC=米,故选D.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角和俯角的概念、熟记锐角三角函数的定义是解题的关键.8.如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90°,得到线段BC,若点C落在函数y=(x>0)的图象上,则k的值为( )A. 3B. 4C. 6D. 8【答案】B【解析】试题分析:根据旋转的性质和勾股定理可求得AB=AC=,然后设C的坐标为(4,),则AC=,解得k=±4,由图像可知k=4.故选:B.点睛:此题主要考查了勾股定理在平面直角坐标系中的应用,解题关键是明确旋转后的坐标变化,表示出C点的坐标,从而根据反比例函数的图像的性质,求出k的值.二、填空题9.比较大小:______3(填写“<”或“>”).【答案】.【解析】【分析】:首先把两个数分别平方,然后比较平方结果即可比较大小.【详解】∵7<9,∴<3.故答案为:<.【点睛】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.10.(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).11.如图,直线L:y=-x-3与直线y=a(a为常数)的交点在第三象限,则a的值可以为______.(写出一个即可)【答案】答案不唯一,只要-3<a<0即可【解析】分析:首先求出方程组的解,然后根据第三象限内点的坐标特征,列出关于a的不等式组,从而得出a的取值范围.【详解】解方程组,得.∵交点在第三象限,∴,解得-3 <a<0.故答案不唯一,只要-3<a<0即可.点睛:本题主要考查了一次函数与方程组的关系及第二象限内点的坐标特征.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.第四象限内点的坐标特征:横坐标大于0,纵坐标小于0.12.如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为______度.【答案】100【解析】试题分析:根据圆内接四边形的对角互补,可求得∠B=180°-∠ADC=50°,然后跟据圆周角定理可求得∠AOC=2×50°=100°.故答案为:100°.13.如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为______.【答案】【解析】解:由作图可知,E F垂直平分AB,即DC是Rt△ABC斜边上的中线,故DC=AB= .14.如图,在平面直角坐标系中,抛物线y=x2-2x-1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是______.【答案】2【解析】【分析】求得C的坐标,进而求得B的坐标,根据点P关于x轴的对称点恰好落在直线AB上得出三角形的高,然后根据三角形面积公式即可求得.【详解】解:令x=0,则y=x2-2x-1=-1,∴A(0,-1),把y=-1代入y=x2-2x-1得-1=x2-2x-1,解得x1=0,x2=2,∴B(2,-1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标以及三角形的高是解题的关键.三、解答题15.小明解方程=3出现了错误,解答过程如下:方程两边都乘以(x-2),得1-(1-x)=3(第一步)去括号,得1-1+x=3(第二步)移项,合并同类项,得x=3(第三步)检验,当x=3时x-2≠0(第四步)所以x=3是原方程的解.(第五步)(1)小明解答过程是从第____步开始出错的,原方程化为第一步的根据是_____.(2)请写出此题正确的解答过程.【答案】(1)一,方程两边都乘以(或都除以)同一个不为0的数,方程的解不变;(2)见解析. 【解析】【分析】(1)根据等式的基本性质判断可得;(2)根据解分式方程的步骤依次计算可得.【详解】(1)一方程两边都乘以(或都除以)同一个不为0的数,方程的解不变(2)解答过程如下:方程两边都乘以,得.解得.检验,当时所以是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.某校对初三学生进行物理、化学实验操作能力测试.物理、化学各有3个不同的操作实验题目,物理实验分别用①、②、③表示,化学实验分别用a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.王刚同学对物理的①、②号实验和化学的b、c号实验准备得较好.请用画树状图(或列表)的方法,求王刚同学同时抽到两科都准备得较好的实验题目的概率.【答案】【解析】试题分析:根据题意画出树状图,再求出一共有的等可能结果数,及他两科都抽到准备得较好的实验题目的情况数,利用概率公式求解即可。

2019年吉林省长春市中考数学一模考试试卷(解析版)

2019年吉林省长春市中考数学一模考试试卷(解析版)

2019年吉林省长春市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.-法;的绝对值是( )2.3. A. -2019B.201912019据统计,截止2019年2月,长春市实际居住人口约4210000 A , 4210000这个数用 科学记数法表示为()A. 42.1 x 105 B. 4.21 x 105 C. 4.21 x 106如图是一个正六棱柱的茶叶盒,其俯视图为( )D. 4.21 x 107A.4,不等式{乂竿项Mo 的解集在数轴上表示正确的是( )-1 05.已知如图,/kABC 为直角三角形,zC=90°,若沿图中虚线剪去乙C,贝0zl+z2等于( )A. 315°B. 270°C. 180°D. 135°6,如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱 子(人与箱子的总高度约为2.2m )乘电梯刚好安全通过,请你根据图中数据回答, 两层楼之间的高约为()A. 5.5m D. 2.2m7,如图,某地修建高速公路,要从3地向。

地修一座隧道(B,。

在同一水平面上),为了测量。

两地之间的距离,某工程师乘坐热气球从。

地出发,垂直上升200米到达A处,在A处观察B地的俯角为a,则B,C两地之间的距离为()A.200sina米B.200tana米C.竺米sina8,如图,在平面直角坐标系中,点A、B的坐标分贝为(0,3)、(1,0),将线段AB绕点B顺时针旋转90。

,得到线段3C,若点。

落在函数y=§(x>0)的图象上,贝琳的值为()A.3B.4C.6D.8二、填空题(本大题共6小题,共18.0分)9.比较大小:V73(填写或">”).10.(a2)3=.11.如图,直线L:y=-|x-3与直线y=a(a为常数)的交点在第三象限,则a的值可以为.(写出一个即可)12,如图,四边形ABCQ内接于若ZADC=130°,则zAOC的大小为度.DB13.如图,在Rt「AB C中,zACB=90。

吉林省吉林市2019年中考数学模拟试卷(含答案)

吉林省吉林市2019年中考数学模拟试卷(含答案)

2019年吉林省吉林市中考数学模拟试卷一.选择题(满分12分,每小题2分)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列各运算中,计算正确的是()A.(a﹣2)2=a2﹣4 B.(3a2)2=9a4C.a6÷a2=a3D.a3+a2=a53.如图所示几何体的左视图正确的是()A.B.C.D.4.若a<0,则不等式﹣ax+a<0的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.36.如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D 的度数为()A.25°B.30°C.40°D.50°二.填空题(满分24分,每小题3分)7.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.8.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).9.方程=的解是.10.若x+y=1,x﹣y=5,则xy=.11.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则AC的长为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.13.如图,在平面直角坐标系xOy中,已知点A(0,),B(﹣1,0),菱形ABCD的顶点C在x轴的正半轴上,其对角线BD的长为.14.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是.三.解答题(满分20分,每小题5分)15.先化简,再求值:,其中a=2.16.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.17.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.四.解答题(满分28分,每小题7分)19.(7分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD=3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)20.(7分)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:统计量班级平均数中位数方差优秀率甲班 6.5 3.4530%乙班 6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.21.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(7分)如图,在正方形ABCD中,点E在BC上,(1)将△ABE沿BC方向平移,使点B与点C重合,所得的像为△DCF,请画出所得的像;(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像;(3)试猜想直线DF与AG的位置关系,并说明理由.五.解答题(满分16分,每小题8分)23.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵a =3,b =7,c =4,∴b 2﹣4ac =72﹣4×3×4=1. ∴y ==.∴y 1=﹣1,y 2=﹣.当y =﹣1时,x ﹣2=﹣1,∴x =1; 当y =﹣时,x ﹣2=﹣,∴x =. ∴原方程的解为:x 1=1,x 2=.(1)请仿照上面的例题解一元二次方程:2(x ﹣3)2﹣5(x ﹣3)﹣7=0; (2)若(a 2+b 2)(a 2+b 2﹣2)=3,求代数式a 2+b 2的值.24.(8分)如图,一次函数y =﹣x +5的图象与坐标轴交于A ,B 两点,与反比例函数y =的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,且CM =1,过点N 作ND ⊥x 轴于点D ,且DN =1.已知点P 是x 轴(除原点O 外)上一点. (1)直接写出M 、N 的坐标及k 的值;(2)将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由; (3)当点P 滑动时,是否存在反比例函数图象(第一象限的一支)上的点S ,使得以P 、S 、M 、N 四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S 的坐标;若不存在,请说明理由.六.解答题(满分20分,每小题10分)25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.26.(10分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P 的坐标.参考答案一.选择题1.解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.2.解:A、(a﹣2)2=a2﹣4a+4,此选项错误;B、(3a2)2=9a4,此选项正确;C、a6÷a2=a4,此选项错误;D、a3与a2不是同类项,不能合并,此选项错误;故选:B.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:﹣ax+a<0,﹣ax<﹣a,∵a<0,∴﹣a>0,∴x<1,故选:A.5.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.6.解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:C.二.填空题7.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.8.解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).9.解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.10.解:∵x+y=1,x﹣y=5,∴xy= [(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣611.解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∵在△CDE中,∠C=30°,DC=AB=6,∠DEC=90°,∴CE=3,∴AC=6.12.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,。

2019年吉林地区中考数学一模试卷(解析版)

2019年吉林地区中考数学一模试卷(解析版)

2019年吉林地区中考数学一模试卷一、单项选择题(每小题2分,共12分)1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣22.吉林市人民大剧院于2015年8月建成,建筑面积约37 000平方米,将37 000用科学记数法表示为()A.0.37×105 B.3.7×104C.37×103D.370×1023.如图,已知几何体由5个相同的小正方体组成,那么它的主视图是()A.B.C.D.4.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°5.如图,在平面直角坐标系中,点P的坐标为(﹣3,4),以点O为圆心,以OP长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A.5 B.﹣3 C.﹣4 D.﹣56.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°二、填空题(每小题3分,共24分)7.不等式2x+3<1的解集为.8.计算=.9.分式方程的解为x=.10.某小学对该校留守儿童人数进行了统计,得到每个年级的留守儿童分数分别为9,15,10,18,17,20,这组数据的中位数为人.11.某商品按进价提高20%出售,若进价为a元,则售价为元.12.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为.(结果保留π)13.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为.三、解答题(每小题5分,共20分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.16.今年植树节期间某校20名学生共植树52棵,其中男生每人植树3棵,女生每人植树2棵,参加植树的男生和女生各有多少名?17.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.18.如图,在正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.四、解答题(每小题7分,共28分)19.如图,点A、B的坐标分别为(4,0)(0,2).(1)画线段AB关于x轴的对称线段AC,画AP⊥x轴于点A,在AP上取点D,使得DB=AB,连接DB;(2)直接写出四边形ACBD是哪种特殊的四边形.20.为了了解用户对某国手机的A、B、C、D四种型号的购买情况,某手机经销商随机对m名该手机用户的购买型号进行了调查,将调查数据整理并绘制成如图的统计图,根据统计图提供的信息,解答下列问题:(1)求m的值;(2)四种型号中用户最喜欢的型号为,选择该种型号手机的人数占被调查人数的百分比为;(3)根据统计结果,估计2000名该手机用户中,选择D型的用户人数?21.热气球的探测器显示,从热气球看一栋楼顶部的仰角α为27°,看这栋楼底部的俯角β为58°,热气球与这栋楼的水平距离为120米,这栋楼有多高(结果取整数)?(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51,sin58°=0.85,cos58°=0.53,tan58°=1.60)22.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计),小李与甲地的距离y(单位:km)和所用时间x(单位:h)之间的关系如图所示.(1)小李骑摩托车所用的时间m=,汽车的速度是km/h;(2)当m≤x≤3时,求y关于x的函数解析式.五、解答题(每小题8分,共16分)23.如图,AB是⊙O的弦,点O关于AB的对称点C在⊙O上,过点B作BD⊥AC交AC 的延长线于点D.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,请直接写出BD的长.24.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.①在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC 与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.(2)请你结合图①,写出一个筝形的判定方法(定义除外).在四边形ABCD中,若,则四边形ABCD是筝形.(3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.六、解答题(每小题10分,共20分)25.如图,在矩形ABCD中,AB=6cm,AD=2cm,点E从点A开始,沿射线AB方向平移,在平移过程中,以线段AE为斜边向上作等腰三角形AEF,当EF过点C时,点E停止移动,设点E平移的距离为x(cm),△AEF与矩形ABCD重叠部分的面积为y(cm2).(1)当点F落在CD上时,x=;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设EF的中点为Q,直接写出在整个平移过程中点Q移动的距离.26.如图,二次函数y=﹣x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.=,(1)当k=3,m=2时,S△ABE=,当k=4,m=3时,S△ABE=;当k=5,m=4时,S△ABE的大小,并证明你的猜想;(2)根据(1)中的结果,猜想S△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的(3)当S△ABE四边形为平行四边形时,请直接写出m与n满足的关系式.2016年吉林地区中考数学一模试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣2【考点】有理数的乘法.【分析】根据有理数乘法法则来计算.【解答】解:﹣1×2=﹣(1×2)=﹣2.故选D.2.吉林市人民大剧院于2015年8月建成,建筑面积约37 000平方米,将37 000用科学记数法表示为()A.0.37×105 B.3.7×104C.37×103D.370×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:37000用科学记数法表示应为3.7×104,故选B.3.如图,已知几何体由5个相同的小正方体组成,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】得到从几何体正面看得到的平面图形即可作出判断.【解答】解:从正面看得到3列正方形的个数依次为1,2,1.故选C.4.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°【考点】平行线的性质;直角三角形的性质.【分析】首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.5.如图,在平面直角坐标系中,点P的坐标为(﹣3,4),以点O为圆心,以OP长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为()A.5 B.﹣3 C.﹣4 D.﹣5【考点】坐标与图形性质.【分析】先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.【解答】解:∵点P坐标为(﹣3,4),∴OP==5,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=5,∵点A在x轴的负半轴上,∴点A的横坐标是﹣5.故选D.6.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠A=90°﹣55°=35°,∴∠BCD=∠A=35°.故选D.二、填空题(每小题3分,共24分)7.不等式2x+3<1的解集为x<﹣1.【考点】解一元一次不等式.【分析】根据解不等式的方法可以得到2x+3<1的解集,本题得以解决.【解答】解:2x+3<1不等式两边同时减去3,得2x<﹣2两边同时除以2,得x<﹣1,故答案为:x<﹣1.8.计算=3.【考点】二次根式的加减法.【分析】原式化简后,合并同类二次根式即可得到结果.【解答】解:原式=+2=3.故答案为:3.9.分式方程的解为x=2.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣2,解得:x=2,经检验x=2是分式方程的解,则分式方程的解为x=2,故答案为:2.10.某小学对该校留守儿童人数进行了统计,得到每个年级的留守儿童分数分别为9,15,10,18,17,20,这组数据的中位数为16人.【考点】中位数.【分析】根据中位数的定义,将这组数据从小到大重新排列,求出最中间两个数的平均数即可.【解答】解:∵共有6个数,∴这组数据的中位数是第3、4个数的平均数,∴这组数据的中位数是(17+15)÷2=16(人).故答案为:16.11.某商品按进价提高20%出售,若进价为a元,则售价为a元.【考点】列代数式.【分析】根据:进价×(1+增长百分率)=售价,即可得.【解答】解:若进价为a元,则售价为(1+20%)a=a,故答案为:a.12.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为π+2.(结果保留π)【考点】弧长的计算;翻折变换(折叠问题).【分析】根据折叠的性质得到=,利用扇形的弧长的计算的长,根据周长公式计算即可.【解答】解:的长为=π,由折叠的性质可知,=,∴图中阴影部分的周长=AO++=AO+=π+2,故答案为:π+2.13.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【考点】反比例函数系数k的几何意义.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.14.如图,在平行四边形ABCD中,∠BAD=110°,将四边形BCD绕点A逆时针旋转到平行四边形AB′C′D′的位置,旋转角α(0°<α<70°),若C′D′恰好经过点D,则α的度数为40°.【考点】旋转的性质;平行四边形的性质.【分析】由平行四边形的性质和旋转的性质得出AD′=AD,∠D′=∠ADC=70°,由等腰三角形的性质得出∠ADD′=∠D′=70°,再由三角形内角和定理即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADC+∠BAD=180°,∴∠BDC=180°﹣110°=70°,由旋转的性质得:AD′=AD,∠D′=∠ADC=70°,∴∠ADD′=∠D′=70°,∴∠α=180°﹣2×70°=40°;故答案为:40°.三、解答题(每小题5分,共20分)15.先化简,再求值:2a(a+2b)﹣(a+2b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:2a(a+2b)﹣(a+2b)2=2a2+4ab﹣a2﹣4ab﹣4b2=a2﹣4b2,当a=﹣1,b=时,原式=(﹣1)2﹣4×()2=﹣7.16.今年植树节期间某校20名学生共植树52棵,其中男生每人植树3棵,女生每人植树2棵,参加植树的男生和女生各有多少名?【考点】二元一次方程组的应用.【分析】设参加植树的男生有x人,女生有y人,根据:“男、女生共20人、植树共52棵”列方程组求解可得.【解答】解:设参加植树的男生有x人,女生有y人,根据题意,得:,解得:,答:参加植树的男生有12名,女生有8人.17.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:.18.如图,在正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.【解答】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.四、解答题(每小题7分,共28分)19.如图,点A、B的坐标分别为(4,0)(0,2).(1)画线段AB关于x轴的对称线段AC,画AP⊥x轴于点A,在AP上取点D,使得DB=AB,连接DB;(2)直接写出四边形ACBD是哪种特殊的四边形.【考点】作图-轴对称变换.【分析】(1)直接利用轴对称图形的性质得出对应线段,进而得出答案;(2)直接利用平行四边形的判定方法进而得出答案.【解答】解:(1)如图所示:四边形ACBD即为所求;(2)四边形ACBD是平行四边形,理由:∵BC=AD,BD=AC,∴四边形ACBD是平行四边形.20.为了了解用户对某国手机的A、B、C、D四种型号的购买情况,某手机经销商随机对m名该手机用户的购买型号进行了调查,将调查数据整理并绘制成如图的统计图,根据统计图提供的信息,解答下列问题:(1)求m的值;(2)四种型号中用户最喜欢的型号为50,选择该种型号手机的人数占被调查人数的百分比为36%;(3)根据统计结果,估计2000名该手机用户中,选择D型的用户人数?【考点】条形统计图;用样本估计总体.【分析】(1)m等于各型个数的和;(2)最喜欢的就是数量最多的类型,然后根据百分比的意义求解;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)m=8+10+18+14=50;(2)四种型号中用户最喜欢的型号为C,该种型号手机的人数占被调查人数的百分比时是×100%=36%,故答案是:C,36%;(3)2000×=560(人),答:估计选择D的用户是560人.21.热气球的探测器显示,从热气球看一栋楼顶部的仰角α为27°,看这栋楼底部的俯角β为58°,热气球与这栋楼的水平距离为120米,这栋楼有多高(结果取整数)?(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51,sin58°=0.85,cos58°=0.53,tan58°=1.60)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的定义分别求出BD、DC的长,求和即可.【解答】解:在Rt△ABD中,tanα=,则BD=AD•tanα=120×0.51=61.2,在Rt△ACD中,tanβ=,则CD=AD•tanβ=120×1.60=192,∴BC=BD+CD=61.2+192=253.2≈253,答:这栋楼高约为253米.22.甲、乙两地相距145km,小李骑摩托车从甲地出发去往乙地,速度为25km/h,中途因故换成汽车继续前往乙地(换车时间忽略不计),小李与甲地的距离y(单位:km)和所用时间x(单位:h)之间的关系如图所示.(1)小李骑摩托车所用的时间m=1,汽车的速度是60km/h;(2)当m≤x≤3时,求y关于x的函数解析式.【考点】一次函数的应用.【分析】(1)利用小李骑摩托车的速度以及其行驶的路程得出m的值,再利用甲、乙两地相距145km,再结合行驶时间得出汽车的速度;(2)首先得出P,Q点坐标,进而利用待定系数法求出一次函数解析式.【解答】解:(1)由题意可得:小李骑摩托车所用的时间m=25÷25=1(h),汽车的速度是:÷(3﹣1)=60(km/h);故答案为:1,60;(2)当m≤x≤3时,设y关于x的函数关系式为:y=kx+b,由题可得:m=1,P(1,25),Q(3,145),把P,Q两点坐标代入:y=kx+b,得:,解得:,故y关于x的函数解析式为:y=60x﹣35.五、解答题(每小题8分,共16分)23.如图,AB是⊙O的弦,点O关于AB的对称点C在⊙O上,过点B作BD⊥AC交AC 的延长线于点D.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,请直接写出BD的长.【考点】切线的判定.【分析】(1)欲证明BD是⊙O的切线,只要证明∠OBD=90°,先四边形AOBC是菱形,得OB∥AD,根据两直线平行同旁内角互补即可解决问题.(2)连接OC,先证明△OBC,△OAC都是等边三角形,在RT△BCD中利用30度性质即可解决问题.【解答】(1)证明:∵点O关于AB的对称点C在⊙O上,∴AO=AC,BO=BC,∵AO=OB,∴AO=OB=BC=CA,∴四边形AOBC是菱形,∴AD∥OB,∴∠D+∠OBD=180°,∵BD⊥AD,∴∠D=90°,∴∠OBD=90°,∴BD⊥OB,∵OB是⊙O的半径,∴DB是⊙O的切线.(2)连接OC,由(1)可知四边形AOBC是菱形,∴OB=OC=BC=OA=AC,∴△OBC,△OAC都是等边三角形,∴∠BCO=∠ACO=60°,∴∠ACB=120°,∴∠BCD=180°﹣∠ACB=60°,在RT△BCD中,∵∠D=90°,BC=2,∠DBC=30°,∴CD=BC=1,∴BD===.24.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.①在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC 与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.(2)请你结合图①,写出一个筝形的判定方法(定义除外).在四边形ABCD中,若AD=CD,∠ADB=∠CDB,则四边形ABCD是筝形.(3)如图③,在等边三角形OGH中,点G的坐标为(﹣1,0),在直线l:y=﹣x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)连接AF,通过给定的条件结合全等直角三角形的判定定理(HL)可得出Rt △AFB≌Rt△AFD,由此找出BF=DF,结合筝形定义即可得出结论;(2)若要四边形ABCD是筝形,只需证明△ABD≌△CBD即可.根据全等三角形的判定定理(SAS)随便选取一组条件“当AD=CD,∠ADB=∠CDB”来证明;(3)过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,过点G作GP2⊥OH 与N交直线y=﹣x于点P2,连接HP2,由等边三角形的三线合一可得知“HM为OG的垂直平分线,GN为OH的垂直平分线”,由此即得出“四边形OHGP1为筝形,四边形OGHP2为筝形”,再根据给定条件找出点M、N、H点的坐标,利用待定系数法即可得出直线HM和直线GN的解析式,最后结合两直线的交点知识求出点P的坐标.【解答】解:(1)四边形ABFD是筝形.理由:如图②,连接AF.在Rt△AFB和Rt△AFD中,,∴Rt△AFB≌Rt△AFD(HL),∴BF=DF,又∵AB=AD,∴四边形ABFD是筝形.(2)若要四边形ABCD是筝形,只需△ABD≌△CBD即可.当AD=CD,∠ADB=∠CDB时,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴AB=CB,∴四边形ABCD是筝形.故答案为:AD=CD,∠ADB=∠CDB.(3)存在,理由如下:过点H作HP1⊥OG于点M交直线y=﹣x于点P1点,连接GP1,过点G作GP2⊥OH与N 交直线y=﹣x于点P2,连接HP2,如图③所示.∵△OGH为等边三角形,∴HM为OG的垂直平分线,GN为OH的垂直平分线,且OG=GH=HO,∴P2O=P2H,P1O=P1G,∴四边形OHGP1为筝形,四边形OGHP2为筝形.∵△OGH为等边三角形,点G的坐标为(﹣1,0),∴点H的坐标为(,),点M的坐标为(,0),点N的坐标为(,).①∵H(,),M(,0),∴直线HM的解析式为x=,令直线y=﹣x中的x=,则y=﹣.∴P1的坐标为(,﹣);②设直线GN的解析式为y=kx+b,则有,,解得:,∴直线GN的解析式为y=﹣x+.联立,解得:,故点P2的坐标为(﹣1,1).综上可知:在直线l:y=﹣x上存在点P,使得以O,G,H,P为顶点的四边形为筝形,点P的坐标为(,﹣)或(﹣1,1).六、解答题(每小题10分,共20分)25.如图,在矩形ABCD中,AB=6cm,AD=2cm,点E从点A开始,沿射线AB方向平移,在平移过程中,以线段AE为斜边向上作等腰三角形AEF,当EF过点C时,点E停止移动,设点E平移的距离为x(cm),△AEF与矩形ABCD重叠部分的面积为y(cm2).(1)当点F落在CD上时,x=4cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设EF的中点为Q,直接写出在整个平移过程中点Q移动的距离.【考点】四边形综合题.【分析】(1)直接利用等腰直角三角形的性质得出AF,AE的长,进而求出答案;(2)分段讨论,①当0<x≤4时,②当4<x≤6时,③当6<x≤8时,进而求出答案;(3)根据题意得出Q点移动到C点时,即AQ的长就是中点Q移动的距离,进而得出答案.【解答】解:(1)如图1,∵点F落在CD上,△AEF是等腰直角三角形,∴可得AD=DF=2cm,则AF=AE=2cm∴x=AE==4(cm),故答案为:4cm;(2)①当0<x≤4时,如图2所示,过点F作FH⊥AB于H,则FH=AE=x,=AE•FH=x x=x2,∴y=S△AEF②当4<x≤6时,如图3所示,过点F作FH⊥AB于H,FH交CD于点G,AF,EF分别交CD于M,N,由题意可得:△MNF是等腰直角三角形,∴FG=FH﹣GH=x﹣2,∴MN=2FG=2(x﹣2)=x﹣4,∴S △MNF =MN •FG=(x ﹣4)(x ﹣2)=(x ﹣2)2,∴y=S △AEF ﹣S △MNF ==2x ﹣4.③当6<x ≤8时,如图4所示,过点F 作FH ⊥AB 于H ,FH 交CD 于点G ,AF 、EF 分别交CD 于M 、N ,EF 交BC 于点P , 由题意可得:△MNF ,△EPB 都是等腰直角三角形,S MNF =(x ﹣2)2,S △EPB =EB •BP=(x ﹣6)2,∴y=S △AEF ﹣S △MNF ﹣S △EPB =﹣x 2+8x ﹣22,综上所述:y=;(3)如图5,∵EF 的中点为Q ,∴当E 点停止时,可得△ADM ,△FMC ,△CBE 为等腰直角三角形,则AD=DM=2cm ,BC=BE=2cm ,故MC=4cm ,AE=8cm ,∴=,∴此时C ,Q 点重合,∴AQ=2cm ,即在整个平移过程中点Q 移动的距离为2cm .26.如图,二次函数y=﹣x2+k(k>0)的图象与x轴相交于A、C两点(点A在点C的左侧),与y轴交于点B,点D为线段OC上一点(不与点O、C重合),以OD为边向上作正方形ODEF,连接AE,BE,AB,AB,设点D的横坐标为m.=,(1)当k=3,m=2时,S△ABE=8,当k=4,m=3时,S△ABE=;当k=5,m=4时,S△ABE(2)根据(1)中的结果,猜想S的大小,并证明你的猜想;△ABE=8时,在坐标平面内有一点P,其横坐标为n,当以A,B,E,P为顶点的(3)当S△ABE四边形为平行四边形时,请直接写出m与n满足的关系式.【考点】二次函数综合题.【分析】(1)令y=0,解关于x的一元二次方程得出x的值,即可得知点A的坐标,令x=0求出y值,由此得出B点的坐标,再根据正方形形的性质以及D点的横坐标为m得出点D、点E的坐标,代入k、m的值得出点A、B、E、D四点的坐标,再根据三角形的面积公式即可得出结论;=.由(1)得出由k、m表示的点A、B、E、D四点的坐标,结合三角形(2)S△ABE的面积公式求出S即可得出结论;△ABE=8找出k值,设点P的坐标为(n,y).以A,B,E,P为顶点的四边形(3)根据S△ABE为平行四边形有三种情况,分情况考虑,利用平行四边形的性质以及坐标系中点的意义即可得出结论.【解答】解:(1)令y=﹣x2+k=0,则x2=k2,解得:x1=﹣k,x2=k,∴点A的坐标为(﹣k,0).令x=0,则y=k,∴点B的坐标为(0,k).∵D点的横坐标为m,∴点E的坐标为(m,m),点D的坐标为(m,0).当k=3,m=2时,A(﹣3,0),B(0,3),E(2,2),D(2,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×3×3+×(3+2)×2﹣(3+2)×S△ABE2=;当k=4,m=3时,A(﹣4,0),B(0,4),E(3,3),D(3,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×4×4+×(4+3)×3﹣(4+3)×S△ABE3=8;当k=5,m=4时,A(﹣5,0),B(0,5),E(4,4),D(4,0),=AO•OB+(OB+DE)•OD﹣AD•DE=×5×5+×(5+4)×4﹣(5+4)×S△ABE4=.故答案为:;8;.=.(2)S△ABE证明:由(1)知:A(﹣k,0),B(0,k),E(m,m),D(m,0),=AO•OB+(OB+DE)•OD﹣AD•DE=k•k+(k+m)m﹣(k+m)m=.S△ABE(3)设点P的坐标为(n,y).==8,∵S△ABE∴k=4.当以A,B,E,P为顶点的四边形为平行四边形时,分三种情况:①当AB、EP为对角线时,令对角线的交点为M,如图1所示.∵四边形AEBP为平行四边形,∴点M平分AB,点M平分EP.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴﹣4+0=m+n,即m+n=﹣4;②AB、EP为对边,且点P在E的左侧时,延长ED,过点P作PN⊥ED于点N,如图2所示.∵四边形AEBP为平行四边形,∴AB=PE,且AB∥PE,∴AO=PN.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴0﹣(﹣4)=m﹣n,即m﹣n=4;③AB、EP为对边,且点P在E的右侧时,延长FE,过点P作PN⊥FE于点N,如图3所示.∵四边形AEBP为平行四边形,∴AB=PE,且AB∥PE,∴AO=PN.∵A(﹣4,0),B(0,4),E(m,m),P(n,y),∴0﹣(﹣4)=n﹣m,即n﹣m=4.综上可知:当以A,B,E,P为顶点的四边形为平行四边形时,m与n满足的关系式有m+n=﹣4,m﹣n=4和n﹣m=4.2016年10月24日。

吉林省吉林市2019-2020学年中考数学一模考试卷含解析

吉林省吉林市2019-2020学年中考数学一模考试卷含解析

吉林省吉林市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)22.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线3.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°4.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG V ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有()个A .1个B .2 个C .3 个D .4个5.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是46.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .58.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=- D .2+2=29.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)10.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .1612.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____.15.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.16.估计无理数11在连续整数___与____之间.17.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .18.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?21.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 2.C 【解析】A 、错误.这个四边形有可能是等腰梯形.B 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C 、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C . 3.D 【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案. 【详解】解:由题意可得:∠EDF=30°,∠ABC=45°, ∵DE ∥CB ,∴∠BDE=∠ABC=45°, ∴∠BDF=45°BDF=45°-30°-30°-30°=15°=15°. 故选D . 【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE 的度数是解题关键. 4.C 【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF ,∠A=∠GFD=90°,于是根据“HL”判定△ADG ≌△FDG ,再由GF+GB=GA+GB=12,EB=EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC ∠=45〫,再抓住△BEF 是等腰三角形,而△GED 显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA ,∠DFE=∠C=90°, ∴∠DFG=∠A=90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x+6)2=62+(12﹣x )2, 解得:x=4∴AG=GF=4,BG=8,BG=2AG ,②正确; ∵△ADG ≌△FDG ,△DCE ≌△DFE , ∴∠ADG=∠FDG FDG,,∠FDE=∠CDE ∴∠GDE=12ADC ∠=45〫.③正确;BE=EF=6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,④错误; ∴正确说法是①②③ 故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度. 5.D 【解析】试题分析:A 、选举中,人们通常最关心的数据为出现次数最多的数,所以A 选项的说法正确; B 、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B 选项的说法正确;C 、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,所以C 选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法 6.B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8.A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】,正确;A、原式=23=6B 、原式不能合并,错误;C 、原式=()222-=,错误;D 、原式=22,错误. 故选A . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 9.C 【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论. 【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意;B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意;C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意, 故选C .【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.10.B 【解析】 【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30° ∵BO ∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°DOC=90°-45°-45°-45°-30°-30°-30°=15°=15° 故选B 【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等 11.C【解析】 画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 12.B 【解析】分析:本题是考察数轴上的点的大小的关系. 解析:由图知,b<0<a ,故①正确,因为b 点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a ,所以ab<0,故③错误,由①知a-b>a+b ,所以④正确.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(﹣2,4) 【解析】 【分析】根据点P(x,y)关于原点对称的点为(-x,-y )即可得解. 【详解】解:∵点A (2,-4)与点B 关于原点中心对称, ∴点B 的坐标为:(-2,4). 故答案为:(-2,4). 【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键. 14.8x + 【解析】 【分析】根据数据x 1,x 2,…,x n 的平均数为x =1n(x 1+x 2+…+x n ),即可求出数据x 1+1,x 2+1,…,x n +1的平均数.【详解】数据x 1+1,x 2+1,…,x n +1的平均数=1n (x 1+1+x 2+1+…+x n +1)=1n(x 1+x 2+…+x n )+1=x +1. 故答案为x +1. 【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标. 15.517m -<…或843m =-. 【解析】 【分析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m=-++-的图象在22x -<…上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<…之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围; 【详解】联立2325y x mx y x m⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-,∴抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<…上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--=解得:843m =±, 当843m =+时,252322m x +==+>当843m =-时,25232m x +==-,满足题意,当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<,∴517m -<<令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-,故57m =-也满足题意, 故m 的取值范围为:517m -<…或843m =-故答案为:517m -<…或843m =-. 【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键. 16.3 4 【解析】 【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题. 【详解】解:∵91116<<, ∴3114<<,∴无理数11在连续整数3与4之间. 【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17.1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,AB=22AC BC +=22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18.1.【解析】【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=221.6 1.2求出即可;(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。

2019年吉林省中考数学试题(含解析)

2019年吉林省中考数学试题(含解析)

2019吉林省数学中考解析一、单项选择题1.(2019吉林省,1,2分)如图,数轴上蝴蝶所在点表示的数可能为(A) 3 (B) 2 (C) 1 (D) -1【答案】D【解析】从图中可以看出蝴蝶在原点的左侧,所以可能是-1,故选择D【知识点】数轴2. (2019吉林省,2,2分)如图,由6个相同的小正方体组合成一个立方体,它的俯视图为【答案】D【解析】从上面看是一行四个小正方形,故选D【知识点】三视图3. (2019吉林省,3,2分)若a 为实数,则下列格式的运算结果比a 小的是(A) a+1 (B) a-1 (C) 1a ⨯ (D) 1a ÷【答案】B【解析】选项A 比a 大1;选项C ,选项D 和a 相等,只有选项B 比a 小,故选B【知识点】实数的大小4. (2019吉林省,4,2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(A) 30° (B) 90° (C) 120° (D) 180°【答案】C【解析】这个交通标志图案是由3个基本图案组成的,所以旋转角至少为120°,故选C【知识点】图形的旋转5. (2019吉林省,5,2分)如图,在⊙O 中,弧AB 所对的圆周角∠ACB=50°,若P 为弧AB 上一点,∠AOP=55°,则∠POB 的度数为(A) 30° (B) 45° (C) 55° (D) 60°【答案】B【解析】根据同弧所对的圆周角是圆心角的一半可知,∠AOB=2∠ACB=110°,因为∠AOP=55°,所以∠POB 的度数为45°,故选B【知识点】同弧所对的圆周角与圆心角的关系6. (2019吉林省,6,2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是(A) 两点之间,线段最短 (B) 平行于同一条直线的两条直线平行(C) 垂线段最短 (D) 两点确定一条直线【答案】A【解析】这里主要体现了长度问题,所以蕴含的数学道理是两点之间,线段最短,选择A【知识点】生活中的数学应用二、填空题7. (2019吉林省,7,3分)分解因式:a 2-1=【答案】(a+1)(a-1)【解析】平方差公式:两数和与这两数的差的积【知识点】公式法因式分解8. (2019吉林省,8,3分)不等式3x-2>1的解集是【答案】x >1【解析】移项,得3x >2+1,即3x >3,∴x >1【知识点】解不等式9. (2019吉林省,9,3分)计算yx x 22y = 【答案】x21 【解析】单项式乘以单项式,分子分母分别相乘,能约分的要约分【知识点】整式的乘法,约分10. (2019吉林省,10,3分)若关于x 的一元二次方程(x+3)2=c 有实数根,则c 的值可以为 (写出一个即可)【答案】答案不唯一,例如5,(c ≥0时方程都有实数根)【解析】c ≥0时方程都有实数根【知识点】一元二次方程根的情况11. (2019吉林省,11,3分)如图,E 为△ABC 边CA 延长线上一点,过点E 作ED ∥BC ,若 ∠BAC=70°,∠CED=50°,则∠B=【答案】60°【解析】因为ED ∥BC ,所以∠CED=∠C=50°,因为∠BAC=70°,三角形内角和为80°,所以∠B=60°【知识点】平行线的性质,三角形内角和定理12. (2019吉林省,12,3分)如图,在四边形ABCD 中,AB=10,BD ⊥AD ,若将△BCD 沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为【答案】20【解析】∵BD ⊥AD ,E 为AB 的中点,∴BE=DE=AB 21=5,∵折叠,∴BC=BE=5,CD=DE=5,∴四边形BCDE 的周长为5+5+5+5=20【知识点】直角三角形斜边的中线等于斜边的一半,折叠的性质13. (2019吉林省,13,3分)在某一时刻,侧的一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为 m【答案】54 【解析】由同一时刻阳光下的影子与物高之间的关系可得2121影影物物=,∴9038.12=物 ∴可求得这栋楼的高度为54米.【知识点】由同一时刻阳光下的影子与物高之间的关系,图形的相似的实际应用14. (2019吉林省,14,3分)如图,在扇形OAB 中,∠AOB=90°,D 、E 分别是半径OA,OB 上的点,以OD,OE 为邻边的 ODCE 的顶点C 在弧AB 上,若OD=8,OE=6,则阴影部分图形的面积是 (结果保留π)【答案】25π-48【解析】如图,连接DE,OC∵ ODCE ,∠AOB=90°,∴ ODCE 是矩形,∴DE=OC ,Tt △DOE 中,OD=8,OE=6,∴DE=10=OC ,∴S 阴=S 扇-S 矩=86-10412⨯⨯π=25π-48 【知识点】矩形的性质,扇形的面积三、解答题15.(2019吉林省,15,5分)先化简,再求值:(a-1)2+a(a+2),其中a=2【思路分析】将原代数式化简求值即可【解题过程】解:原式=a 2-2a+1+a 2+2a=2a 2+1,当a=2时, 原式=51221222=+⨯=+⨯)( 【知识点】整式的运算16.(2019吉林省,16,5分)甲口袋中装有红色、绿色两把扇子,这两把扇子出颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别,从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用树状图或列表的方法,求取出的扇子和手绢都是红色的概率.【思路分析】根据题意画出树状图或者列出表格,即可求出概率【解题过程】解:如图,共有4种等可能结果,其中取出的擅自和手绢都是红色的有1种可能,∴P (取出的擅自和手绢都是红色)=41【知识点】概率17. (2019吉林省,17,5分)已知y 是x 的反比例函数,并且当x=2时,y=6,(1)求y 关于x 的函数解析式;(2)当x=4时,求y 的值【思路分析】(1)将x=2时,y=6代入解析式即可求出待定系数,即可求出解析式;(2)当x=4时,代入(1)中的解析式,可求出y 的值【解题过程】解:(1)∵y 是x 的反比例函数,∴设y=xk (k ≠0), ∵当x=2时,y=6,∴k=xy=12,∴y=x12 (2)当x=4时,代入y=x12得, y=3412= 【知识点】反比例函数18. (2019吉林省,18,5分)如图,在 ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接BE ,DF求证:△ABE ≌△CDF【思路分析】由作图可知,AE=CF ,有平行四边形的性质可知对边相等,对角相等,由SAS 可以证明两个三角形全等.【解题过程】解:由题意得AE=FC∵ ABCD ,∴AB=DC ,∠A=∠C在△ABE 和△CDF 中,AE=CF,∠A=∠C,AB=DC ,∴△ABE ≌△CDF【知识点】平行四边形的性质,三角形的全等四、解答题19.(2019吉林省,19,7分)图①,图②均为44⨯的正方形网格,每个小正方形的顶点称为格点,在图①中已画出线段AB ,在图②中已画出线段CD ,其中A,B,C,D 均为格点,按下列要求画图:(1)在图①中,以AB 为对角线画一个菱形AEBF ,且E,F 为格点;(2)在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且G,H 为格点,∠CGD=∠CHD=90°【思路分析】(1)AB 为对角线长为4,则另一条对角线在AB 的中垂线上,如图所示;(2)根据勾股定理,画出格点三角形,如图所示【解题过程】【知识点】菱形,勾股定理20.(2019吉林省,20,7分)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖而成,现将一些山楂分别串在若干跟竹签上,如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签,这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂,若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(填写序号)(1)bc+d=a; (2)ac+d=b; (3)ac-d=b【思路分析】(1)根据题意表示出山楂的个数,列出二元一次方程组即可解决(2)表示出山楂的总个数,即竹签串的山楂与剩余的山楂的和就是总山楂的个数【解题过程】问题解决解:设竹签x根,山楂y个,根据题意得答:竹签有20根,山楂104个反思归纳(2)【知识点】二元一次方程组的应用,代数式21.(2019吉林省,21,7分)墙壁及淋浴花洒截面如图所示,已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°,求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【思路分析】如图,过点C 作CM ⊥BD 于点M ,解Rt ▲ACM ,可以求出AM 的长,从而可以求出BM 的长,由于CE=BM 问题可以解决.【解题过程】解:如图,过点C 作CM ⊥BD 于点M ,Rt ▲ACM 中AC=30m,∠CAD=43°,cos ∠CAD=30AM AC AM = ∴AM=30cos ∠CAD=73.030⨯=21.9,所以CE=AM+AB=21.9+170=191.9≈192cm答:花洒顶端C 到地面的距离为192cm【知识点】解直角三角形22. (2019吉林省,22,7分)某地区有城市居民和农村居民共80万人,某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.(1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查;方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和农村居民进行调查,其中最具有代表性的一个方案是 ;(2)该机构采用了最具代表性的调查方案进行调查,供选择的选项有:电脑、手机、电视、广播、其他,共五个选项,每位被调查居民只选择一个选项,现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民的人数为 ;②统计图中人数最多的选项为 ;③请你估计该地区城区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数【思路分析】(1)具有代表性的人群要包括城区居民和农村居民;(2)①五种选项的总人数之和就是所求的总人数;②从统计图中可以看出选择手机的人数最多;③从抽取的人数中可以算出“电脑和手机”的人数占总抽取人数的比例,从而计算出该地区的总人数.【解题过程】(1)方案三;(2)①260+400+150+100+90=1000(人)②手机③528000800001000260400=⨯+(人) 答:该地区城区居民和农民居民将电脑和手机作为获取信息的最主要途径的总人数为52800人.【知识点】条形统计图,样本估计总体五、解答题23. (2019吉林省,23,8分) 甲、乙两车分别从A 、B 两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B 地。

2019-2020年吉林市初三中考数学第一次模拟试题【含答案】

2019-2020年吉林市初三中考数学第一次模拟试题【含答案】

2019-2020年吉林市初三中考数学第一次模拟试题【含答案】2019-2020年吉林市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,共30.0分)1.给出四个实数,2,0,-1,其中无理数是()A. B. 2 C. 0 D.2.我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A. B. C. D.3.如图是正方体的表面展开图,则与“2019”字相对的字是()A. 考B. 必C. 胜D.4.下列计算正确的是()A. B.C. D.5.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A. 68分,68分B. 68分,65分C. 67分分D. 70分,65分6.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A. B.C. D.7.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.8.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A. B. C. D.9.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A. B. C. D.10.如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A. B. C. 5 D. 4二、填空题(本大题共5小题,共15.0分)11.如果分式有意义,那么实数x的取值范围是______.12.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.13.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.14.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.15.如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值,其中a=2sin45°,b=四、解答题(本大题共7小题,共67.0分)17.2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参请根据图中提供的信息解答下列问题(1)在这次抽样调查中,共调查了______名学生(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数18.如图直线y1=-x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求k的值;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点P 的坐标.19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为______时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为______.20.如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,(参考数据:sin35°≈0.57,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22.如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.23.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.答案和解析1.【答案】A【解析】解:A、=2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、-1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:69亿=6.9×109,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.3.【答案】C【解析】解:由图形可知,与“2019”字相对的字是“胜”.故选:C.由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C【解析】解:A、a2?a3=a2+3=a5,故此选项错误;B、(a+b)(a-2b)=a?a-a?2b+b?a-b?2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a-2a=(5-2)a=3a,故此选项错误.故选:C.根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;故选:A.根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.6.【答案】B【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50.答:甲图书每本价格是50元,乙图书每本价格为20元.故选:B.可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A【解析】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.。

2019年吉林省吉林市中考数学一模试卷含答案解析

2019年吉林省吉林市中考数学一模试卷含答案解析

2019年吉林省吉林市中考数学一模试卷含答案解析2019年吉林省吉林市中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)(2017?吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.12.(3分)(2017?吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107 3.(3分)(2017?吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.4.(3分)(2017?吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.B.C.D.5.(3分)(2016?成都)分式方程1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=36.(3分)(2017?吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°7.(3分)(2017?吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m8.(3分)(2017?吉林一模)如图,⊙O的半径是1,AB是⊙O的切线,A是切点,若半径OC∥AB,则阴影部分的面积为()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)(2017?吉林一模)的相反数是.10.(3分)(2019?湖州)分解因式:x2﹣9=.11.(3分)(2017?吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=.12.(3分)(2017?吉林一模)二次函数y =x2﹣2x+3的最小值是.13.(3分)(2017?吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为.14.(3分)(2017?吉林一模)如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.15.(3分)(2017?吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为°(写出一个即可)16.(3分)(2017?吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y的图象的两个分支上,则图中两块阴影部分面积的和等于.(用含a的式子表示)三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017?吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x.18.(5分)(2017?吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.19.(6分)(2017?吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(6分)(2017?吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.四、解答题(每小题7分,共14分)21.(7分)(2017?吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(7分)(2017?吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?五、解答题(每小题8分,共16分)23.(8分)(2017?吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.24.(8分)(2017?吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件时,AD∥BC;当△ABC的边满足条件时,EF∥AC;应用:如图3,在锐角△GHK中,∠K<60°,GK=KH,将△GHK 按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG 交NP于点R,判断四边形GHQR 的形状,并说明理由.六、解答题(每小题10分,共20分)25.(10分)(2017?吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s 的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是cm2;(2)当t=s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.26.(10分)(2017?吉林一模)如图,在平面直角坐标系中的三点A(1,0),B(﹣1,0),P(0,﹣1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x﹣h)2+k的图象经过点P、C、D.(1)当m=1时,a=;当m=2时,a=;(2)猜想a与m的关系,并证明你的猜想;(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A、B对应,二次函数y=2a(x﹣h)2+k的图象经过点P,C1,D1,①求n与m之间的关系;②当△COD1是直角三角形时,直接写出a的值.2017年吉林省吉林市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2017?吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.1【解答】解:根据数轴上点的位置得:﹣2.5<a<0,则a的值可能为﹣2,故选:C.2.(3分)(2017?吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107【解答】解:4220000=4.22×106,故选:B.3.(3分)(2017?吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选:A.4.(3分)(2017?吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.B.C.D.【解答】解:∵x﹣1>2,∴x>3,∵>3,∴使不等式x﹣1>2成立的数为:.故选:D.5.(3分)(2016?成都)分式方程1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.6.(3分)(2017?吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°【解答】解:∵∠B=85°,∠ACB=45°,∴∠A=180°﹣85°﹣45°=50°,∵CD∥AB,∴∠ACD=∠A,∴∠ACD=50°,故选:C.7.(3分)(2017?吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,∴AB100(米).则两岸间的大致距离为100米.故选:B.8.(3分)(2017?吉林一模)如图,⊙O的半径是1,AB是⊙O的切线,A是切点,若半径OC∥AB,则阴影部分的面积为()A.B.C.D.【解答】解:∵AB是切线,∴OA⊥AB,∴∠OAB=90°,∵OC∥AB,∴∠COA=∠OAB=90°,∴阴影部分的扇形的圆心角的度数为270°,∴S阴π.故选:D.二、填空题(每小题3分,共24分)9.(3分)(2017?吉林一模)的相反数是.【解答】解:的相反数是,故答案为:.10.(3分)(2019?湖州)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).11.(3分)(2017?吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=1.【解答】解:∵关于x的方程x2﹣2x+k=0有两个相等实根,∴△=(﹣2)2﹣4k=0,解得k=1.故答案为:1.12.(3分)(2017?吉林一模)二次函数y=x2﹣2x+3的最小值是2.【解答】解:∵二次函数y=x2﹣2x+3可化为y=(x﹣1)2+2的形式,∴二次函数y=x2﹣2x+3的最小值是2.13.(3分)(2017?吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为3.【解答】解:作CE⊥OB于E,∵OC是∠AOB的平分线,CD⊥OA,CE⊥OB,∴CE=CD=3,故答案为:3.14.(3分)(2017?吉林一模)如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为(,0).【解答】解:∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴AB=5,∵OC为AB边的中线,∴OC AB,∴OD=OC,∴D(,0);故答案为:(,0).15.(3分)(2017?吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为30°(写出一个即可)【解答】解:∵四边形ABCD内接于⊙O,∴∠B=180°﹣∠ADC=50°,当点P与点O重合时,∠BCP=∠B=50°,∴0≤∠BCP≤50°,∴∠BCP可能为30°,故答案为:30.16.(3分)(2017?吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y的图象的两个分支上,则图中两块阴影部分面积的和等于a﹣2.(用含a的式子表示)【解答】解:依题意,设A(m,n)C(c,d),∵A、C两点在函数y的图象上,∴m n=cd=1,∴图中两块阴影部分面积的和等于a﹣2,故答案为:a﹣2.三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017?吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x.【解答】解:x(x﹣2)+(x+1)2 =x2﹣2x+x2+2x+1=2x2+1,当x时,原式=2×()2+1=2×2+1=4+1=5.18.(5分)(2017?吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.【解答】解:设鸡有x只,兔有y只.根据题意可得:,解得:.答:鸡有23只,兔有12只.19.(6分)(2017?吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.20.(6分)(2017?吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.【解答】解:(1)∵共有a,b,c,三根吸管,∴乙抽到吸管c的概率,故答案为:;(2)画树状图得:由树状图可知所有可能结果共6种,其中乙、丙两人都没有抽到吸管c的结果有2种,所以P(乙、丙两人都没有抽到吸管c).四、解答题(每小题7分,共14分)21.(7分)(2017?吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【解答】解:根据题意得BD=0.3+1.5=1.8,DE=2.5,在Rt△ABD中,∵tan B,∴AD=BD?tan B=1.8×tan35°=1.8×0.70≈1.26,∴AE=AD+DE=1.26+2.5≈3.8(m).答:配电房的高AE为3.8m.22.(7分)(2017?吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?【解答】解:(1)(2×5+4×10+6×15+12×20+4×25+2×30)=18min;处在中间位置的数,即中位数为20min;出现次数最多的数位20min,即众数为20min.(2)众数最有可能被叫到,故选20min.五、解答题(每小题8分,共16分)23.(8分)(2017?吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为10km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.【解答】解:(1)由题意可得,民俗村与古庙群之间的路程为:10﹣0=10(km),故答案为:10;(2)设小明与民俗村之间的路程s关于时间t的函数解析式是s =kt,k×1=30,得k=30,即小明与民俗村之间的路程s关于时间t的函数解析式是s=30t,设小华与民俗村之间的路程s关于时间t的函数解析式是s=at+b,,得,即小华与民俗村之间的路程s关于时间t的函数解析式是s=20t+10;(3)由题意可得,将s=45代入s=30t,得t=1.5,件t=1.5代入s=20t+10,得s=40,45﹣40=5,答:当小明到达滑雪场时,小华与滑雪场的路程是5km.24.(8分)(2017?吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件AB=BC时,AD∥BC;当△ABC的边满足条件AB=BC时,EF∥AC;应用:如图3,在锐角△GH K中,∠K<60°,GK=KH,将△GHK 按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG 交NP于点R,判断四边形GHQR 的形状,并说明理由.【解答】解:操作:如图1所示:发现:当△ABC的边满足条件AB=BC时,AD∥BC;理由如下:如图2所示,由对称的性质得:△ADC≌△ABC,∴∠DAC=∠BAC,∵AB=BC,∴∠BAC=∠BCA,∴∠DAC=∠BCA,∴AD∥BC;故答案为:AB=BC;当△ABC的边满足条件AB=BC时,EF∥AC;理由如下:由旋转的性质得:△AEF≌△ABC,∴∠EF A=∠BCA,∵AB=BC,∴∠BAC=∠BCA,∴∠EF A=∠BAC,∴EF∥AC;故答案为:AB=BC;应用:四边形GHQR是菱形,理由如下:由操作、发现可知:MG∥KH,RQ∥GH,∴四边形GHQR是平行四边形,∴∠PRG=∠GHK,∵RQ∥GH,∴∠RPG=∠KGH,∵KG=KH,∴∠KGH=∠KHG,∴∠PRG=∠RPG,∴RG=PG,又∵PG=GH,∴RG=GH,∴四边形GHQR是菱形.六、解答题(每小题10分,共20分)25.(10分)(2017?吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s 的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是16cm2;(2)当t=6s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.【解答】解:(1)如图1,过点C作CD⊥OA于D,在Rt△COD中,∠AOC=60°,OC=4,∴CD=2,∵OA=8,∴S平行四边形OABC=OA?CD=8×216cm2,故答案为:16;(2)如图3,过点C作CD⊥OA于D,由(1)知,CD=2,S平行四边形OABC=16cm2,∵直线PQ平分平行四边形OABC的面积,∴S梯形OCQP S平行四边形OABC168,由运动知,CQ=t﹣4,OP=t,∴S梯形OCQP(CQ+OP)?CD(t﹣4+t)×2(2t﹣4)=8,∴t=6,故答案为:6;(3)当0≤t≤4时,如图2,过点Q作QD⊥OA于D,。

吉林省吉林市2019-2020学年中考数学一模考试卷含解析

吉林省吉林市2019-2020学年中考数学一模考试卷含解析

吉林省吉林市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)22.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线3.一副直角三角板如图放置,其中C DFE 90∠=∠=,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°4.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交 AB 于G ,连接DG ,现在有如下4个结论:①ADG ≌FDG △;②2GB AG =;③∠GDE=45°;④DG=DE 在以上4个结论中,正确的共有( )个A .1个B .2 个C .3 个D .4个5.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是46.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .58.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=-D .2+2=29.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)10.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°11.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .1612.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.已知数据x 1,x 2,…,x n 的平均数是x ,则一组新数据x 1+8,x 2+8,…,x n +8的平均数是____.15.已知抛物线23y x mx =--与直线25y x m =-在22x -<之间有且只有一个公共点,则m 的取值范围是__.1611在连续整数___与____之间.17.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .18.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(6分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?21.(6分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.2.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.3.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.4.C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE=12ADC∠=45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE=12ADC∠=45〫.③正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;∴正确说法是①②③故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.5.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.故选D.考点:随机事件发生的可能性(概率)的计算方法6.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8.A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式,正确;B、原式不能合并,错误;C、原式2=,错误;D、原式故选A.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10.B【解析】【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故选B【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等11.C【解析】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 =.故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.12.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(﹣2,4)【解析】【分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14.8x+【解析】【分析】根据数据x1,x2,…,x n的平均数为x=1n(x1+x2+…+x n),即可求出数据x1+1,x2+1,…,x n+1的平均数.【详解】数据x 1+1,x 2+1,…,x n +1的平均数=1n (x 1+1+x 2+1+…+x n +1)=1n (x 1+x 2+…+x n )+1=x +1. 故答案为x +1.【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.15.517m -<或8m =- 【解析】【分析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m =-++-的图象在22x -<上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m 的取值范围;【详解】联立2325y x mx y x m ⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-, ∴抛物线23y x mx =--与直线25y x m =-在22x -<之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--=解得:8m =±当8m =+ 2522m x +==+>当8m =-252m x +==- 当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<, ∴517m -<< 令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-, 故57m =-也满足题意,故m 的取值范围为:517m -<或8m =-故答案为: 517m -<或8m =-【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.16.3 4【解析】【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】<<,∴34<,在连续整数3与4之间.【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17.1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.18.1.【解析】【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1m.(1)1.5 m.【解析】【分析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=22求出即可;1.6 1.2(1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【详解】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,DF==1.答:DF长为1m.(1)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1•sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E点离墙面AB的最远距离为1.5 m.【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。

吉林省2019年中考数学模拟试卷及答案

吉林省2019年中考数学模拟试卷及答案

吉林省2019年中考数学模拟试卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1. 据国家新闻出版广电总局电影局数据,2017年国庆中秋节假期全国城市影院电影票房约26亿元,总票房创下该档期新纪录,26亿用科学记数法表示正确的是A.26×108B.2.6×108 C.26×109 D.2.6×109 2.-sin60°的倒数为A .-2B .21C .-33D .-2333. 如右图所示是一个几何体的三视图,这个几何体的名称是A .圆柱体B .三棱锥C .球体D .圆锥体4.用反证法证明:如果AB ⊥CD ,AB ⊥EF ,那么CD ∥EF .证明该命题的第一个步骤是A .假设CD ∥EFB .假设AB ∥EFC .假设CD 和EF 不平行 D .假设AB 和EF 不平行5.关于x 的一元二次方程(a ﹣1)x 2+2x+1=0有两个实数根,则a 的取值范围为A .a ≤2B .a <2C .a <2且a ≠1D .a ≤2且a ≠16.矩形具有而平行四边形不一定...具有的性质是 A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角相等7.下列运算正确的是A .42=±B .236x x x ⋅=C .235+=D .236()x x =8.下列说法正确的是A .一个游戏的中奖概率是101,则做10次这样的游戏一定会中奖 B .多项式22x x -分解因式的结果为(2)(2)x x x +-C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则乙组数据比甲组数据稳定16题图 9.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k ≠0,x >0)上,若矩形ABCD 的面积为8,则k 的值为A .8B .3 3C .2 2D .4 10. 如图,在平行四边形ABCB 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知△AEF 的面积为4,则△OBE 的面积为A .4B .8C .10D .12 第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 因式分解:x 3-xy 2= 。

2019年吉林省中考数学试卷以及逐题解析版

2019年吉林省中考数学试卷以及逐题解析版

2019年吉林省中考数学试卷以及逐题解析一、单项选择题(每小题2分,共12分)1.(2分)如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.1-2.(2分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.3.(2分)若a为实数,则下列各式的运算结果比a小的是()A.1a÷a⨯D.1a-C.1a+B.14.(2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30︒B.90︒C.120︒D.180︒5.(2分)如图,在O中,AB所对的圆周角50∠=︒,AOPACB∠=︒,若P为AB上一点,55则POB∠的度数为()A.30︒B.45︒C.55︒D.60︒6.(2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( )A .两点之间,线段最短B .平行于同一条直线的两条直线平行C .垂线段最短D .两点确定一条直线二、填空题(每小题3分,共24分) 7.(3分)分解因式:21a -= . 8.(3分)不等式321x ->的解是 . 9.(3分)计算:22y xx y= . 10.(3分)若关于x 的一元二次方程2(3)x c +=有实数根,则c 的值可以为 (写出一个即可).11.(3分)如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若70BAC ∠=︒,50CED ∠=︒,则B ∠= ︒.12.(3分)如图,在四边形ABCD 中,10AB =,BD AD ⊥.若将BCD ∆沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为 .13.(3分)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为 m .14.(3分)如图,在扇形OAB 中,90AOB ∠=︒.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的ODCE 的顶点C 在AB 上.若8OD =,6OE =,则阴影部分图形的面积是(结果保留)π.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:2(1)(2)a a a -++,其中2a =.16.(5分)甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.17.(5分)已知y 是x 的反比例函数,并且当2x =时,6y =. (1)求y 关于x 的函数解析式; (2)当4x =时,求y 的值.18.(5分)如图,在ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接BE 、DF .求证:ABE CDF ∆≅∆.四、解答题(每小题7分,共28分)19.(7分)图①,图②均为44⨯的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠=∠=︒.90CGD CHD20.(7分)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(填写序号).(1)bc d a-=.+=;(2)ac d b+=;(3)ac d b21.(7分)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角CAD∠为43︒.求花洒顶端C到地面的距离CE(结果精确到1)︒=cm.(参考数据:sin430.68︒=,cos430.73︒=,tan430.93)22.(7分)某地区有城区居民和农村居民共80万人.某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.(1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查;方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和部分农村居民进行调查.其中最具有代表性的一个方案是;(2)该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播、其他,共五个选项.每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民人数为人;②统计图中人数最多的选项为;③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.五、解答题(每小题8分,共16分)23.(8分)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程x h之间的关系如图所示.y km与各自行驶的时间()()(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.24.(8分)性质探究如图①,在等腰三角形ABC中,120∠=︒,则底边AB与腰AC的长度之比为.ACB理解运用(1)若顶角为120︒的等腰三角形的周长为843+,则它的面积为 ; (2)如图②,在四边形EFGH 中,EF EG EH ==. ①求证:EFG EHG FGH ∠+∠=∠;②在边FG ,GH 上分别取中点M ,N ,连接MN .若120FGH ∠=︒,10EF =,直接写出线段MN 的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为 (用含α的式子表示).六、解答题(每小题10分,共20分)25.(10分)如图,在矩形ABCD 中,4AD cm =,3AB cm =,E 为边BC 上一点,BE AB =,连接AE .动点P 、Q 从点A 同时出发,点P 以2/cm s 的速度沿AE 向终点E 运动;点Q 以2/cm s 的速度沿折线AD DC -向终点C 运动.设点Q 运动的时间为()x s ,在运动过程中,点P ,点Q 经过的路线与线段PQ 围成的图形面积为2()y cm . (1)AE = cm ,EAD ∠= ︒;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)当54PQ cm =时,直接写出x 的值.26.(10分)如图,抛物线2(1)y x k =-+与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点(0,3)C -.P 为抛物线上一点,横坐标为m ,且0m >. (1)求此抛物线的解析式;(2)当点P位于x轴下方时,求ABP∆面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点)P最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当9∆的面积.h=时,直接写出BCP2019年吉林省中考数学试卷答案与解析一、单项选择题(每小题2分,共12分)1.(2分)如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.1-【分析】直接利用数轴得出结果即可.【解答】解:数轴上蝴蝶所在点表示的数可能为1-,故选:D.【点评】本题考查了数轴、根据数轴1-是解题关键.2.(2分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(2分)若a为实数,则下列各式的运算结果比a小的是()A.1a÷a⨯D.1 a+B.1a-C.1【分析】根据一个数加上一个正数的和大于本身,加上一个负数小于本身,减去一正数小于本身,减去一个负数大于本身,乘以1等于本身,除以1也等于本身,逐一进行比较便可.【解答】解:A.1+>,选项错误;a aB.1-<,选项正确;a aC.1⨯=,选项错误;a aD.1÷=,选项错误;a a故选:B.【点评】本题主要考查了实数的大小比较,具体考查了一个数加1,减1,乘1,除以1,值的大小变化规律.基础题.4.(2分)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30︒B.90︒C.120︒D.180︒【分析】根据图形的对称性,用360︒除以3计算即可得解.【解答】解:3603120︒÷=︒,∴旋转的角度是120︒的整数倍,∴旋转的角度至少是120︒.故选:C.【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120︒的整数倍是解题的关键.5.(2分)如图,在O中,AB所对的圆周角50AOP∠=︒,ACB∠=︒,若P为AB上一点,55则POB∠的度数为()A.30︒B.45︒C.55︒D.60︒【分析】根据圆心角与圆周角关系定理求出AOB∠的度数,进而由角的和差求得结果.【解答】解:50∠=︒,ACB∴∠=∠=︒,AOB ACB2100∠=︒,55AOP45POB ∴∠=︒,故选:B .【点评】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.6.(2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( )A .两点之间,线段最短B .平行于同一条直线的两条直线平行C .垂线段最短D .两点确定一条直线【分析】利用两点之间线段最短进而分析得出答案.【解答】解:这样做增加了游人在桥上行走的路程,其中蕴含的数学道理是:利用两点之间线段最短,可得出曲折迂回的曲桥增加了游人在桥上行走的路程. 故选:A .【点评】此题主要考查了两点之间线段最短,正确将实际问题转化为数学知识是解题关键. 二、填空题(每小题3分,共24分)7.(3分)分解因式:21a -= (1)(1)a a +- .【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:22()()a b a b a b -=+-. 【解答】解:21(1)(1)a a a -=+-. 故答案为:(1)(1)a a +-.【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键. 8.(3分)不等式321x ->的解是 1x > .【分析】利用不等式的基本性质,将两边不等式同时加上2再除以3,不等号的方向不变.【解答】解:321x ->,33x ∴>,1x ∴>,∴原不等式的解集为:1x >.故答案为1x >.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.(3分)计算:22y x x y = 12x . 【分析】根据分式乘除法的法则计算即可. 【解答】解:2122y x x y x =, 故答案为:12x. 【点评】本题考查了分式的乘除法,熟记法则是解题的关键.10.(3分)若关于x 的一元二次方程2(3)x c +=有实数根,则c 的值可以为 5(答案不唯一,只有0c 即可) (写出一个即可).【分析】由于方程有实数根,则其根的判别式△0,由此可以得到关于c 的不等式,解不等式就可以求出c 的取值范围.【解答】解:一元二次方程化为2690x x c ++-=,△364(9)40c c =--=, 解上式得0c .故答为5(答案不唯一,只有0c 即可).【点评】本题主要考查根与系数的关系,根的判别式,关键在于求出c 的取值范围.11.(3分)如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若70BAC ∠=︒,50CED ∠=︒,则B ∠= 60 ︒.【分析】利用平行线的性质,即可得到50CED C ∠=∠=︒,再根据三角形内角和定理,即可得到B ∠的度数.【解答】解://ED BC ,50CED C ∴∠=∠=︒,又70BAC ∠=︒,ABC ∴∆中,180507060B ∠=︒-︒-︒=︒,故答案为:60.【点评】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.(3分)如图,在四边形ABCD 中,10AB =,BD AD ⊥.若将BCD ∆沿BD 折叠,点C 与边AB 的中点E 恰好重合,则四边形BCDE 的周长为 20 .【分析】根据直角三角形斜边上中线的性质,即可得到152DE BE AB ===,再根据折叠的性质,即可得到四边形BCDE 的周长为5420⨯=.【解答】解:BD AD ⊥,点E 是AB 的中点,152DE BE AB ∴===, 由折叠可得,CB BE =,CD ED =,∴四边形BCDE 的周长为5420⨯=,故答案为:20.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.(3分)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为 54 m .【分析】根据同一时刻物高与影长成正比即可得出结论.【解答】解:设这栋楼的高度为hm,在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴1.8390h=,解得54()h m=.故答案为:54.【点评】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14.(3分)如图,在扇形OAB中,90AOB∠=︒.D,E分别是半径OA,OB上的点,以OD,OE为邻边的ODCE的顶点C在AB上.若8OD=,6OE=,则阴影部分图形的面积是2548π-(结果保留)π.【分析】连接OC,根据同样只统计得到ODCE是矩形,由矩形的性质得到90ODC∠=︒.根据勾股定理得到10OC=,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,90AOB∠=︒,四边形ODCE是平行四边形,ODCE∴是矩形,90ODC∴∠=︒.8OD=,6OE=,10OC∴=,∴阴影部分图形的面积29010862548 360ππ⨯=-⨯=-.故答案为:2548π-.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:2(1)(2)a a a -++,其中2a =.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式22221221a a a a a =-+++=+,当2a =时,原式5=.【点评】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.16.(5分)甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.【分析】画出树状图,共有4种可能结果,其中取出的扇子和手绢都是红色的有1种可能,由概率公式即可得出结果.【解答】解:画树状图如下:共有4种可能结果,其中取出的扇子和手绢都是红色的有1种结果,则取出的扇子和手绢都是红色的概率为14.【点评】此题主要考查了列表法与树状图法以及概率公式,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.17.(5分)已知y 是x 的反比例函数,并且当2x =时,6y =.(1)求y 关于x 的函数解析式;(2)当4x =时,求y 的值.【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)直接利用4x =代入求出答案.【解答】解:(1)y 是x 的反例函数, 所以,设(0)k y k x=≠, 当2x =时,6y =.所以,12k xy ==,所以,12y x=;(2)当4x =时,3y =.【点评】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.18.(5分)如图,在ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接BE 、DF .求证:ABE CDF ∆≅∆.【分析】直接利用已知作图方法结合全等三角形的判定方法分析得出答案.【解答】证明:由题意可得:AE FC =,在平行四边形ABCD 中,AB DC =,A C ∠=∠在ABE ∆和CDF ∆中,AE CF A C AB CD =⎧⎪∠=∠⎨⎪=⎩,所以,()ABE CDF SAS ∆≅∆.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定,正确掌握基本作图方法是解题关键.四、解答题(每小题7分,共28分)19.(7分)图①,图②均为44⨯的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图:(1)在图①中,以AB 为对角线画一个菱形AEBF ,且E ,F 为格点;(2)在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且G ,H 为格点,90CGD CHD ∠=∠=︒.【分析】(1)根据菱形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【解答】解:(1)如图,菱形AEBF 即为所求.(2)如图,四边形CGDH 即为所求.【点评】本题考查作图-应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(7分)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是 (2) (填写序号).(1)bc d a +=;(2)ac d b +=;(3)ac d b -=.【分析】问题解决设竹签有x根,山楂有y个,由题意得出方程组:548(7)x yx y+=⎧⎨-=⎩,解方程组即可;反思归纳由每根竹签串c个山楂,还剩余d个山楂,得出ac d b+=即可.【解答】问题解决解:设竹签有x根,山楂有y个,由题意得:548(7)x yx y+=⎧⎨-=⎩,解得:20104xy=⎧⎨=⎩,答:竹签有20根,山楂有104个;反思归纳解:每根竹签串c个山楂,还剩余d个山楂,则ac d b+=,故答案为:(2).【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.21.(7分)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角CAD∠为43︒.求花洒顶端C到地面的距离CE(结果精确到1)cm.(参考数据:sin430.68︒=,cos430.73︒=,tan430.93)︒=【分析】过C作CF AB⊥于F,于是得到90AFC∠=︒,解直角三角形即可得到结论.【解答】解:过C作CF AB⊥于F,则90AFC∠=︒,在Rt ACF∆中,30AC=,43CAF∠=︒,cosAFCAFAC∠=,cos300.7321.9AF AC CAF∴=∠=⨯=,17021.9191.9192()CE BF AB AF cm∴==+=+=≈,答:花洒顶端C到地面的距离CE为192cm.【点评】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.22.(7分)某地区有城区居民和农村居民共80万人.某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.(1)该机构设计了以下三种调查方案:方案一:随机抽取部分城区居民进行调查;方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和部分农村居民进行调查.其中最具有代表性的一个方案是方案三;(2)该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播、其他,共五个选项.每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民人数为人;②统计图中人数最多的选项为;③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.【分析】(1)根据三个方案选出最具有代表性的一个方案即可;(2)①把电脑、手机、电视、广播、其他,这五个选项的总人数相加即可;②从统计图中找出人数最多的选项即可;③用80⨯该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的人数所占的百分比即可得到结论.【解答】解:(1)最具有代表性的一个方案是方案三,故答案为:方案三;(2)①这次接受调查的居民人数为260400150100901000++++=人;②统计图中人数最多的选项为手机;③2604008052.81000+⨯=万人,答:该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数52.8万人.故答案为:1000,手机.【点评】本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;也考查了用样本估计总体.五、解答题(每小题8分,共16分)23.(8分)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程()y km与各自行驶的时间()x h之间的关系如图所示.(1)m=4,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.【分析】(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把3x =代入(2)的结论即可.【解答】解:(1)根据题意可得224m =⨯=,280280 3.5120n =-÷=;故答案为:4;120;(2)设y 关于x 的函数解析式为(02)y kx x =,因为图象经过(2,120),所以2120k =,解得60k =,所以y 关于x 的函数解析式为60y x =,设y 关于x 的函数解析式为1(24)y k x b x =+,因为图象经过(2,120),(4,0)两点,所以11212040k b k b +=⎧⎨+=⎩, 解得160240k b =-⎧⎨=⎩, 所以y 关于x 的函数解析式为60240(24)y x =-+;(3)当 3.5x =时,60 3.524030y =-⨯+=.所以当甲车到达B 地时,乙车距B 地的路程为30km .【点评】此题考查的知识点是一次函数的应用,解题的关键是熟练掌握待定系数法确定函数的解析式.24.(8分)性质探究如图①,在等腰三角形ABC 中,120ACB ∠=︒,则底边AB 与腰AC 的长度之比为3 .理解运用(1)若顶角为120︒的等腰三角形的周长为843+,则它的面积为 ;(2)如图②,在四边形EFGH 中,EF EG EH ==.①求证:EFG EHG FGH ∠+∠=∠; ②在边FG ,GH 上分别取中点M ,N ,连接MN .若120FGH ∠=︒,10EF =,直接写出线段MN 的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为 (用含α的式子表示).【分析】性质探究作CD AB ⊥于D ,则90ADC BDC ∠=∠=︒,由等腰三角形的性质得出AD BD =,30A B ∠=∠=︒,由直角三角形的性质得出2AC CD =,3AD CD =,得出223AB AD CD ==,即可得出结果;理解运用(1)同上得出则2AC CD =,3AD CD ,由等腰三角形的周长得出423843CD CD +=+,解得:2CD =,得出43AB =(2)①由等腰三角形的性质得出EFG EGF ∠=∠,EGH EHG ∠=∠,得出EFG EHG EGF EGH FGH ∠+∠=∠+∠=∠即可;②连接FH ,作EP FH ⊥于P ,由等腰三角形的性质得出PF PH =,由①得:120EFG EHG FGH ∠+∠=∠=︒,由四边形内角和定理求出120FEH ∠=︒,由等腰三角形的性质得出30EFH ∠=︒,由直角三角形的性质得出152PE EF ==,353PF PE ==2103FH PF ==MN 是FGH ∆的中位线,由三角形中位线定理即可得出结果; 类比拓展作AD BC ⊥于D ,由等腰三角形的性质得出BD CD =,12BAD BAC α∠=∠=,由三角函数得出sin BD AB α=⨯,得出22sin BC BD AB α==⨯,即可得出结果.【解答】性质探究解:作CD AB ⊥于D ,如图①所示:则90ADC BDC ∠=∠=︒,AC BC =,120ACB ∠=︒,AD BD ∴=,30A B ∠=∠=︒,2AC CD ∴=,AD =,2AB AD ∴==,∴AB AC =;理解运用(1)解:如图①所示:同上得:2AC CD =,AD =,8AC BC AB ++=+,48CD ∴+=+解得:2CD =,AB ∴=,ABC ∴∆的面积11222AB CD =⨯=⨯=故答案为:(2)①证明:EF EG EH ==,EFG EGF ∴∠=∠,EGH EHG ∠=∠,EFG EHG EGF EGH FGH ∴∠+∠=∠+∠=∠;②解:连接FH ,作EP FH ⊥于P ,如图②所示:则PF PH =,由①得:120EFG EHG FGH ∠+∠=∠=︒,360120120120FEH ∴∠=︒-︒-︒=︒,EF EH =,30EFH ∴∠=︒, 152PE EF ∴==, 353PF PE ∴==,2103FH PF ∴==,点M 、N 分别是FG 、GH 的中点,MN ∴是FGH ∆的中位线,1532MN FH ∴==; 类比拓展解:如图③所示:作AD BC ⊥于D ,AB AC =,BD CD ∴=,12BAD BAC α∠=∠=, sin BD ABα=, sin BD AB α∴=⨯,22sin BC BD AB α∴==⨯,∴2sin 2sin BC AB AB ABαα==; 故答案为:2sin α.【点评】本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、就直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30︒角的直角三角形的性质是解题的关键.六、解答题(每小题10分,共20分)25.(10分)如图,在矩形ABCD 中,4AD cm =,3AB cm =,E 为边BC 上一点,BE AB =,连接AE .动点P 、Q 从点A 同时出发,点P 以2/cm s 的速度沿AE 向终点E 运动;点Q 以2/cm s 的速度沿折线AD DC -向终点C 运动.设点Q 运动的时间为()x s ,在运动过程中,点P ,点Q 经过的路线与线段PQ 围成的图形面积为2()y cm .(1)AE = 32 cm ,EAD ∠= ︒;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当54PQ cm =时,直接写出x 的值.【分析】(1)由勾股定理可求AE 的长,由等腰三角形的性质可求EAD ∠的度数;(2)分三种情况讨论,由面积和差关系可求解;(3)分三种情况讨论,由勾股定理可求解.【解答】解:(1)3AB cm =,3BE AB cm ==,2232AE AB BE cm ∴+=,45BAE BEA ∠=∠=︒90BAD ∠=︒45DAE ∴∠=︒故答案为:3245(2)当02x <时,如图,过点P 作PF AD ⊥, 2AP x =,45DAE ∠=︒,PF AD ⊥PF x AF ∴==,212PQA y S AQ PF x ∆∴==⨯⨯=, (2)当23x <时,如图,过点P 作PF AD ⊥,PF AF x ==,24QD x =-4DF x ∴=-,2211(24)(4)8822y x x x x x x ∴=+-+-=-+- 当732x<时,如图,点P 与点E 重合.(34)272CQ x x =+-=-,431CE cm =-=11(14)3(72)1422y x x ∴=+⨯--⨯=+ (3)当02x <时QF AF x ==,PF AD ⊥PQ AP ∴= 54PQ cm = ∴524x = 528x ∴= 当23x <时,过点P 作PM CD ⊥∴四边形MPFD 是矩形42PM DF x ∴==-,MD PF x ==,(24)4MQ x x x ∴=--=-222MP MQ PQ +=,2225(42)(4)16x x ∴-+-= △0<∴方程无解当732x <时,222PQ CP CQ =+,∴2251(72)16x =+-, 258x ∴=综上所述:258x =52【点评】本题是四边形综合题,考查了矩形的判定和性质,勾股定理,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.26.(10分)如图,抛物线2(1)y x k =-+与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点(0,3)C -.P 为抛物线上一点,横坐标为m ,且0m >.(1)求此抛物线的解析式;(2)当点P 位于x 轴下方时,求ABP ∆面积的最大值;(3)设此抛物线在点C 与点P 之间部分(含点C 和点)P 最高点与最低点的纵坐标之差为h . ①求h 关于m 的函数解析式,并写出自变量m 的取值范围;②当9h =时,直接写出BCP ∆的面积.【分析】(1)将点(0,3)C -代入2(1)y x k =-+即可;(2)易求(1,0)A -,(3,0)B ,抛物线顶点为(1,4)-,当P 位于抛物线顶点时,ABP ∆的面积有最大值;(3))①当01m <时,223(23)2h m m m m =----=-+;当12m <时,1(4)1h =---=;当2m >时,2223(4)21h m m m m =----=-+;②当9h =时若229m m -+=,此时△0<,m 无解;若2219m m -+=,则4m =,则(4,5)P ,BCP ∆的面积1118451(41)36222=⨯⨯-⨯⨯-⨯+⨯=; 【解答】解:(1)将点(0,3)C -代入2(1)y x k =-+,得4k =-,22(1)423y x x x ∴=--=--;(2)令0y =,1x =-或3x =,(1,0)A ∴-,(3,0)B ,4AB ∴=;抛物线顶点为(1,4)-,当P 位于抛物线顶点时,ABP ∆的面积有最大值,14482S =⨯⨯=; (3)①当01m <时,223(23)2h m m m m =----=-+;当12m <时,1(4)1h =---=;当2m >时,2223(4)21h m m m m =----=-+;②当9h =时若229m m -+=,此时△0<,m 无解;若2219m m -+=,则4m =,(4,5)P ∴,(3,0)B ,(0,3)C -,BCP ∴∆的面积1118451(41)36222=⨯⨯-⨯⨯-⨯+⨯=; 【点评】本题考查二次函数的图象及性质,是二次函数综合题;熟练掌握二次函数的性质,数形结合,分类讨论是解题的关键.。

2019年吉林省中考数学真题(解析版)

2019年吉林省中考数学真题(解析版)

吉林省2019年初中毕业生学业水平考试数学试题一、单项选择题(每小题2分,共12分)1.如图,数轴上蝴蝶所在点表示的数可能为( )(第1题)A .3B .2C .1D .-1【答案】D【解析】蝴蝶在原点的左边,应为负数,所以,选项中,只有-1有可能,选D. 2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为( )(第2题)A .B .C .D .【答案】D【解析】从上面往下看,能看到一排四个正方形,D 符合. 3.若a 为实数,则下列各式的运算结果比a 小的是( ) A .1a + B .1a -C .1a ⨯D .1a ÷【答案】B【解析】1a -表示比a 小1的数,所以,B 符合.4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( )(第4题)A .30°B .90°C .120°D .180°【答案】C【解析】一个圆周360°,图中三个箭头,均分圆,每份为120°, 所以,旋转120°后与自身重合.选C.5.如图,在⊙O 中,AB 所对的圆周角∠ACB =50°,若P 为AB 上一点,∠AOP =55°,则 ∠POB 的度数为( )OPC BA (第5题)A .30°B .45°C .55°D .60°【答案】B【解析】圆周角∠ACB 、圆心角∠AOB 所对的弧都是弧AB ,所以,∠AOB =2∠ACB =100°,∠POB =∠AOB -∠AOP =100°-55°=45°, 选B.6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A 、B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是( )曲桥(第6题)BAA .两点之间,线段最短B .平行于同一条直线的两条直线平行C .垂线段最短D .两点确定一条直线【答案】A【解析】A 、B 两点之间,线段AB 最短. 二、填空题(每小题3分,共24分) 7.分解因式:21a -=________.【答案】1)(1)a a +-( 【解析】21a -=1)(1)a a +-(. 8.不等式321x ->的解集是________. 【答案】x >1【解析】移项,得:3x >3,系数化为1,得:x >1. 9.计算:22y xx y⋅=________. 【答案】12x【解析】22y x x y ⋅=12x. 10.若关于x 的一元二次方程()23x c +=有实数根,则c 的值可以为________(写出一个即可).【答案】5(答案不唯一,只有c ≥0即可) 【解析】因为()23x c +=.左边是实数的平方,大于或等于0,所以,c 大于或等于0即可.11.如图,E 为△ABC 边CA 延长线上一点,过点E 作ED ∥BC .若∠BAC =70°,∠CED =50°, 则∠B =________°. (第11题)EDCAB【答案】60【解析】ED∥BC,所以,∠C=∠E=50°,在△ABC中,∠C+∠B+∠BAC=180°,所以,∠B=180°-50°-70°=60°.12.如图,在四边形ABCD中,AB=10,BD⊥AD.若将△BCD沿BD折叠,点C与边AB 的中点E恰好重合,则四边形BCDE的周长为________.(第12题)AD【答案】20【解析】因为E为AB中点,BD⊥AD,所以,DE=12AB=5,BC=DE=5,DC=EB=5,所以,四边形BCDE的周长为20.13.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为________m.【答案】54【解析】设这栋楼的高度为x m,则1.8390x=,解得:x=54.14.如图,在扇形OAB中,∠AOB=90°,D,E分别是半径OA,OB上的点,以OD,OE 为邻边的□ODCE的顶点C在AB上,若OD=8,OE=6,则阴影部分图形的面积是________(结果保留π).EB(第14题)【答案】25π-48【解析】四边形ODCE 为矩形,阴影部分面积为四分之一圆面积-矩形ODCE 的面积, 扇形所在圆的半径为R =OC =2286+=10, S =21π10484⨯-=25π-48. 三、解答题(每小题5分,共20分)15.先化简,再求值:()()212a a a -++,其中2a =. 解:原式=22221221a a a a a -+++=+, 当2a =时,原式=5.16.甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.(第16题)乙口袋甲口袋解:画树状图如下:共有4种可能结果,其中取出的扇子和手绢都是红色的有1种可能, 所以,所求的概率为:P =1417.已知y 是x 的反比例函数,并且当2x =时,6y =. (1)求y 关于x 的函数解析式; (2)当4x =时,求y 的值. 解:(1)y 是x 的反例函数,所以,设(0)ky k x=≠, 当2x =时,6y =. 所以,12k xy ==, 所以,12y x=(2)当x =4时,y =318.如图,在□ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接BE 、DF .求证:△ABE ≌△CDF .FECDBA(第18题)解:证明:AE =FC ,在平行四边形ABCD 中,AB =DC ,∠A =∠C在△ABE 和△CDF 中,AE CF A C AB CD =⎧⎪∠=∠⎨⎪=⎩所以,△ABE ≌△CDF (SAS ).四、解答题(每小题7分,共28分)19.图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图: ⑴在图①中,以AB 为对角线画一个菱形AEBF ,且E ,F 为格点;⑵在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且G ,H 为格点,∠CGD =∠CHD =90°解:(1)(2)如下图所示20.问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?(第20题)反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是________(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac-d=b.21.墙壁及淋浴花洒截面如图所示,已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)(第21题)E B A CD 17022.某地区有城区居民和农村居民共80万人,某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”. ⑴该机构设计了以下三种调查方案: 方案一:随机抽取部分城区居民进行调查; 方案二:随机抽取部分农村居民进行调查;方案三:随机抽取部分城区居民和部分农村居民进行调查. 其中最具有代表性的一个方案是________;⑵该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播,其他,共五个选项,每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:①这次接受调查的居民人数为________人;②统计图中人数最多的选项为________;③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.五、解答题(每小题8分,共16分)23.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地,甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.⑴m=________,n=________;⑵求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;⑶当甲车到达B地时,求乙车距B地的路程24.性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为________.图②H GF 图①ECB(第24题)A理解运用⑴若顶角为120°的等腰三角形的周长为843________;⑵如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN 的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为________(用含α的式子表示).六、解答题(每小题10分,共20分)25.如图,在矩形ABCD 中,AD =4cm ,AB =3cm ,E 为边BC 上一点,BE =AB ,连接AE .动点P 、Q 从点A 同时出发,点P 2的速度沿AE 向终点E 运动;点Q 以2cm/s 的速度沿折线AD —DC 向终点C 运动.设点Q 运动的时间为x (s ),在运动过程中,点P ,点Q 经过的路线与线段PQ 围成的图形面积为y (cm²).⑴AE =________cm,∠EAD =________°;⑵求y 关于x 的函数解析式,并写出自变量x 的取值范围;⑶当PQ =5cm 4时,直接写出x 的值. Q(第25题)P A D EB C (备用图)C BE D A26.如图,抛物线()21=-+与x轴相交于A,B两点(点A在点B的左侧),与y轴相交y x k于点C(0,-3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.。

-吉林省吉林市2019年中考数学模拟试卷(有答案)

-吉林省吉林市2019年中考数学模拟试卷(有答案)

吉林省吉林市2019年中考数学模拟试卷(含答案)一.选择题(满分12分,每小题2分)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列各运算中,计算正确的是()A.(a﹣2)2=a2﹣4 B.(3a2)2=9a4C.a6÷a2=a3D.a3+a2=a53.如图所示几何体的左视图正确的是()A.B.C.D.4.若a<0,则不等式﹣ax+a<0的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC 的长是()A.4 B.6 C.2D.36.如图,过⊙O上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数为()A.25°B.30°C.40°D.50°二.填空题(满分24分,每小题3分)7.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.8.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).9.方程=的解是.10.若x+y=1,x﹣y=5,则xy=.11.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则AC的长为.12.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.13.如图,在平面直角坐标系xOy中,已知点A(0,),B(﹣1,0),菱形ABCD的顶点C在x 轴的正半轴上,其对角线BD的长为.14.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是.三.解答题(满分20分,每小题5分)15.先化简,再求值:,其中a=2.16.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.17.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.四.解答题(满分28分,每小题7分)19.(7分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD =3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)20.(7分)某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间内每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生,图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整:平均数中位数方差优秀率统计量班级甲班 6.5 3.45 30%乙班 6 4.65(2)你认为冠军奖应发给哪个班?简要说明理由.21.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?22.(7分)如图,在正方形ABCD中,点E在BC上,(1)将△ABE沿BC方向平移,使点B与点C重合,所得的像为△DCF,请画出所得的像;(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像;(3)试猜想直线DF与AG的位置关系,并说明理由.五.解答题(满分16分,每小题8分)23.(8分)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.∴y==.∴y1=﹣1,y2=﹣.当y=﹣1时,x﹣2=﹣1,∴x=1;当y =﹣时,x ﹣2=﹣,∴x =. ∴原方程的解为:x 1=1,x 2=.(1)请仿照上面的例题解一元二次方程:2(x ﹣3)2﹣5(x ﹣3)﹣7=0; (2)若(a 2+b 2)(a 2+b 2﹣2)=3,求代数式a 2+b 2的值.24.(8分)如图,一次函数y =﹣x +5的图象与坐标轴交于A ,B 两点,与反比例函数y =的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,且CM =1,过点N 作ND ⊥x 轴于点D ,且DN =1.已知点P 是x 轴(除原点O 外)上一点. (1)直接写出M 、N 的坐标及k 的值;(2)将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由;(3)当点P 滑动时,是否存在反比例函数图象(第一象限的一支)上的点S ,使得以P 、S 、M 、N 四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S 的坐标;若不存在,请说明理由.六.解答题(满分20分,每小题10分)25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE =EB ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在△ABC 外部时,EH ⊥AB 于点H ,过点E 作GE ∥AB ,交线段AC 的延长线于点G,AG=5CG,BH=3.求CG的长.26.(10分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.参考答案一.选择题1.解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.2.解:A、(a﹣2)2=a2﹣4a+4,此选项错误;B、(3a2)2=9a4,此选项正确;C、a6÷a2=a4,此选项错误;D、a3与a2不是同类项,不能合并,此选项错误;故选:B.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:﹣ax+a<0,﹣ax<﹣a,∵a<0,∴﹣a>0,∴x<1,故选:A.5.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.6.解:连接OC.∵OA=OC,∴∠A=∠OCA=25°.∴∠DOC=∠A+∠ACO=50°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=180°﹣90°﹣50°=40°.故选:C.二.填空题7.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.8.解:顺风飞行3小时的行程=(a+20)×3千米,逆风飞行4小时的行程=(a﹣20)×4千米,两次行程总和为:(a+20)×3+(a﹣20)×4=3a+60+4a﹣80=7a﹣20(千米).故答案为(7a﹣20).9.解:方程的两边同时乘以x(70﹣x),得:3(70﹣x)=4x解得x=30.检验:把x=30代入x(70﹣x)≠0∴原方程的解为:x=30.10.解:∵x+y=1,x﹣y=5,∴xy= [(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣611.解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∵在△CDE中,∠C=30°,DC=AB=6,∠DEC=90°,∴CE=3,∴AC=6.12.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.13.解:∵点A(0,),B(﹣1,0),∴OA=,OB=1,∴AB==2,∴OB=AB,∴∠OAB=30°,∠OBA=60°,∵四边形ABCD是菱形,∴∠DBE=∠OBA=30°,连接BD,作DE⊥BC于E,如图所示:则∠DEB=90°,DE=OA=,∵∠DEB=90°,∴BD=2DE=2;故答案为:2.14.解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,故答案为:6﹣π.三.解答题15.解:原式=•=•=a﹣1,当a=2时,原式=2﹣1=1.16.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.17.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.18.证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.四.解答题19.(1)如图,延长ED,AM交于点P,∵DE∥AB,MA⊥AB∴EP⊥MA,即∠MPD=90°∵∠CDE=162°∴∠MCD=162°﹣90°=72°;(2)如图,在Rt△PCD中,CD=3米,∠MCD=72°,∴PC=CD•cos∠MCD=3×cos72°≈3×0.31=﹣0.93米∵AC=5.5米,EF=0.4米,∴PC+AC﹣EF=0.93+5.5﹣0.4=6.03米答:摄像头下端点F到地面AB的距离为6.03米.20.解:(1)由图可得,甲班的中位数是(6+7)÷2=6.5,乙班的平均数是:(3+4+5+6+6+6+7+9+9+10)÷10=6.5,优秀率是:×100%=30%,故答案为:6.5,6.5,30%;(2)冠军应发给甲班,理由:由表格可知,甲乙两班的平均数一样,优秀率一样,但是甲班的中位数大于乙班,说明甲班有一半的学生成绩好于乙班,从方差看,甲班方差小,波动小,学生发挥稳定,故选甲班为冠军.21.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.22.解:(1)(2)如图;(3)猜想:DF⊥AG,理由如下:延长FD交AG于点H,如图所示,∵△DCF≌△ABE,△ABE≌△ADG,∴∠F=∠AEB=∠G,又∵∠CDF=∠GDH,∴∠GHD=∠DCF=90°,DF⊥AG.五.解答题23.解:(1)2(x﹣3)2﹣5(x﹣3)﹣7=0,设x﹣3=y,则原方程化为:2y2﹣5y﹣7=0,∵a=2,b=﹣5,c=﹣7,∴b2﹣4ac=(﹣5)2﹣4×2×(7)=81,y=,∴y1=,y2=﹣1,当y=时,x﹣3=,解得:x=;当y=﹣1时,x﹣3=﹣1,解得:x=2;所以原方程的解为:x1=,x2=2;(2)(a2+b2)(a2+b2﹣2)=3,设a2+b2=y,则原方程化为:y(y﹣2)=3,即y2﹣2y﹣3=0,(y﹣3)(y+1)=0,y﹣3=0, y+1=0,y 1=3,y2=﹣1,当y=3时,a2+b2=3;当y=﹣1时,a2+b2=﹣1,∵两个数的平方和具有非负性,∴此时不行,即代数式a2+b2的值为3.24.解:(1)由题意M(1,4),n(4,1),∵点M在y=上,∴k=4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CP=PQ,∠CPQ=90°,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式:y=;当x=1时,y=4,∴M(1,4),∴OC=PH=4设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±2,当x=﹣2+2时,x+4=2+2,如图1,Q(2+2,﹣2+2);当x=﹣2﹣2时,x+4=2﹣2,如图2,Q(2﹣2,﹣2﹣2);如图3,CP=PQ,∠CPQ=90°,设P(x,0)过P作GH∥y轴,过C作CG⊥GH,过Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),综上所述,点Q的坐标为(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3).六.解答25.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.26.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,∴,,(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,-----WORD格式--可编辑--专业资料-----∴,解得x =2(舍去),x=﹣2,∴,如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.--完整版学习资料分享----。

2019年吉林中考数学试题(附详细解题分析)

2019年吉林中考数学试题(附详细解题分析)

2019年吉林初中毕业生学业水平考试数学试卷考试时间:120分钟满分:120分{题目}1.(2019年吉林)1.如图,数轴上蝴蝶所在点表示的数可能为()(第1题)A.3 B.2 C.1 D.-1{答案}D{解析}本题考查了数轴上有理数的表示,因为负数在原点的左侧,因此本题选D.{分值}2{章节: [1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年吉林)2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()(第2题)A.B.C.D.{答案}D{解析}本题考查了俯视图,因为该组合图形俯视图由四个正方体连成一排,因此本题选D.{分值}2{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}3.(2019年吉林)3.若a为实数,则下列各式的运算结果比a小的是()A.1a⨯D.1a÷a+B.1a-C.1{答案}B{解析}本题考查了数值大小比较,a-1比a小,因此本题选B.{分值}2{章节:[1-2-2]整式的加减}{考点:实数的大小比较}{类别:常考题}{难度:1-最简单}{题目}4.(2019年吉林)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°(第4题){答案}C{解析}本题考查了图形的旋转运动,因为图形可以分解成三份完全相同的图形,360°÷3=120°,因此本题选C . {分值}2{章节:[1-23-1]图形的旋转} {考点:与旋转有关的角度计算} {类别:常考题} {难度:1-最简单} {题目}5.(2019年吉林)5.如图,在⊙O 中,»AB 所对的圆周角∠ACB =50°,若P 为»AB 上一点,∠AOP =55°,则∠POB 的度数为( ) A .30° B .45° C .55°D .60°OPC BA (第5题){答案}B{解析}本题考查了圆内角度计算,同弧所对的圆周角是圆心角的一半,因此本题选B . {分值}2{章节:[1-24-1-3]弧、弦、圆心角} {考点:直径所对的圆周角} {类别:常考题} {难度:3-中等难度}{题目}6(2019年吉林)6. 曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年吉林省吉林市中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)(2017•吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.12.(3分)(2017•吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107 3.(3分)(2017•吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.4.(3分)(2017•吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.√2B.√3C.√5D.√115.(3分)(2016•成都)分式方程2xx−3=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=36.(3分)(2017•吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°7.(3分)(2017•吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A .120mB .100mC .75mD .25m8.(3分)(2017•吉林一模)如图,⊙O 的半径是1,AB 是⊙O 的切线,A 是切点,若半径OC ∥AB ,则阴影部分的面积为( )A .π4B .π3C .π2D .3π4二、填空题(每小题3分,共24分)9.(3分)(2017•吉林一模)√3的相反数是 .10.(3分)(2019•湖州)分解因式:x 2﹣9= .11.(3分)(2017•吉林一模)关于x 的方程x 2﹣2x +k =0有两个相等实根,则k = .12.(3分)(2017•吉林一模)二次函数y =x 2﹣2x +3的最小值是 .13.(3分)(2017•吉林一模)如图,∠AOB 的平分线上有一点C ,CD ⊥OA 于点D ,若CD=3,则点C 到OB 的距离为 .14.(3分)(2017•吉林一模)如图,在△ABO 中,A (﹣4,0),B (0,3),OC 为AB 边的中线,以O 为圆心,线段OC 长为半径画弧,交x 轴正半轴于点D ,则点D 的坐标为 .15.(3分)(2017•吉林一模)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC =130°,点P为半径OB上任意一点,连接CP,则∠BCP可能为°(写出一个即可)16.(3分)(2017•吉林一模)如图,在平面直角坐标系中,面积为a的矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数y=1x的图象的两个分支上,则图中两块阴影部分面积的和等于.(用含a的式子表示)三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017•吉林一模)先化简,再求值:x(x﹣2)+(x+1)2,其中x=√2.18.(5分)(2017•吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.19.(6分)(2017•吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(6分)(2017•吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c的概率为;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c的概率.四、解答题(每小题7分,共14分)21.(7分)(2017•吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(7分)(2017•吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?五、解答题(每小题8分,共16分)23.(8分)(2017•吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s(单位:km)与时间t(单位:h)的函数图象如图2所示.(1)民俗村与古庙群之间的路程为km;(2)分别求小明、小华与民俗村之间的路程s关于时间t的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.24.(8分)(2017•吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件时,AD∥BC;当△ABC的边满足条件时,EF∥AC;应用:如图3,在锐角△GHK中,∠K<60°,GK=KH,将△GHK按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG交NP于点R,判断四边形GHQR 的形状,并说明理由.六、解答题(每小题10分,共20分)25.(10分)(2017•吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是cm2;(2)当t=s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.26.(10分)(2017•吉林一模)如图,在平面直角坐标系中的三点A(1,0),B(﹣1,0),P(0,﹣1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x﹣h)2+k的图象经过点P、C、D.(1)当m=1时,a=;当m=2时,a=;(2)猜想a与m的关系,并证明你的猜想;(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A、B对应,二次函数y=2a(x﹣h)2+k的图象经过点P,C1,D1,①求n与m之间的关系;②当△COD1是直角三角形时,直接写出a的值.2017年吉林省吉林市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2017•吉林一模)实数a在数轴上的位置如图所示,则a的值可能为()A.﹣4B.﹣3C.﹣2D.1【解答】解:根据数轴上点的位置得:﹣2.5<a<0,则a的值可能为﹣2,故选:C.2.(3分)(2017•吉林一模)截止2016年末,吉林市户籍总人口约为4220000人,将数据4220000用科学记数法表示为()A.4.22×105B.4.22×106C.42.2×105D.0.422×107【解答】解:4220000=4.22×106,故选:B.3.(3分)(2017•吉林一模)将如图平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选:A.4.(3分)(2017•吉林一模)在下列各数中,使不等式x﹣1>2成立的数为()A.√2B.√3C.√5D.√11【解答】解:∵x﹣1>2,∴x>3,∵√11>3,∴使不等式x﹣1>2成立的数为:√11.故选:D.5.(3分)(2016•成都)分式方程2xx−3=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.6.(3分)(2017•吉林一模)如图,在△ABC中,∠B=85°,∠ACB=45°,若CD∥AB,则∠ACD的度数为()A.40°B.45°C.50°D.60°【解答】解:∵∠B=85°,∠ACB=45°,∴∠A=180°﹣85°﹣45°=50°,∵CD∥AB,∴∠ACD=∠A,∴∠ACD=50°,故选:C.7.(3分)(2017•吉林一模)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A .120mB .100mC .75mD .25m【解答】解:∵∠ADB =∠EDC ,∠ABC =∠ECD =90°,∴△ABD ∽△ECD ,∴AB EC =BD CD ,∴AB =BD×EC CD=120×5060=100(米). 则两岸间的大致距离为100米.故选:B .8.(3分)(2017•吉林一模)如图,⊙O 的半径是1,AB 是⊙O 的切线,A 是切点,若半径OC ∥AB ,则阴影部分的面积为( )A .π4B .π3C .π2D .3π4【解答】解:∵AB 是切线,∴OA ⊥AB ,∴∠OAB =90°,∵OC ∥AB ,∴∠COA =∠OAB =90°,∴阴影部分的扇形的圆心角的度数为270°,∴S 阴=270⋅π⋅12360=34π. 故选:D .二、填空题(每小题3分,共24分)9.(3分)(2017•吉林一模)√3的相反数是−√3.【解答】解:√3的相反数是−√3,故答案为:−√3.10.(3分)(2019•湖州)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).11.(3分)(2017•吉林一模)关于x的方程x2﹣2x+k=0有两个相等实根,则k=1.【解答】解:∵关于x的方程x2﹣2x+k=0有两个相等实根,∴△=(﹣2)2﹣4k=0,解得k=1.故答案为:1.12.(3分)(2017•吉林一模)二次函数y=x2﹣2x+3的最小值是2.【解答】解:∵二次函数y=x2﹣2x+3可化为y=(x﹣1)2+2的形式,∴二次函数y=x2﹣2x+3的最小值是2.13.(3分)(2017•吉林一模)如图,∠AOB的平分线上有一点C,CD⊥OA于点D,若CD =3,则点C到OB的距离为3.【解答】解:作CE⊥OB于E,∵OC是∠AOB的平分线,CD⊥OA,CE⊥OB,∴CE=CD=3,故答案为:3.14.(3分)(2017•吉林一模)如图,在△ABO 中,A (﹣4,0),B (0,3),OC 为AB 边的中线,以O 为圆心,线段OC 长为半径画弧,交x 轴正半轴于点D ,则点D 的坐标为 (52,0) .【解答】解:∵A (﹣4,0),B (0,3),∴OA =4,OB =3,∵∠AOB =90°,∴AB =5,∵OC 为AB 边的中线,∴OC =12AB =52,∴OD =OC =52,∴D (52,0); 故答案为:(52,0). 15.(3分)(2017•吉林一模)如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,∠ADC=130°,点P 为半径OB 上任意一点,连接CP ,则∠BCP 可能为 30 °(写出一个即可)【解答】解:∵四边形ABCD 内接于⊙O ,∴∠B =180°﹣∠ADC =50°,当点P 与点O 重合时,∠BCP =∠B =50°,∴0≤∠BCP ≤50°,∴∠BCP 可能为30°,故答案为:30.16.(3分)(2017•吉林一模)如图,在平面直角坐标系中,面积为a 的矩形ABCD 的边与坐标轴平行或垂直,顶点A 、C 分别在函数y =1x 的图象的两个分支上,则图中两块阴影部分面积的和等于 a ﹣2 .(用含a 的式子表示)【解答】解:依题意,设A (m ,n )C (c ,d ),∵A 、C 两点在函数y =1x的图象上,∴mn =cd =1,∴图中两块阴影部分面积的和等于a ﹣2,故答案为:a ﹣2.三、解答题(第17、18题每小题各5分,第19、20每小题各6分,共22分)17.(5分)(2017•吉林一模)先化简,再求值:x (x ﹣2)+(x +1)2,其中x =√2.【解答】解:x (x ﹣2)+(x +1)2=x 2﹣2x +x 2+2x +1=2x 2+1,当x =√2时,原式=2×(√2)2+1=2×2+1=4+1=5.18.(5分)(2017•吉林一模)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”请你求出问题中的鸡兔各有几只.【解答】解:设鸡有x 只,兔有y 只.根据题意可得:{x +y =352x +4y =94, 解得:{x =23y =12.答:鸡有23只,兔有12只.19.(6分)(2017•吉林)如图,点E 、F 在BC 上,BE =FC ,AB =DC ,∠B =∠C .求证:∠A =∠D .【解答】证明:∵BE =FC ,∴BE +EF =CF +EF ,即BF =CE ;又∵AB =DC ,∠B =∠C ,∴△ABF ≌△DCE (SAS ),∴∠A =∠D .20.(6分)(2017•吉林一模)甲、乙、丙三人用三根完全相同的吸管玩游戏,将其中一根剪去一段(如图1所示),甲把三根吸管按如图2所示的方式拿在手中,使露出的部分完全相同,乙先从中抽取一根不放回,丙再从中抽取一根.(1)乙抽到吸管c 的概率为 13 ;(2)用画树状图或列表的方法,求乙、丙两人都没有抽到吸管c 的概率.【解答】解:(1)∵共有a ,b ,c ,三根吸管,∴乙抽到吸管c 的概率=13,故答案为:13; (2)画树状图得:由树状图可知所有可能结果共6种,其中乙、丙两人都没有抽到吸管c的结果有2种,所以P(乙、丙两人都没有抽到吸管c)=26=13.四、解答题(每小题7分,共14分)21.(7分)(2017•吉林一模)如图是某住宅区的配电房示意图(图中长度单位:m),它是一个轴对称图形,求配电房的高AE(结果精确到0.1m).(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【解答】解:根据题意得BD=0.3+1.5=1.8,DE=2.5,在Rt△ABD中,∵tan B=AD BD,∴AD=BD•tan B=1.8×tan35°=1.8×0.70≈1.26,∴AE=AD+DE=1.26+2.5≈3.8(m).答:配电房的高AE为3.8m.22.(7分)(2017•吉林一模)老师想知道学生每天在上学的路上要花多少时间,于是让大家将每天来学校的单程时间写在纸上.如图是全班30名学生上学单程所花时间的条形统计图:(1)请直接写出学生上学单程所花时间的平均数、中位数和众数;(2)假如老师随机地问一名学生,你认为老师最可能得到的回答是多少时间?【解答】解:(1)x=130×(2×5+4×10+6×15+12×20+4×25+2×30)=18min;处在中间位置的数,即中位数为20min;出现次数最多的数位20min ,即众数为20min .(2)众数最有可能被叫到,故选20min .五、解答题(每小题8分,共16分)23.(8分)(2017•吉林一模)小明、小华约好去滑雪场滑雪.小明乘环保车从民俗村出发,沿景区公路(如图1所示)去滑雪场,同时小华从古庙群出发,骑电动自行车沿景区公路去滑雪场.小明、小华与民俗村之间的路程s (单位:km )与时间t (单位:h )的函数图象如图2所示.(1)民俗村与古庙群之间的路程为 10 km ;(2)分别求小明、小华与民俗村之间的路程s 关于时间t 的函数解析式(不要求写自变量的取值范围);(3)直接写出当小明到达滑雪场时,小华与滑雪场的路程.【解答】解:(1)由题意可得,民俗村与古庙群之间的路程为:10﹣0=10(km ),故答案为:10;(2)设小明与民俗村之间的路程s 关于时间t 的函数解析式是s =kt ,k ×1=30,得k =30,即小明与民俗村之间的路程s 关于时间t 的函数解析式是s =30t ,设小华与民俗村之间的路程s 关于时间t 的函数解析式是s =at +b ,{b =10a +b =30,得{a =20b =10, 即小华与民俗村之间的路程s 关于时间t 的函数解析式是s =20t +10;(3)由题意可得,将s =45代入s =30t ,得t =1.5,件t=1.5代入s=20t+10,得s=40,45﹣40=5,答:当小明到达滑雪场时,小华与滑雪场的路程是5km.24.(8分)(2017•吉林一模)操作:已知△ABC,对△ABC进行如下变换:如图1,请画出对△ABC关于直线AC对称的△ADC(不要求尺规作图,不要求写画法,保留画图痕迹)如图2,将△ABC绕点A逆时针旋转,使点C落在AB上,得到△AEF.发现:当△ABC的边满足条件AB=BC时,AD∥BC;当△ABC的边满足条件AB=BC时,EF∥AC;应用:如图3,在锐角△GHK中,∠K<60°,GK=KH,将△GHK按上述操作,得到△GHM和△GPN,延长NP交KH于点Q,延长MG交NP于点R,判断四边形GHQR 的形状,并说明理由.【解答】解:操作:如图1所示:发现:当△ABC的边满足条件AB=BC时,AD∥BC;理由如下:如图2所示,由对称的性质得:△ADC≌△ABC,∴∠DAC=∠BAC,∵AB=BC,∴∠BAC=∠BCA,∴∠DAC=∠BCA,∴AD∥BC;故答案为:AB=BC;当△ABC的边满足条件AB=BC时,EF∥AC;理由如下:由旋转的性质得:△AEF≌△ABC,∴∠EF A=∠BCA,∵AB=BC,∴∠BAC=∠BCA,∴∠EF A=∠BAC,∴EF∥AC;故答案为:AB=BC;应用:四边形GHQR是菱形,理由如下:由操作、发现可知:MG∥KH,RQ∥GH,∴四边形GHQR是平行四边形,∴∠PRG=∠GHK,∵RQ∥GH,∴∠RPG=∠KGH,∵KG=KH,∴∠KGH=∠KHG,∴∠PRG=∠RPG,∴RG=PG,又∵PG=GH,∴RG=GH,∴四边形GHQR是菱形.六、解答题(每小题10分,共20分)25.(10分)(2017•吉林一模)如图,在平行四边形OABC中,∠AOC=60°,OC=4cm,OA=8cm,动点P从点O出发,以1cm/s的速度沿边按O→A→B运动,同时动点Q从点O出发,以1cm/s的速度沿边按O→C→B运动,其中一点到达终点B时,另一点也停止运动,设运动时间为t(s),平行四边形OABC位于直线PQ左侧的图形面积为S(cm2).(1)平行四边形OABC的面积是16√3cm2;(2)当t=6s时,直线PQ平分平行四边形OABC的面积;(3)求S关于t的函数解析式.【解答】解:(1)如图1,过点C作CD⊥OA于D,在Rt△COD中,∠AOC=60°,OC=4,∴CD=2√3,∵OA=8,∴S平行四边形OABC=OA•CD=8×2√3=16√3cm2,故答案为:16√3;(2)如图3,过点C作CD⊥OA于D,由(1)知,CD=2√3,S平行四边形OABC=16√3cm2,∵直线PQ平分平行四边形OABC的面积,∴S梯形OCQP=12S平行四边形OABC=12×16√3=8√3,由运动知,CQ=t﹣4,OP=t,∴S梯形OCQP=12(CQ+OP)•CD=12(t﹣4+t)×2√3=√3(2t﹣4)=8√3,∴t=6,故答案为:6;(3)当0≤t≤4时,如图2,过点Q作QD⊥OA于D,在Rt△ODQ中,∠AOC=60°,OQ=t,∴DQ=OQ sin∠AOC=√32t,∴S=S△OPQ=12×OP×DQ=12t×√32t=√34t2,当4<t≤8时,如图3,过点C作CD⊥OA于D,由(1)知,CD=2√3,由运动知,CQ=t﹣4,OP=t,∴S梯形OCQP=12(CQ+OP)•CD=12(t﹣4+t)×2√3=√3(2t﹣4)=2√3t﹣4√3,当8<t≤12时,如图4,过点P作PD⊥BC于D,∵四边形OABC时平行四边形,∴∠B=60°,由运动知,BQ=PB=12﹣t,在Rt△PDB中,PD=PB sin∠B=√32(12﹣t),∴S五边形OAPQC=S平行四边形OABC﹣S△PBQ=16√3−12BQ×PD=16√3−12(12﹣t)×√32(12﹣t)=16√3−√34(12﹣t)2,26.(10分)(2017•吉林一模)如图,在平面直角坐标系中的三点A(1,0),B(﹣1,0),P(0,﹣1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x﹣h)2+k的图象经过点P、C、D.(1)当m=1时,a=2;当m=2时,a=3;(2)猜想a与m的关系,并证明你的猜想;(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A、B对应,二次函数y=2a(x﹣h)2+k的图象经过点P,C1,D1,①求n与m之间的关系;②当△COD1是直角三角形时,直接写出a的值.【解答】解:(1)当m=1时,C(1,1),D(﹣1,1),∵抛物线顶点P(0,﹣1),∴y=ax2﹣1,把C(1,1)代入得:a=2,当m=2时,C(1,2),D(﹣1,2),∵抛物线顶点P(0,﹣1),∴y=ax2﹣1,把C(1,2)代入得:2=a﹣1,a=3,故答案为:2;3;(2)a=m+1,理由是:由题意得:C(1,m),D(﹣1,m)把C(1,m)代入抛物线的解析式y=ax2﹣1中得:m=a﹣1,∴a=m+1(3)①由题意得:C1(1,n),D1(﹣1,n),把C1(1,n)代入抛物线的解析式y=2ax2﹣1中得:n=2a﹣1,∴a=n+1 2,由(2)知:a=m+1,∴m+1=n+1 2,∴n﹣2m=1;②分三种情况:∵C(1,a﹣1),D1(﹣1,2a﹣1),O(0,0),i)当∠D1CO=90°时,△COD1是直角三角形,如图1,由勾股定理得:D1C2+OC2=D1O2,(﹣1﹣1)2+(2a﹣1﹣a+1)2+12+(a﹣1)2=(﹣1)2+(2a﹣1)2,a2﹣a﹣2=0,(a+1)(a﹣2)=0,a1=﹣1(舍),a2=2;ii)当∠D1OC=90°时,△COD1是直角三角形,如图2,由勾股定理得:D1O2+OC2=D1C2,(﹣1)2+(2a﹣1)2+12+(a﹣1)2=(1+1)2+(a﹣1﹣2a+1)2,2a2﹣3a=0,a(2a﹣3)=0,a1=0(舍),a2=3 2;iii)当∠CD1O=90°,△COD1是直角三角形,同理得:D 1C 2+D 1O 2=CO 2,(﹣1﹣1)2+(2a ﹣1﹣a +1)2+(﹣1)2+(2a ﹣1)2=12+(a ﹣1)2, 2a 2﹣a +2=0,△=1﹣4×2×2<0,此方程无实数解,综上所述,当△COD 1是直角三角形时,a 的值是32或2.。

相关文档
最新文档