蚂蚁爬行最短路线问题
中考复习之——蚂蚁爬行的最短路径问题
蚂蚁爬行的最短路径问题I•专题精讲:当蚂蚁在一个几何体的表面上爬行时,通常情况下都会考虑将其展开成一个平面,运用勾股定理计算其最短路程,也就是运用“化曲为平”或“化折为直”的思想来解决问题n.典型例题剖析:一•两点之间,线段最短与勾股定理相结合台阶问题如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm, 3cm和1cm, A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物•请你想一想,这只蚂蚁从的最短距离_____________2. 有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m 的A处爬行到对角B处吃食物,它爬行的最短路线长为_______________ .3. 葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线--螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1 )如果树干的周长(即图中圆柱体的底面周长)为30cm,绕一圈升高(即圆柱的高)40cm, 则它爬行一圈的路程是多少?(2)如果树干的周长为80cm,绕一圈爬行100cm,它爬行10圈到达树顶,则树干高多少?B点, 最短线路是1.有一圆柱体如图,高4cm,底面半径5cm, A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行A点出发,沿着台阶面爬到A圆柱(锥)问题第1题4.如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A 点出发,绕侧面一周又回到 A点,它爬行的最短路线长是 ______________ .5.如图,圆锥的主视图是等边三角形,圆锥的底面半径为的表面爬行,它要想吃到母线 AC 的中点P 处的食物,那么它爬行的最短路程是6.已知0为圆锥顶点,OA 、OB 为圆锥的母线, 侧面爬行到点A ,另一只小蚂蚁绕着圆锥侧面爬行到点 所示•若沿0A 剪开,则得到的圆锥侧面展开图为2.如图,一只小虫沿边长为 1的正方体的表面从点的路径是最短的,则 AC 的长为 _______________ .3.正方体盒子的棱长为 2 ,BC 的中点为M ,—只蚂蚁从A 点爬行到M 点的最短距离为C 为0B 中点,一只小蚂蚁从点 C 开始沿圆锥 B ,它们所爬行的最短路线的痕迹如右图 ( )(长)方体问题如图,边长为 1. 距离是1的正方体中,一只蚂蚁从顶点 出发沿着正方体的外表面爬到顶点B 的最短2cm ,假若点B 有一蚂蚁只能沿圆锥A 出发,经过3个面爬到点B •如果它运动R第5题A.B.C. D.第2题4.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C i处(三条棱长如图所示),问怎样走路线最短?最短路线长为_____________ .5. 如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为_______________ .变式:如图,长方体的底面边长分别为1cm和3cm,高为6cm .如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要 _________ cm .6. (1)如图①,一个无盖的长方体盒子的棱长分别为BC = 3cm、AB = 4cm、AA i = 5cm,盒子的内部顶点C i处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙(盒壁的厚度忽略不计)•假设昆虫甲在顶点C i处静止不动,请计算A处的昆虫乙沿盒子内壁爬行到昆虫甲C i处的最短路程•并画出其最短路径,简要说明画法.(2)如果(i)问中的长方体的棱长分别为AB = BC = 6cm, AA i= i4cm,如图②,假设昆虫甲从盒内顶点C i以i厘米/秒的速度在盒子的内部沿棱C i C向下爬行,同时昆虫乙从盒内顶点A以3厘米/秒的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?研究课题:蚂蚁怎样爬最近?研究方法:如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处,要求该蚂蚁需要爬行的最短路程的长,可将该正方体右侧面展开,由勾股定理得最短路程的长为A6= .AC2+CC I2= 102+52= 5:...;5cm .这里,我们将空间两点间最短路程问题转化为平面内两点间距离最短问题.研究实践:(1)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到 6处,蚂蚁需要爬行的最短路程的长为_______________________ .(2)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且/ AOA1=120°, 一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.求该蚂蚁需要爬行的最短路程的长.(3)如图5,没有上盖的圆柱盒高为10cm,底面圆的周长为32cm,点A距离下底面3cm.-只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.请求出蚂蚁需要爬行的最短路程的长.。
专题训练蚂蚁爬行的最短路径(附附答案解析)
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0;(2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB = 51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短第6题路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A .故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB = ()1012122=++.故选C .6. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面,∵BC 的中点为M ,所以MC = 21BC =1, 在直角三角形中AM = = .7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
解:将盒子展开,如图所示:AB =CD =DF +FC = 21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1,根据两点之间线段最短,MD =MC +CD =1+2=3,MD 1=132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB = =5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
最短路径问题―――蚂蚁爬行的最短路径
1 / 4 1AB A 1B 1DC D 1C 124最短路径问题―――蚂蚁爬行的最短路径最短路径问题旨在寻找图(由结点和路径组成的)中两结点之间的最短路径确定起点的最短路径问题:即已知起始结点,求最短路径的问题确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
而蚂蚁爬行的最短路径是指蚂蚁在平面图形或在几何体中爬行,求其爬行的最短路程。
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.2.如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3.如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( ) 6. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 秒钟.第9题 第10题 第11题 第12题10.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
中考数学蚂蚁爬行的最短路径试题(带解析)
蚂蚁爬行的最短路径1.一只蚂蚁从原点 0 出发来回爬行,爬行的各段路程依次为: +5,-3,+10,-8 ,-9,+12, -10.回答下列问题:(1)蚂蚁最后是否回到出发点 0;(2)在爬行过程中,如果每爬一个单位长度奖励 2 粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:( 1)否, 0+5-3+10-8-9+12-10=-3 ,故没有回到 0; (2)( |+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114 粒2. 如图,边长为 1 的正方体中,一只蚂蚁从顶点 A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3.(2006?茂名)如图,点 A 、B 分别是棱长为 2 的正方体左、右两侧面的中心,一蚂蚁从点 A 沿其表面爬到点 B 的最短路程是 cm解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB= 22 12 5 .AB 即为最短路线.B 的最短路程是两个棱长的长,即 2+2=4.4.如图,一只蚂蚁从正方体的底面 A 点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A? P? B B .A? Q? B C .A? R? B D .A? S? B解:根据两点之间线段最短可知选A.故选A.5.如图,点 A 的正方体左侧面的中心,点 B 是正方体的一个顶点,正方体的棱长为2,蚂蚁从点A沿其表面爬到点 B 的最短路程是()解:如图,AB= 1 2 2 12 10 .故选C.6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从 A 点爬行到M点的最短距离为()解:展开正方体的点M所在的面,∵BC的中点为M,1所以MC= BC=1,2在直角三角形中AM= = .7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向 B 处爬行,所走最短路程是cm 。
故选C.8. 正方体盒子的棱长为2,BC 的中点为M,一只蚂蚁从A 点爬行到M 点的最短距离解:将正方体展开,连接M、D1,根据两点之间线段最短,MD=MC+CD=1+2,=3MD1= MD 2 DD1232 22139.如图所示一棱长为 3cm 的正方体, 把所有的面均分成 3×3个小正方形. 其边长都为 1cm ,假设一只蚂蚁每秒爬行 2cm ,则它从下底面点 A 沿表面爬行至侧面的 B 点,最少要用 2.5 秒钟解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短 的路线.( 1)展开前面右面由勾股定理得 AB= = cm ;(2)展开底面右面由勾股定理得 AB==5cm ;所以最短路径长为 5cm ,用时最少: 5÷2=2.5 秒.10.(2009?恩施州)如图,长方体的长为 15,宽为 10,高为 20,点 B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是 。
最短路径问题―――蚂蚁爬行的最短路径
最短路径问题―――蚂蚁爬行的最短路径最短路径问题―――蚂蚁爬行的最短路径最短路径问题旨在寻找图(由结点和路径组成的)中两结点之间的最短路径确定起点的最短路径问题:即已知起始结点,求最短路径的问题确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
而蚂蚁爬行的最短路径是指蚂蚁在平面图形或在几何体中爬行,求其爬行的最短路程。
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位xx奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.2.如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是.3.如图,点A、B分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A沿其表面爬到点B的最短路程是cm44.如图,一只蚂蚁从正方体的底面A点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A⇒P⇒BB.A⇒Q⇒BC.A⇒R⇒BD.A⇒S⇒B5.如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()第8题最短路径问题―――蚂蚁爬行的最短路径1AB A 1B 1DC D 1C 1247.如图,点A 和点B 分别是棱长为的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是cm 。
8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为.9.如图所示一棱长为的正方体,把所有的面均分成3×3个小正方形.其边长都为,假设一只蚂蚁每秒爬行,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.第9题第10题第11题第12题10.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是。
专地的题目训练蚂蚁爬行地最短路径(含答案详解)
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线.AB = 51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .16. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM = =.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
解:将盒子展开,如图所示:AB =CD =DF +FC =21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1, 根据两点之间线段最短,MD =MC +CD =1+2=3,MD 1= 132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB ==5cm ;第7题1AB A 1B 1D CD 1C 124所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
【最新精选】最短路径问题―――蚂蚁爬行的最短路径
最短路径问题―――蚂蚁爬行的最短路径最短路径问题旨在寻找图(由结点和路径组成的)中两结点之间的最短路径确定起点的最短路径问题:即已知起始结点,求最短路径的问题确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
而蚂蚁爬行的最短路径是指蚂蚁在平面图形或在几何体中爬行,求其爬行的最短路程。
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.2.如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )6. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M点的最短距离为()7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
第2题 第8题1AB A 1B 1DC D 1C 124第9题 第10题 第11题 第12题10.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
11. 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .12.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A 点爬到B 点,那么这只蚂蚁爬行的最短路径为 米。
蚂蚁最短路径问题的总结
蚂蚁最短路径问题的总结蚂蚁最短路径问题是指一群蚂蚁从一个起点出发,到达终点的过程中,所走的路线最短的问题。
这个问题在生活中有很多应用,比如在物流运输中,寻找最短路径可以节省时间和成本。
本文将对蚂蚁最短路径问题进行总结和分析。
一、问题描述假设有一条长度为 L 的木棍,上面有 n 只蚂蚁。
每只蚂蚁的速度相同,且只能向前爬行。
当两只蚂蚁相遇时,它们会掉头。
现在,我们把这些蚂蚁放在木棍的两端,让它们开始爬行。
问最终它们会在哪里相遇?二、问题分析1. 蚂蚁相遇的情况当两只蚂蚁相遇时,它们会掉头,相当于它们的速度变成了相反方向。
因此,我们可以把相向而行的两只蚂蚁看成是穿过了对方,继续向前爬行。
2. 蚂蚁相遇的时间由于蚂蚁的速度相同,因此它们相遇的时间是固定的。
假设蚂蚁的速度是 v,相遇的时间是 t,则两只蚂蚁之间的距离是 vt。
3. 最终相遇的位置由于我们无法确定蚂蚁的相对位置,因此我们无法确定它们最终相遇的位置。
但是,我们可以确定它们相遇的位置一定是在木棍的两端之间。
三、问题解决1. 排序法我们可以将蚂蚁按照它们的位置从左到右排序,然后让它们继续向前爬行。
当两只蚂蚁相遇时,它们会掉头,相当于它们的位置交换了。
因此,我们可以把相向而行的两只蚂蚁看成是穿过了对方,继续向前爬行。
2. 模拟法我们可以模拟每只蚂蚁的运动过程,直到它们相遇为止。
对于每只蚂蚁,我们可以记录它的位置、方向和状态。
当两只蚂蚁相遇时,它们会掉头,相当于它们的方向反转了。
因此,我们可以把相向而行的两只蚂蚁看成是穿过了对方,继续向前爬行。
3. 数学法我们可以通过数学公式来求解最终相遇的位置。
假设蚂蚁的数量为 n,速度为 v,木棍的长度为 L,则两只蚂蚁之间的距离是 vt。
因此,蚂蚁相遇的时间是 t=L/(2nv)。
当蚂蚁相遇时,它们的速度变成了相反方向,因此,它们会继续向前爬行,直到到达木棍的两端。
因此,最终相遇的位置一定是在木棍的两端之间。
四、应用实例蚂蚁最短路径问题在生活中有很多应用,比如在物流运输中,寻找最短路径可以节省时间和成本。
蚂蚁爬行最短路径问题深层剖析
蚂蚁爬行最短路径问题深层剖析1如图,一个长方体长、宽、高分别为4cm ,3cm ,6cm ,一只蚂蚁从A 点出发到G 点处吃食物,(1)请你画出蚂蚁能够最快到达目的地的可能路径?(2)需要爬行的最短路程是多少?【分析】做此题要把这个长方体展开,把蚂蚁所走的路线放到一个平面内,根据两点之间线段最短使用勾股定理即可计算.但难点在于学生在分析时往往对问题思考不够全面,在分类讨论时出现漏解或思路不够清晰所花时间较长。
我们不妨这样来分析;把长方体的六个面分为上面,下面,左面,右面,前面,后面,那么经过点A 的面有三个,分别是前面,左面,下面;经过点G 的面有三个,分别是上面,右面,后面。
接下来分类讨论第1种情况:我们把前面和上面组成一个平面,画出展开图 连结AG ,则在Rt △ABG 中,使用勾股定理 则所走的最短路程是979422=+=AG ;第2种情况:我们把前面和右面组成一个平面,画出展开图连结AG ,则在Rt △ACG 中,使用勾股定理 则所走的最短路程是856722=+=AG ;第3种情况:如果把前面和后面组合在一起,发现它们是互相平行的两个面,蚂蚁不可能到达,舍去;第4种情况:如果把下面和上面组合在一起,它们也是互相平行的两个面,蚂蚁不可能到达,舍去;第5种情况:我们把下面和右面组成一个平面,画出展开图连结AG ,则在Rt △AFG 中,使用勾股定理则所走的最短路程是10931022=+=AG ;第6种情况:我们把下面和后面组成一个平面,画出展开图连结AG ,则在Rt △ABG 中,使用勾股定理则所走的最短路程是974922=+=AG ;第7种情况:我们把左面和上面组成一个平面,画出展开图连结AG ,则在Rt △AFG 中,使用勾股定理则所走的最短路程是10931022=+=AG ;第8种情况:如果把左面和右面组合在一起,它们也是互相平行的两个面,蚂蚁不可能到达,舍去;第9种情况:我们把左面和后面组成一个平面,画出展开图连结AG ,则在Rt △ACG 中,使用勾股定理 则所走的最短路程是856722=+=AG ;综上;虽然分析了9种情况,但3种情况舍去,在剩下的6种情况中………………………97=AG……………………85=AG……………………109=AG这6种情况中,虽然路径不同,但因为长方体的对称性,线段AG 的长度实际上共有3种不同结果。
专题训练 蚂蚁爬行的最短路径(含答案)
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB =51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.AB4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .AB1216. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM = =.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
最短路径问题―――蚂蚁爬行的最短路径
最短路径问题旨在寻找图(由结点和路径组成的)中两结点之间的最短路径确定起点的最短路径问题:即已知起始结点,求最短路径的问题确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
而蚂蚁爬行的最短路径是指蚂蚁在平面图形或在几何体中爬行,求其爬行的最短路程。
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.2.如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是 .3.如图,点A、B分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A沿其表面爬到第2题4.如图,一只蚂蚁从正方体的底面A点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A⇒P⇒B B.A⇒Q⇒B C.A⇒R⇒B D.A⇒S⇒B5.如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()第8题7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是 cm。
8. 正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为 . 9.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,第9题第10题第11题第12题10.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是。
11. 如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .12.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A点爬到B点,那么这只蚂蚁爬行的最短路径为米。
专题训练 蚂蚁爬行的最短路径(含答案)
蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB =51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.A B4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )第6题A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .AB1216. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM ==.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
最短路径问题―――蚂蚁爬行的最短路径
最短路径问题―――蚂蚁爬行的最短路径最短路径问题旨在寻找图(由结点和路径组成的)中两结点之间的最短路径确定起点的最短路径问题:即已知起始结点,求最短路径的问题确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
而蚂蚁爬行的最短路径是指蚂蚁在平面图形或在几何体中爬行,求其爬行的最短路程。
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.2.如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是 .3.如图,点A、B分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A沿其表面爬到点B的最短路程是 cm第2题4.如图,一只蚂蚁从正方体的底面A点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A⇒P⇒B B.A⇒Q⇒B C.A⇒R⇒B D.A⇒S⇒B5.如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()第8题7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是 cm。
8. 正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为 . 9.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,第9题第10题第11题第12题10.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是。
最短路径问题―――蚂蚁爬行的最短路径
最短路径问题―――蚂蚁爬行的最短路径Document serial number【UU89WT-UU98YT-UU8CB-UUUT-最短路径问题―――蚂蚁爬行的最短路径最短路径问题旨在寻找图(由结点和路径组成的)中两结点之间的最短路径确定起点的最短路径问题:即已知起始结点,求最短路径的问题确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
而蚂蚁爬行的最短路径是指蚂蚁在平面图形或在几何体中爬行,求其爬行的最短路程。
1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻.2.如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是 .3.如图,点A 、B分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A沿其表面爬到点B的最短路程是 cm4.如图,一只蚂蚁从正方体的底面A点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A⇒P⇒B B.A⇒Q⇒B C.A⇒R⇒B D.A⇒S⇒B5.如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是cm。
第2第81AB A 1B 1D CD 1C 1248. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 秒钟.第9题 第10题 第11题 第12题10.如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,有一个圆柱的高为6cm,底面周长为16cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面B点处的食物,则沿着圆柱的
表面需要爬行的最短路程是
10cm.
解:将圆柱体展开,连接A、B,
根据两点之间线段最短,
∵圆柱的高为6cm,底面周长为16cm,
∴AD=8cm,BD=6cm,
∴AB=√8²+6²
=10cm.
故答案为:10.
2.如图圆柱的底面半径为6㎝,高为l0cm,蚂蚁在圆柱表面爬行,从点A到点B的最短路程是多少厘米?(保留小数点后一位)
展开图成直角三角形,∠AOB=90°OB=3.14×6=18.84cm,OA=10cm。
求AB
∴AB=√(OA²+OB²)=21.3cm
总结:最短路程=√底面圆周长一半的平方+圆柱高的平方
3.一只蚂蚁要从正方体的一个顶点A沿表面爬到顶点B,怎样爬行路线最短?如果要爬行到顶点C呢?说明你的理由。
A 到
B 最短距离为其对角线,为根号2倍的边长
A到C 可以将其想象成展开的平面,最短距离为这两个平面的对角线,为根号5倍的边长
如图:
向左转|向右转
3.一只蚂蚁在立方体的表面积爬行.
(Ⅰ)如图1,当蚂蚁从正方体的一个顶点A沿表面爬行到顶点B,怎样爬行路线最短?说出你的理由.(Ⅱ)如图1,如果蚂蚁要从边长为1cm的正方体的顶点A沿最短路线爬行到顶点C,那么爬行的最短距离d的长度应是下面选项中的()
(A)1cm<l<3cm (B)2cm (C)3cm
这样的最短路径有
6条.
(Ⅲ)如果将正方体换成长AD=2cm,宽DF=2cm,高AB=1.5cm的长方体(如图2所示),蚂蚁仍需从顶点A沿表面爬行到顶点E的位置,请你说明这只蚂蚁沿怎样路线爬行距离最短?为什么?(可通过画图测量来说明)
考点:.
分析:(I)根据线段的性质:两点之间线段最短,求出即可;
(II)根据图形可得出最短路径为√5
,进而得出答案即可;
(Ⅲ)将立方体采用两种不同的展开方式得出最短路径即可.
解答:解:(I)如图1所示,沿线段AB爬行即可,根据两点之间线段最短;
(II)如图2所示:1cm<l<3cm,
故选A,
路线有6条,如图2所示:
(III )蚂蚁爬行的最短路线是沿面
AF 和面FC 展开后所连接的线段AE ,
原因:如图①和图②所示作图,分别连接AE ,并分别在两图中测量AE 的长,可得图②中的AE 较短. 也可利用勾股定理得出:图①中AE=
√73
2
cm ,图②中AE=
cm .
√65 2。