专题一、基因工程知识点归纳

合集下载

基因工程知识点总结归纳(更新版)

基因工程知识点总结归纳(更新版)

基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。

作动词:基因的分离和重组的过程。

2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。

供体、受体和载体是基因工程的三大要素。

3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。

以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。

三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。

2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。

5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。

6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。

7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。

8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。

9、S1核酸酶:特异性降解单链DNA或RNA。

10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。

基因工程知识要点

基因工程知识要点

基因⼯程知识要点第⼀章1.基因⼯程:是在分⼦⽔平上进⾏的遗传操作,指将⼀种或多种⽣物体(供体)的基因或基因组提取出来,或者⼈⼯合成的基因,按照⼈们的愿望进⾏严密的设计,经过体外加⼯重组,转移到另⼀种⽣物体(受体)的细胞内,使之能在受体细胞遗传并获得新的遗传性状的技术。

2.基因⼯程的基本过程为哪些?切—接—转—增—检①获得⽬的基因:从供体细胞分离出基因组DNA,⽤内切酶将外源DNA切开。

——切(同时选择运载⽬的基因的载体)②⽬的基因与载体DNA拼接:⽤DNA连接酶将含有外源基因的DNA⽚段接到载体分⼦上,形成DNA重组分⼦。

——接③重组体分⼦导⼊受体细胞:借助于细胞转化⼿段将DNA重组分⼦导⼊受体细胞中。

——转④短时间培养转化细胞,以扩增DNA重组分⼦或使其整合到受体细胞的基因组中。

——增⑤筛选和鉴定转化细胞,获得使外源基因⾼效稳定表达的基因⼯程菌或细胞。

——检3.哪些基因是真核⽣物特有的?①假基因:核苷酸序列同其相应的正常功能基因基本相同,但却不能合成出功能蛋⽩质的失活基因。

②基因家族:由功能相关的基因成套组合形成③重复序列哪些是原核⽣物特有的:插⼊序列。

哪些是真核和原核共有的:移动基因、重叠基因第⼆章1.寄主细胞控制的限制与修饰宿主控制限制——核酸限制性内切酶宿主控制修饰——修饰的甲基转移酶以λ(k)噬菌体侵染E.coli B菌株为例解释寄主控制与修饰的现象。

(简述寄主控制的限制与修饰现象。

⼤多数细菌的噬菌体侵染都存在着⼀些功能性障碍。

所谓的寄主控制的限制与修饰现象简称(R/M体系)。

R/M体系:寄主是由两种酶活性配合完成的⼀种是修饰的甲基转移酶——修饰另⼀种是核酸内切限制酶——限制R/M体系的作⽤:保护⾃⾝的DNA不受限制;破坏外源DNA使之迅速降解;2. 简述Ⅰ型、Ⅱ型和Ⅲ型核酸内切酶的基本特性。

(1)Ⅰ型酶基本特性①有内切酶活性和甲基化酶活性——互斥②需要ATP、SAM(S—腺苷甲硫氨酸)和Mg 2+辅助因⼦;③EcoB和EcoK是由三种不同亚基组成。

专题一基因工程知识点汇总

专题一基因工程知识点汇总

专题一基因工程知识点汇总1.1 DNA重组技术的基本工具一、基因工程的原理:基因工程是指按照人们的愿望,进行严格的设计,通过体外和,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。

由于基因工程是在水平上进行设计和施工的,因此又叫做。

1.“分子手术刀”——(1)来源:主要是从中分离纯化出来的。

(2)功能:能够识别双链DNA分子的,并且使每一条链中特定部位的两个核苷酸之间的断开,因此具有性。

(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:和。

(4)这类酶在生物体内能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保持细胞原有的遗传信息。

2.“分子缝合针”——(1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合。

②区别:E·coliDNA连接酶来源于,只能将双链DNA片段互补的末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合,但连接的之间的效率较低。

(2)与DNA聚合酶作用的异同: DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。

DNA连接酶是连接的末端,形成磷酸二酯键。

3.“分子运输车”——载体(1)基因操作过程中使用载体两个目的:一是用它作为运载工具,将目的基因转移到宿主细胞中去;二是利用它在宿主细胞内对目的基因进行大量的复制。

(2)现在通常使用的载体是,它是一种相对分子质量较小、独立于之外,并具有自我复制能力的 DNA分子的环状DNA,有的细菌中有一个,有的细菌中有多个。

(3)质粒通过细菌间的接合由一个细菌向另一个细菌转移,可以复制,也可整合细菌拟核DNA中,随着拟核DNA的复制而复制。

(4)其他载体还有和等。

(5)作为载体必须具备以下条件:①能够在宿主细胞中;②具有多个,以便与外源基因连接;③具有某些,便于进行筛选,如对抗菌素的抗性基因、产物具有颜色反应的基因等。

高中生物选修三专题一基因工程知识点

高中生物选修三专题一基因工程知识点

高中生物选修三专题一基因工程知识点专题一基因工程基因工程的概念基因工程就是指按照人们的心愿,展开严苛的设计,通过体外dna重组和转基因技术,剥夺生物以代莱遗传特性,缔造出以合乎人们须要的代莱生物类型和生物产品。

基因工程就是在dna分子水平上展开设计和施工的,又叫作dna重组技术。

(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内乌酶(管制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能辨识双链dna分子的某种特定的核苷酸序列,并且并使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经管制酶研磨产生的dna片段末端通常存有两种形式:黏性末端和平末端。

黏性末端:当限制酶从识别序列的中心轴线两侧切开时,被限制酶切开的dna两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端。

平末端:当管制酶从辨识序列的中心轴线处剖开时,剖开的dna两条单链的切口,就是平坦的,这样的切口叫做元显恭末端。

2.“分子缝合针”——dna连接酶(1)两种dna连接酶(e·colidna连接酶和t4-dna连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:e·colidna连接酶源于大肠杆菌,就可以将双链dna片段优势互补的黏性末端之间的磷酸二酯键连接起来;而t4dna连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与dna聚合酶促进作用的优劣:dna聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

dna连接酶是(1)载体具有的条件:①能够在受到体细胞中激活并平衡留存。

②具有一至多个限制酶切点,供外源dna片段插入。

③具备标记基因,可供重组dna的鉴别和挑选。

④对受体细胞无害。

(2)最常用的载体就是质粒,它就是一种外露的、结构直观的、单一制于细菌染色体之外,并具备自我复制能力的双链环状dna分子。

高中生物选修专题一基因工程

高中生物选修专题一基因工程

• 什么叫黏性末端?
被限制酶切开的DNA两条单链的切口, 带有几个伸出的核苷酸,他们之间正好互 补配对,这样的切口叫黏性末端。
什么叫平末端?
当限制酶从识别序列的中心轴线处 切开时,切开的DNA两条单链的切口,是 平整的,这样的切口叫平末端。
限制性内切酶
特点:特异性,即识别特定核苷酸序列, 在特定的切点切割。 举例:大肠杆菌的一种限制酶( EcoRⅠ) 能识别GAATTC序列,并在G和A之间切开形 成黏性末端,SmaⅠ能识别CCCGGG序列, 并在C和G之间切割形成平末端 。
②DNA连接酶——分子缝合针:
E.coliDNA连接酶:只能连黏性末端。
T4DNA连接酶:还能连平末端,但效率较低。
来源:前者源于大肠杆菌;后者源于T4噬菌 体。 大 肠 杆 菌
T4 噬 菌 体
EcoRI切割
双链断开
不同来源DNA片断结合
3、分子运输车—运载体
要让一个从甲生物细胞内取出来的基因在 乙生物体内进行表达,首先得将这个基因送到 乙生物的细胞内去。能将外源基因送入细胞的 工具就是运载体。
新式的基因 枪靠高压氦气 为动力,将微 粒载片上的D NA送出,成 功率在15% 左右。小图为 微粒载片和阻 挡网。
手提式基因抢
花粉管通道法: 将目的基因导入植物细胞 ①操作方法: 在植物花受粉后,花粉形成花粉管还末愈合前 期,剪去柱头,然后,滴入DNA(含目的基因)使 目的基因借助花粉管通道进入受体细胞 ②特点:十分简便经济 ③例:转基因抗虫棉
基因工程的别名 基因拼接技术或DNA重组技术 操作环境 生物体外 基因
操作对象
操作水平 基本过程 结果
DNA分子水平
剪切 → 拼接 → 导入 → 表达

基因工程重点考点归纳

基因工程重点考点归纳

基因工程重点考点归纳1. 简述基因工程中的四大要素。

答:基因工程的四大要素是基因、工具酶、载体、宿主细胞。

2. 简述基因工程诞生的基础。

答:基因工程诞生的基础是理论上的三大发现和技术上的三大发明。

1971年,史密斯(Smith H. O.)等人从细菌中分离出的一种限制性酶,酶切病毒DNA分子,标志着DNA重组时代的开始。

1972年伯格(Berg P.)等用限制性酶分别酶切猿猴病毒和噬菌体DNA,将两种DNA 分子用连接酶连接起来,得到新的DNA分子。

1973年,科恩(Cohen S.)等进一步将酶切DNA分子与质DNA 连接起来,并将重组质粒转入E.coli细胞中。

理论上的三大发现:(1)DNA是遗传物质(2)DNA双螺旋模型(Watson/Crick 1953)(3)确定了遗传信息传递的方式(60年代)技术上的三大发明:(1)工具酶的使用【Smith 和Wilcox(1970) 流感嗜血杆菌分离纯化了Hind II其它工具酶(如连接酶)等的发现分子剪刀和DNA缝合工具】(2)基因运载工具—DNA载体的使用(对质粒的认识)【细菌的致育因子—F因子Lederberg 1946抗药性因子(R) 大肠杆菌素因(Col)】(3)逆转录酶的使用【Baltimomore 和Temin (1970) 各自发现了逆转录酶】意义:丰富了“中心法则”、真核基因的制备成为可能、构建cDNA 文库成为可能。

第二章1.简述细菌的限制与修饰系统答:细胞中存在位点特异性限制酶和特异性甲基化酶,即细胞中有限制—修饰系统(R-M Restriction-modification system)。

R-M系统是细菌安内御外的积极措施。

根据酶的亚单位组成、识别序列的种类和是否需要辅助因子,限制与修饰系统至少可分为四类。

2.II型限制性内切酶的特点答:II型限制性内切酶是同源二聚体,由两个彼此按相反方向结合在一起的相同亚单位组成。

识别回文对称序列,在回文序列内部或附近切割DNA,产生带3‘- 羟基和5’-磷酸基团的DNA 产物,需Mg2+,相应的修饰酶只需SAM 。

基因工程知识点全

基因工程知识点全

第一章基因工程概述1.什么是基因工程,基因工程的基本流程基因工程Genetic engineering原称遗传工程;从狭义上讲,基因工程是指将一种或多种生物体供体的基因与载体在体外进行拼接重组,然后转入另一种生物体受体内,使之按照人们的意愿遗传并表达出新的性状;因此,供体、受体和载体称为基因工程的三大要素;1.分离目的基因2.限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5.选择、筛选含目的基因的克隆6.培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件➢具有对受体细胞的可转移性或亲和性;➢具有与特定受体细胞相适应的复制位点或整合位点;➢具有多种单一的核酸内切酶识别切割位点;➢具有合适的筛选标记;➢分子量小,拷贝数多;➢具有安全性;2. 质粒载体有什么特征,有哪些主要类型1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建1删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量;一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定;2灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数3加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞;4在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头Polylinker,便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入;5根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件;4. 什么是人工染色体载体将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体5. 什么是穿梭载体人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体;6.入-噬菌体载体及构建-DNA为线状双链DNA分子,长度为,在分子两端各有12个碱基的单链互补粘性末端;➢1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点➢引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性➢灭活某些与裂解周期有关基因;➢使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现象的发生;➢加装选择标记,便于重组体的检测单链噬菌体DNA载体➢过定点诱变技术封闭重复的重要限制性酶切口;➢引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列lacZ’的乳糖操纵子片段lac、组氨酸操纵子片段his以及抗生素抗性基因等;➢将人工合成的多克隆位点接头片段插在 lacZ’标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体 DNA 的混浊噬菌斑呈蓝色;➢4在多克隆位点接头片段的两侧区域改为统一的 DNA 测序引物序列,使得重组 DNA 分子的单链形式经分离纯化后,可直接进行测序反应;8. II类限制性内切核酸酶的特点限制性核酸内切酶 Restriction endonucleases是一类能在特异位点上催化双链DNA 分子的断裂,产生相应的限制性片段的核酸水解酶;➢识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成的特定序列靶序列;➢识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构;➢切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称可形成粘性末端或平末端的DNA分子;同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶;同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶Isocandamers:识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶;9.甲基化酶Ⅱ类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识别序列内使某位碱基甲基化,从而封闭该酶切口;甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口➢甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内切酶的切割;➢甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点;连接酶连接作用的特点:①DNA连接酶需要一条DNA链的3’末端有一个游离的羟基-OH,另一条DNA链的5’末端有一个磷酸基-P的情况下,只有在这种情况下,才能发挥连接DNA分子的作用;②只有当3’-OH和5’-P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键;③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是双螺旋DNA分子的一部分;④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口nick,而不能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口gap;⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连接反应时,还需要提供一种能源分子NAD+或ATP11.大肠杆菌 DNA聚合酶和Klenow大片段各有什么作用DNA聚合酶作用的特点:➢要有底物4种dNTP为前体催化合成DNA;➢接受模板指导;➢需要有引物3’羟基的存在;➢不能起始合成新的DNA链;➢催化dNTP加到生长中的DNA链3’-OH末端;➢催化DNA的合成方向是5’→3’;Klenow酶的基本性质:➢大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个氨基酸残基片段,即Klenow酶;分子量为76kDa;➢Klenow酶仍拥有5’→3’的DNA聚合酶活性和5’→3’的核酸外切酶活性,但失去了5’→3’的核酸外切酶活性;Klenow酶的基本用途:➢修复由限制性核酸内切酶造成的 3’凹端,使之成为平头末端;➢以含有同位素的脱氧核苷酸为底物,对DNA片段进行标记;➢用于催化 cDNA 第二链的合成;➢用于双脱氧末端终止法测定 DNA 的序列;聚合酶T4-DNA聚合酶酶的基本特性:➢有3’→5’的核酸外切酶活性和5’→3’的DNA聚合酶活性;➢在无dNTP时,可以从任何3’-OH端外切;➢在只有一种dNTP时,外切至互补核苷酸;➢在四种dNTP均存在时,聚合活性占主导地位;T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的3’粘性末端13. 影响连接效率的因素有:➢温度最主要的因素离子浓度➢ATP的浓度 10μM - 1μM➢连接酶浓度平末端较粘性末端要求高➢反应时间通常连接过夜➢插入片段和载体片段的摩尔比➢DNA末端性质➢DNA片段的大小14.如何将不同DNA分子末端进行连接1.相同粘性末端的连接如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA分子 2.平头末端的连接T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用;3.不用粘性末端的连接3’端的粘性末端用T4-DNA聚合酶切平5’端的粘性末端用klenow酶补平,或者用S1核酸酶切平最后用T4-DNA连接酶进行平末端连接15. 碱性磷酸酶有什么作用1.该酶用于载体 DNA的5’末端除磷操作,以提高重组效率;2.用于外源DNA片段的5’端除磷,则可有效防止外源 DNA 片段之间的连接;16. 末端脱氧核苷酸转移酶有哪些作用➢给载体或目的DNA加上互补的同聚物尾;➢DNA片段3’末端的同位素标记;17. 2、细菌转化的步骤:∙感受态的形成;感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、切割及加工;感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质如细菌溶素的合成,使细菌胞壁部分溶解,局部暴露出细胞膜上的 DNA 结合蛋白和核酸酶等;∙转化因子的结合;受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA结构特异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上;∙转化因子的吸收;双链 DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中;∙整合复合物前体的形成;进入受体细胞的单链 DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,并将其引导至受体菌染色体DNA处;∙转化因子单链DNA的整合;供体单链DNA片段通过同源重组,置换受体染色体DNA的同源区域,形成异源杂合双链 DNA结构;+诱导转化原理:①在0℃的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态;②Ca2+能与加入的DNA分子结合,形成抗DNA酶DNase的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上;当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道;③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细胞,可以提高DNA的转化效率;∙但该法要求条件高,对外界污染物极为敏感,通常很少采用;介导细菌的原生质体转化∙PEG是乙二醇的多聚物, 存在不同分子量的多聚体,它可改变各类细胞的膜结构, 使两细胞相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两细胞的胞质沟通成为可能,从而造成细胞之间发生融合;20.电穿孔法是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法;P52 接合转化,入噬菌体感染未归纳21.转化率的影响因素.载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同;载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体; 插入片段大小:对质粒载体而言,插入片段越大,转化效率越低;重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响22.转化细胞的扩增转化细胞的扩增操作:指转化完成之后细胞的短时间培养;在实验时,扩增操作往往与转化操作偶联在一起,如:∙Ca2+诱导转化后的37℃培养一个小时∙原生质体转化后的再生过程∙λ噬菌体转染后的30℃培养等,均属扩增操作扩增操作的目的∙增殖转化细胞,使得有足够数量的转化细胞用于筛选程序;∙扩增和表达载体分子上的标记基因,便于筛选;∙表达外源基因,便于筛选和鉴定;23.抗药性筛选法这是利用载体DNA分子上的抗药性选择标记进行的筛选方法;抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcr将外源DNA片段插在BamHI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcs抗药性筛选法的基本操作:先将转化液涂布含有Ap的平板再将Ap平板上的转化子影印至含有Tc的平板上在Ap平板上生长,但在Tc平板上不长的转化子即为重组子 P56抗药性标记插入失活选择法∙经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子;为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选;如果外源基因插入在载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性重组子;24. 什么是蓝白斑筛选法这种方法是根据组织化学的原理来筛选重组体;主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷X-gal平板上形成浅蓝色的噬菌斑;外源基因插人lac或lac基因部分被取代后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 X-gal平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑;筛选法利用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR,通过对PCR产物的电泳分析,确定目的基因是否插入到载体中;由于在载体DNA分子中,外源DNA插入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子;第三章基因工程的常规技术1. 探针有哪些类型探针标记有哪些方法类型:同源或部分同源探针cDNA探针人工合成的寡核苷酸探针标记方法:①5’端标记法②反转录标记法③缺刻前移标记法④ABC标记法4.什么是ABC荧光显色酶标记法ABC 标记法;∙A为Avidin生物素抗性蛋白,每个Avidin分子可结合3 - 4个生物素分子;∙B为Biotin生物素,每个Biotin分子可结合2个Avidin分子;∙C为Complex,首先将Biotin共价结合在探针分子上,荧光胺标记在Avidin上,两者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光;如果将某一生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术5.亚克隆法∙亚克隆:是将克隆片段进一步片段化后再次进行的克隆;∙一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子;此时,该重组分子中的无关DNA区域以被大量删除;6. 菌落嗜菌斑原位杂交的基本原理、流程∙该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落;∙操作步骤:∙①菌落生长∙②转移到NC膜上∙③DNA释放和变性∙变成单链DNA:∙ 10%SDS NaOH∙④中和 Tris-HCl pH∙⑤固定 80 ℃ 120’∙⑥杂交包括预杂交,加探针DNA杂交∙⑦放射自显影∙⑧对照比较,选出重组克隆7.鸟枪法∙鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的 DNA 片段,分别连接到载体 DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子;鸟枪法制备目的基因的主要步骤∙①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端;原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达100Kb以上;全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切:片段长度可控,含有粘性末端,目的基因完整;∙②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体;∙③重组DNA分子导入受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞;∙④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法筛选模型的建立;∙⑤目的基因的定位利用鸟枪法获得的期望重组子只是含有目的基因的 DNA 片段,必须通过次级克隆或插入灭活,在已克隆的 DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列;法酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因;这种方法以目的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA,即cDNA,然后在DNA聚合酶的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA克隆; 的分离纯化绝大多数的真核生物mRNA在其3’端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱即可分离10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;过程:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火复性:模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍;11. 什么是基因组文库其构建方法是怎样的是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库;基因组文库构建的一般步骤①载体的选择和制备;②高纯度、大分子量基因组 DNA 的提取;③基因组 DNA 的部分酶切与分级分离;④载体与DNA片段的连接;⑤转化或侵染宿主细胞;⑥筛选鉴定基因组及保存;12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA文库应具备下列条件:∙重组克隆的总数不宜过大,以减轻筛选工作的压力∙载体的装载量最好大于基因的长度,避免基因被分隔克隆;∙克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序;∙克隆片段易于从载体分子上完整卸下;∙重组克隆能稳定保存、扩增、筛选;基因文库的构建通常采用鸟枪法和cDNA法13.外源DNA片段的切割原则片段之间要有一定的重叠序列片段大小要均一文库构建的步骤∙细胞总RNA的提取和mRNA的分离∙第一链cDNA合成∙第二链cDNA合成∙双链cDNA的分级分离∙双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖∙重组体的筛选与鉴定第四章基因在大肠杆菌、酵母的高效表达1. 启动子∙启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20~300个碱基,是控制基因转录的重要调控元件;在一定条件下mRNA的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达;∙启动子的特征:①序列特异性②方向性③位置特性④种属特异性2.启动子类型∙组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异;∙组织特异启动子:又称器官特异性启动子;在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性;∙诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平;目前已经分离了光诱导表达基因启动子、热诱导表达基因启动子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子等;3.终止子终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA的一部分,并形成特殊的二级结构,由此终止基因的转录;序列SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从起始密码子处开始5.密码子不同生物对密码子的偏爱性1.生物体基因组中的碱基含量2.密码子与反密码子的相互作用的自由能3.细胞内tRNA的含量6. 密码子偏爱性对外源基因表达的影响∙由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择;一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:∙外源基因全合成∙同步表达相关tRNA编码基因7. 包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体8. 包涵体的形成机理∙①折叠状态的蛋白质集聚作用;∙②非折叠状态的蛋白质集聚作用∙③蛋白折叠中间体的集聚作用;9. 包涵体的分离检测∙包涵体的分离主要包括菌体破碎、离心收集以及清洗三大操作步骤;10. 分泌型目的蛋白表达系统的构建∙包括大肠杆菌在内的绝大多数革兰氏阴性菌不能将蛋白质直接分泌到胞外,但有些革兰氏阴性菌能将细菌的抗菌蛋白细菌素分泌到培养基中,这一过程严格依赖于细菌素释放蛋白,它激活定位于内膜上的磷酸酯酶A,导致细菌内外膜的通透性增大∙因此,只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞;此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌;11融合蛋白表达质粒的构建原则:∙受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化;。

基因工程一复习

基因工程一复习
(3)将切下的目的基因片段插入质粒的______处,再加入适量___________,形成了一个重组DNA分子(重组质粒)
限制酶
黏性末端
同一种限制酶
相同的黏性末端
切口
DNA连接酶
1.过程:
2、基因表达载体的作用
3.基因表达载体的组成:
a、目的基因
b、启动子
c、终止子
d、标记基因
位于基因的首端,是mRNA识别并结合位点。
构建
表达载体
导入
植物细胞
插入
植物细胞染色DNA
表达
新性状
转入
农杆菌
(2)基因枪法
适用于单子叶植物 基因枪法又称微弹轰击法,是利用压缩气体产生的动力,将包裹在金属颗粒表面的表达载体DNA打入受体细胞中,使目的基因与其整合并表达的方法。
(3)花粉通道法
花粉管通道法就是在植物受粉后,花粉形成的花粉管还未愈合前,剪去柱头,然后,滴加DNA(含目的基因),使目的基因借助花粉管通道进入受体细胞。
目的基因
体外
分子
基因重组
受体
远缘杂交不亲和
性状
一、 基因工程——指按照人们的意愿,进行严格的设计,并通过体外DNA重组核和转基因等技术,定向地改造生物的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
DNA重组技术的基本工具
01
限制性核酸内切酶——“分子手术刀” DNA连接酶——“分子缝合针” 运载体——“分子运输车”
(2)利用PCR技术扩增目的基因
(3)人工合成(通过DNA合成仪用化学方法直接人工合成)
2、目的基因的来源:
①从自然界已有的物种分离,导入到受体菌的群体中,各个受
探针:
杂交的对象:

生物选修三 专题一 基因工程

生物选修三 专题一   基因工程

基因工程的操作工具
基因的“剪刀”──限制性核酸内切酶
大肠杆菌的一种ECORI限制酶识别GAATTC序列,
并在G和A之间切开)。
基因工程的操作工具
基因的“剪刀”──限制性核酸内切酶
酶切位点:特定序列核苷酸的磷酸二酯键
基因工程的操作工具
黏性末端:
被限制酶切开的DNA两条单链的切口,带有几个 伸出的核苷酸,他们之间正好互补配对,这样的切口 叫黏性末端。 酶切位点
黏性末端
酶切位点
不同的限制性内切酶得到的黏性末端不同
SmaI限制酶的作用
SmaI只能识别CCCGGG序列,并在C和G之间切开。 在G与C之 间切割
中轴线
SmaI限制酶的作用
平末端:当限制酶从识别序列的中心轴线处切开时 ,切开的DNA两条单链的切口是平整的,这样的切 口叫平末端。
平末端
平末端
SmaⅠ
G AA T T C
G AA T T C C T T AA G
C T T AA G
G
AA T T C G
G
AA T T C G
C T T AA
C T T AA
GA A T T C
C T T A AG
基因工程的操作工具
基因的针线──DNA连接酶
DNA连接酶可把黏性末端之间的缝隙“缝合”起 来,即把梯子两边扶手的断口连接起来(形成磷酸二酯 键),这样一个重组的DNA分子就形成了。
种生物上并成功表达?
1、大多数生物的遗传物质都是DNA,且主要为双螺 旋结构,即不同生物的DNA分子基本结构是相同的, 都遵循碱基互补配对原则 。所以不同的生物DNA可
以嫁接。
2、地球上的所有生物共用一套遗传密码,所以,一

基因工程知识点-导学案

基因工程知识点-导学案

于和被切开的磷酸二酯键。

注意:比较有关的酶(1)DNA水解酶:能够将DNA水解成。

(2)DNA解旋酶:能够将DNA或DNA的某一段解旋成长链,作用的部位是碱基和碱基之间的。

注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的、重金属盐的作用下,也可使DNA解旋。

(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链,需要有。

(4)DNA连接酶:是通过键连接双链DNA的缺口,不需要。

(5)限制性酶:使DNA分子上的特定位点的断开。

3.基因进入受体细胞的载体——“分子运输车”(1)分子运载车的分类:①质粒:常存在于细胞和酵母菌中,是一种分子质量的状的裸露的DNA 分子,独立于拟核之外。

②病毒:常用的病毒有、等。

(2)运载体使用的目的:①是用它做运载工具,将转运到宿主细胞中去。

②是利用它在受体细胞内对进行大量复制。

(3)作为运载体必须具备的条件:①在宿主细胞中保存下来并②有一个或多个切点。

目的是使插入。

③有一定的,便于筛选目的基因。

【知识点三】基因工程的基本操作程序基因工程的基本操作步骤主要包括:;;;。

1.目的基因的获取:①方法:、、。

②PCR技术:原理。

条件:;;;过程:①DNA高温(℃)受热解旋为单链、②冷却(℃)后与单链相应互补序列结合、③中温(℃)在DNA聚合酶作用下互补链。

或简述为高温,低温,中温三个阶段。

2.基因表达载体:①功能:使目的基因在受体细胞中;可以给下一代;使目的基因能够和发挥作用。

②基因表达的载体的组成: + + +3.转化:目的基因进入受体细胞内,并且在受体细胞内和的过程。

(1)导入植物细胞:①法(表达载体导入农杆菌,再让农杆菌感染植物细胞。

是植物基因工程中的常用方法)这是双子叶植物和裸子植物中常用的基因转化方法,原因是:这些植物在受到伤害时,细胞能产生物质,该物质能吸引,使侵入这种植物细胞。

②法,这是单子叶植物中常用的基因转化方法;但成本高。

③法,这种方法十分简便经济,我国的转基因抗虫棉就是用这种方法得到的。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程1、基因工程:通过诱导、控制、修饰和组装酶分子改造生物的技术手段,即基因工程。

2、基因是什么:基因是DNA(deoxyribonucleic acid)在调控生物表达的功能单位,它是细胞在传递遗传信息的实体,也是遗传的核心物质。

它决定着生物体的各种性状特征。

3、基因的分类:基因可以按照性质和功能分为结构基因、调控基因和其他基因。

4、基因工程改造方法:基因工程技术有多种,包括基因重组技术、克隆技术、突变技术、转基因技术和增幅技术等。

二、基因工程在实验室中应用1、基因工程在实验室中的应用:基因工程技术在实验室中的应用大大提高了有关生命科学研究的准确性和灵敏度,广泛应用于药物研发、蛋白质检测、临床诊断等领域。

2、基因芯片:基因芯片是一种微小的电子设备,它可以通过在芯片上安装的特定探针来检测特定基因的表达情况或者其他特征。

这种技术可以用来快速检测病毒、细菌等多种病原体,也可以用来研究和监测人体疾病的进展情况。

3、基因测序:DNA测序技术是利用数字技术对准确确定和分析DNA序列的一种技术。

它可以用来检测基因组DNA的结构、查找靶基因和生物多样性、研究基因变异和肿瘤等。

4、基因合成:基因合成技术是以整合DNA的方式制造新的蛋白质的技术,它是把细菌、哺乳动物等常用基因以指定的比例混合在一起。

三、基因工程的发展1、基因工程的发展趋势:基因工程的发展将继续走向优化、分析和精细化。

将进一步提升对生命系统的认识,并能更好地利用基因信息提高生物系统的性能。

2、基因工程的应用场景:基因工程可用于转基因作物的研发、制药新药研发、生物燃料的生物柴油等方面的开发应用,还可以进行生命科学的深入研究,探索新的生物机理。

3、基因工程的未来发展:基因工程技术将在药物研发、医疗诊断、育种良种、食品检测、农药残留和农作物耐药性等方面获得更大的应用,发挥更大的作用,更好地促进人类健康。

基因工程知识点超全

基因工程知识点超全

基因工程一、基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

由于基因工程是在DNA分子水平上进行设计和施工的额,因此又叫做DNA重组技术。

二、基因工程的基本工具1、限制性核酸内切酶“分子手术刀”2、DNA连接酶-----"分子缝合针”3、基因进入受体细胞的载体“分子运输车”1.“分子手术刀”计计限制性核酸内切酶(限制酶)(1)存在:主要存在于原核生物中。

(2)特性:特异性,一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。

(3)切割部位:磷酸二酯键(4)作用:能够识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

(5)识别序列的特点:瓠腿沛外林蔚黔睫混日龄睫GC G C用处题挪班岫如」「肿第 CCCG 切割后末端的种类醐帆DNA 分子经限珊片段末端通常有两 种形式产产在它识别序列的条链分别切开时,和平末端。

当限制酶中轴线两侧将DNA的两产生的是黏性末端,当限制酶在它识别序列的 中轴线处切开时,产生的则是平末端。

£coRIGAA {在G与ACTT 之间切割)TTC AAG中轴线CCC :GGG CTTAA黏性末端CCC AATTCGGG Sma I(在G 与C 之间切割)GGG|CCCGGGGCC3.分子运输车载体 ⑴载体具备的条件:①能在受体细胞中复制并稳定保存。

②具有一个至多个限制酶切点,供外源DNA 片③具有标记基因,供重组DNA 的鉴定和选择。

(2)最常用的载体是质粒,它是能力的双链环状DNA 分子。

⑶其他载体:九噬菌体的衍生物、动植物病毒。

(4)载体的作用:①作为运载工具,将目的基因送入受体细胞。

②在受体细胞内对目的基因进行大量复制。

【解题技巧】(1)限制酶是一类酶,而不是一种酶。

高中生物专题一基因工程详细知识点人教版选修

高中生物专题一基因工程详细知识点人教版选修

1.基因工程〔DNA重组技巧/基因拼接技巧〕基因工程是指依照人们的欲望,进展严厉的计划,并经过体外DNA重组跟转基因等技巧,给予生物以新的遗传特征,从而制造出更契合人们需求的新的生物范例跟生物产品。

因为基因工程是在DNA分子程度长进展计划跟施工的,因而又叫做DNA重组技巧或基因拼接技巧。

2.DNA重组技巧的根本东西①、“分子手术刀〞——限度性核酸内切酶〔限度酶〕A、感化——限度性核酸内切酶能识不双链DNA分子的某种特定的核苷酸序列,并在使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开B、限度性内切酶的切割方法:①在核心轴线两侧将DNA切开,瘦语是黏性末了。

②沿着核心轴线切开DNA,瘦语是平末了。

年夜肠杆菌的一种限度酶〔EcoRⅠ)能识不GAATTC序列,SmaI识不CCCGGG序列:他们识不的核苷酸序列差别,然而切点基本上在G↓C之间。

C、比拟有关的DNA酶〔1〕DNA水解酶:能够将DNA水解成四种脱氧核苷酸,完全水解成膦酸、脱氧核糖跟含氮碱基〔2〕DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,感化的部位是碱基跟碱基之间的氢键。

留意:使DNA解成两条长链的办法除用解旋酶以外,在恰当的高温〔如94℃〕、重金属盐的感化下,也可使DNA解旋。

〔3〕DNA聚合酶:能将单个的核苷酸经过磷酸二酯键衔接成DNA长链。

〔4〕DNA衔接酶:是经过磷酸二酯键衔接双链DNA的缺口。

留意比拟DNA聚合酶跟DNA衔接酶的异同点。

②.DNA衔接酶——“分子缝合针〞〔1〕DNA衔接酶的分类:E.coliDNA〔年夜肠杆菌〕衔接酶跟T4DNA〔T4噬菌体〕连接酶。

〔2〕感化及感化部位:E.coliDNA衔接酶感化于黏性末了被切开的磷酸二酯键,T4DNA衔接酶感化于黏性末了战争末了被切开的磷酸二酯键〔平末了较弱〕。

③.基因进入受体细胞的载体——“分子运输车〞〔1〕分子运载车的分类:①质粒:常存在于原核细胞跟酵母菌中,是一种分子品质较小的环状的暴露的DNA分子,独破于拟核之外。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程的概念基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

基因工程是在 DNA 分子水平上进行的操作,它打破了物种之间的界限,实现了不同物种之间基因的重新组合。

二、基因工程的工具1、限制性核酸内切酶(简称限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

限制酶主要是从原核生物中分离纯化出来的。

2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端的 DNA 片段连接起来,形成磷酸二酯键。

根据来源不同,DNA 连接酶可以分为两类:E·coli DNA 连接酶和 T4DNA 连接酶。

3、运载体常用的运载体有质粒、噬菌体和动植物病毒等。

运载体需要具备的条件有:能够在宿主细胞中复制并稳定保存;具有多个限制酶切点,以便与外源基因连接;具有标记基因,便于进行筛选。

三、基因工程的基本操作程序1、目的基因的获取目的基因是指人们所需要的编码蛋白质的结构基因。

获取目的基因的方法主要有:从基因文库中获取、利用 PCR 技术扩增目的基因以及通过化学方法人工合成。

2、基因表达载体的构建基因表达载体的构建是基因工程的核心步骤。

一个基因表达载体的组成包括目的基因、启动子、终止子、标记基因等。

启动子是一段有特殊结构的 DNA 片段,位于基因的首端,是 RNA 聚合酶识别和结合的部位,能驱动基因转录出 mRNA。

终止子位于基因的尾端,也是一段有特殊结构的 DNA 片段,能终止转录。

标记基因的作用是为了鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。

3、将目的基因导入受体细胞将目的基因导入受体细胞是基因工程的关键步骤。

根据受体细胞的不同,导入的方法也有所不同。

高中基因工程总结的知识点

高中基因工程总结的知识点

高中基因工程总结的知识点
一、基因工程
1、什么是基因工程
基因工程是指将一种生物体的基因插入另一种生物体,从而改变另一种生物体的性状,利用它们来改造和改变生物物种的一种技术。

2、基因工程的意义
基因工程可以帮助人们改善现有的农作物品种,以便获得更高的产量;同时也能够生产药物,如胰岛素,以治疗糖尿病等疾病。

3、基因工程的基本步骤
(1)获取基因序列:科学家首先获取目标基因的结构特征,以
及基因的排列顺序;
(2)构建基因组:科学家将基因拆分为多个碱基对,构建基因组;
(3)转化:将基因注入受体生物体,使之获得新的基因;
(4)表达:把插入的基因转录成mRNA,再转录成蛋白质,从而在受体生物体内表达出新的基因。

二、遗传工程
1、什么是遗传工程
遗传工程是通过改变某一物种的基因组结构而获得意想不到的
新突变,并利用这些突变来改良物种的一种技术。

2、遗传工程的意义
遗传工程可以帮助人们改良农作物品种,提高农作物的生长效率;
同时也可以用于育种,改良家禽种类,以提高食品的品质。

3、遗传工程的基本步骤
(1)获取基因:科学家首先获取和研究目标物种中的基因;
(2)基因分离:将基因拆分为多个碱基对,构建基因组;
(3)基因转移:将基因转移到另一物种中,进行基因转换;
(4)效果评估:使用遗传分析和实验测试,评估遗传工程所产生的效果。

基因工程基础知识复习归纳

基因工程基础知识复习归纳

基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体〔供体〕的基因与载体在体外进展拼接重组,然后转入另一种生物体〔受体/宿主〕内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。

2.基因工程概念的开展:遗传工程→DNA重组技术→分子/基因克隆〔Molecular/Gene→基因工程→基因操作。

应用领域以“基因工程〞、“DNA重组〞为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因〔供体〕:外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子〔克隆载体、表达载体〕。

宿主〔受体〕:,能摄取外源DNA、并能使其稳定维持的细胞〔组织、器官或个体〕。

4.基因工程的根本步骤〔切、接、转、增、检〔大肠杆菌是中心角色〕〔1〕目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,别离出带有目的基因的DNA片断。

〔2〕重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记〔抗菌素抗性〕的载体分子上。

〔3〕重组体的转化:将重组体〔载体〕转入适当的受体细胞中。

〔4〕克隆鉴定:摘要转化成功的细胞克隆〔含有目的基因〕。

〔5〕目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。

第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。

限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一基因工程一【高考目标定位】1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作程序四个步骤;基因工程在农业和医疗等面的应用;蛋白质工程的原理。

2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基因;利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。

二【课时安排】2课时三【考纲知识梳理】第1节DNA重组技术的基本工具教材梳理:知识点一基因工程的概念:基因工程是指按照人们的愿望,进行格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。

注意:对本概念应从以下几个面理解:知识点二基因工程的基本工具1.限制性核酸切酶——“分子手术刀”(1)限制性切酶的来源:主要是从原核生物中分离纯化来的。

(2)限制性切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。

(3)限制性切酶的切割式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。

②沿着中心轴线切开DNA,切口是平末端。

2.DNA连接酶——“分子缝合针”(1)来源:大肠杆菌、T4噬菌体(2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。

(3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸二酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。

注意:比较有关的DNA酶(1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基(2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。

注意:使DNA解成两条长链的法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA 解旋。

(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。

(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。

注意比较DNA聚合酶和DNA连接酶的异同点。

3.基因进入受体细胞的载体——“分子运输车”(1)分子运载车的种类:①质粒:常存在于原核细胞和酵母菌中,是一种分子质量较小的环状的裸露的DNA分子,独立于拟核之外。

②病毒:常用的病毒有噬菌体、动植物病毒等。

(2)运载体作用:①是用它做运载工具,将目的基因转运到宿主细胞中去。

②是利用它在受体细胞对目的基因进行大量复制。

(3)作为运载体必须具备的条件:①在宿主细胞中保存下来并大量复制②有多个限制性切酶切点③有一定的标记基因,便于筛选。

思维探究:知识点3、4、5主要是介绍DNA重组技术的三种基本工具及其作用。

限制酶──“分子手术刀”,主要是介绍限制酶的作用,切割后产生的结果。

在这部分容学习时,应关心的问题之一是:限制酶从哪里寻找?我们可以联想从前学过的容──噬菌体侵染细菌的实验,进而认识细菌等单细胞生物容易受到自然界外源DNA的入侵。

那么这类原核生物之所以长期进化而不绝灭,有保护机制?进而联想到可能是有什么酶来切割外源DNA,而使之失效,达到保护自身的目的”。

这样就对“限制酶主要是从原核生物中分离纯化出来”的认识提高了一个层次。

基因进入受体细胞的载体──“分子运输车”的学习容,不能仅仅着眼于记住这几个条件,而应该深入思考每一个条件的涵,通过深思熟虑,才能真正明确为什么要有这些条件才能充当载体。

教材拓展:拓展点一限制酶所识别序列的特点限制酶所识别的序列的特点是:呈现碱基互补对称,无论是奇数个碱基还是偶数个碱基,都可以找到一条中心轴线,如图,中轴线两侧的双链DNA上的碱基是反向对称重复排列的。

如:以中心线为轴,两侧碱基互补对称;以为轴,两侧碱基互补对称。

拓展点二DNA连接酶连接的是什么部位?DNA连接酶是将一段DNA片段3′端的羟基与另一DNA片段5′端磷酸基团上的羟基连接起来形成酯键,而不是连接互补碱基之间的氢键。

第2节基因工程的基本操作程序教材梳理:基因工程的基本操作步骤为四步曲:目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定。

一.目的基因的获取1.目的基因:主要是指编码蛋白质的结构基因。

2.目的基因的获取法:基因组文库从基因文库中获取cDNA文库人工合成逆转录法、根据已知的氨基酸序列推测脱氧核苷(真核生物)序列、PCR技术扩增目的基因、DNA合成仪合成等。

注:需要重点复习的容有:a基因组文库与部分基因文库的含义及区别(教材P10表格),建立基因文库的目的?如从基因文库中获取目的基因?b 逆转录法的过程cPCR技术(原理、场所、条件、过程、特点)DNA 复制与PCR技术列表比较。

如下所示:(1)从基因文库中获取基因文库:将含有某种生物不同基因的多DNA片段,导入受体菌的群体储存,各个受体菌分别含有这种生物的不同的基因。

构建基因文库的目的:为了在不知目的基因序列的情况下,便于获得所需的目的基因。

基因组文库:含有一种生物的所有基因。

部分基因文库(如cDNA文库):含部分基因,可由mRNA反转录而来。

(2)利用PCR技术扩增目的基因PCR:是一项在生物体外复制特定DNA片段的核酸合成技术。

原理:DNA双链复制原料:模板DNA;RNA引物;四种脱氧核苷酸;热稳定DNA聚合酶(Taq酶);法:DNA受热变性解旋为单链、冷却后RNA引物与单链相应互补序列结合、DNA聚合酶作用下延伸合成互补链。

过程:热变性(90-95)、退火(55-60)、延伸(70-75)。

特点:指数形式扩增二.基因表达载体的构建(基因工程的核心—体外进行)1.目的:使目的基因在受体细胞中稳定存在;可以遗传给下一代;使目的基因能够表达和发挥作用。

目的基因:根据需要来选择。

2.基因表达启动子:位于基因首端,RNA聚合酶识别和结合的部位,驱动转录基因。

载体的组成终止子:位于基因尾端,使转录在所需要的地停下来。

标记基因:鉴别受体细胞中是否含有目的基因。

3.法:同种限制酶分别切割载体和目的基因,再用DNA连接酶把两者连接。

目的基因与运载体结合(以质粒为运载体)4标记基因)三.将目的基因导入受体细胞转化:目的基因进入受体细胞,并且在受体细胞维持稳定和表达的过程。

①导入植物细胞:常用农杆菌转化法(将构建的载体导入农杆菌,再让农杆菌感染植物细胞),基因枪法、花粉管通道法。

(过程重点介绍)②导入动物细胞:显微注射法(将基因表达载体提纯,用显微仪注射到受精卵中)(过程重点介绍)③导入微生物细胞:Ca2+处理受体细胞成为感受态细胞,再进行混合。

提示:农杆菌转化法的原理是利用农杆菌(胞寄生菌)对植物的感染而把目的基因导入受体细胞。

四.目的基因的检测和鉴定分子检测:导入检测+表达检测①导入检测:利用DNA分子杂交技术,目的基因DNA一条链(作探针)与受体细胞中提取的DNA杂交,看是否有杂交带。

②表达检测:目的为了检测是否转录出了mRNA,利用DNA-mRNA 分子杂交技术,目的基因DNA一条链(作探针)与受体细胞中提取的mRNA杂交,看是否有杂交带。

③表达检测:目的为了检测目的基因是否翻译成蛋白质。

抗体与蛋白质进行抗原-抗体杂交,看是否有杂交带。

个体水平的鉴定:进行抗虫、抗病的接种实验,根据其性状判断是否表达。

提示:①DNA分子杂交技术首先提取受体细胞中的DNA,然后高温解成单链,再与同位素标记的DNA探针杂交;②抗原-抗体杂交所用到的抗体是用表达出的蛋白质注射动物进行免疫,产生相应的抗体,并提取出而来的第3节基因工程的应用教材梳理:知识点一植物基因工程的应用植物基因工程技术主要用于提高农作物的抗逆能力(如抗除草剂、抗虫、抗病、抗干旱和抗盐碱等)以及改良农作物的品质和利用植物生产药物等面。

1.提高抗逆性(1)常用抗虫基因:用于抗虫(杀虫)的基因主要是Bt毒蛋白基因、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。

(2)常用抗病基因:a.抗病毒基因有:病毒外壳蛋白基因和病毒的复制酶基因;b.抗真菌基因有:几丁质酶基因和抗毒素合成基因(3)其他抗逆基因:环境条件对农作物的生产会造成很大影响,并且这些影响是多面的,因此,抗逆性基因也有多种多样,如:抗盐碱和干旱的调节细胞渗透压基因、抗冻基因、抗除草剂基因等等。

2.改良植物品质由于人们的食品含有的营养不平衡,不能满足人们对食品的要求,这样,可以通过转基因技术,使植物能够合成某些本来不能合成的物质。

如科学家将必需氨基酸含量多的蛋白质编码基因导入植物中,或者改变这些氨基酸合成途径中某种关键酶的活性,以提高氨基酸的含量。

知识点二动物基因工程的应用1.用于提高动物生长速度:由于外援生长激素基因的表达可以使转基因动物生长得更快,将这类基因导入动物体,以提高动物的生长速率。

如:转基因绵羊和转基因鲤鱼。

2.用于改善畜产品的品质:基因工程可用于改善畜产品的品质。

如:有些人对牛奶中的乳糖不能完全消化或食用后会出现过敏、腹泻、恶心等不适症状,科学家将肠乳糖酶基因导入奶牛基因组,这样所获得的牛奶其成分不受影响,但乳糖的含量大大减低。

3. 生产药物基因工程不但促进了传统技术的变革,也为人类提供了传统产业难以得到的多昂贵药品,并已形成基因工程制药业的雏形。

目前诸如人胰岛素、人生长激素、人脑激素、α-干扰素、乙肝疫苗、蛋白C、组织血纤维蛋白溶酶原激活剂等数十种基因工程药物已实现商品化。

此外,还有促红细胞生成素、白细胞介素-2、肾素、心钠素等一大批珍贵药品正处于试用或临床试验阶段。

4.用转基因动物做器官移植的供体:目前,人体移植器官短缺是一个世界性的难题,用其它动物的器官替代,又会出现免疫排斥现象,现在,科学家正试图利用基因工程法对一些动物的器官进行改造,培育出没有免疫排斥反应的转基因克隆器官。

知识点三基因治疗1.概念:基因治疗是把正常基因导入病人体,使该基因的表达产物发挥功能,从而达到治疗疾病的目的,这是治疗遗传病的最有效的手段。

2.法:体外基因治疗和体基因治疗体外基因治疗:先从病人体获得某种相关细胞,进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体,这种法叫做体外基因治疗。

体基因治疗:直接向人体组织细胞中转移基因的治疗法叫做体基因治疗。

说明:对于遗传病的治疗最根本的法是进行基因替换或修复。

基因治疗的最佳时期理论上是受精卵时期,这样可以使个体的每个细胞都含有正常基因,但在现实生活中是不可能的,因为不可能人人在受精卵时期进行基因检查。

其次是对患者进行相关细胞的基因替换,如:对于遗传性糖尿病患者,只对胰腺的B细胞进行基因替换,该个体就能正常分泌胰岛素,糖尿病得以治疗;但这种局部细胞的基因替换,并没有改变其它部位细胞的基因,如精原细胞,其后代很大可能还会患遗传性糖尿病。

相关文档
最新文档