高考数学最值问题复习

合集下载

求最值方法--高考数学复习

求最值方法--高考数学复习

求最值方法 -- 高考数学复习一问一答 -------- 最值问题方法总论1高中数学求最值有哪些方法?答:有 9 种方法: 1)配方法 2)鉴别式法; 3)不等式法; 4)换元法; 5)函数单一性法; 6)三角函数性质法; 7)导数法; 8)数形联合发;9)向量法2如何将恒成立问题转变为最值问题?答:1) a f ( x)恒成立,则a f (x)max 2)a f ( x)恒成立,则 a f (x)min一元整式函数最值1、二次函数张口方向、对称轴、所给区间均确立,如何求最值 ?答:1)确立对称轴与x轴交点的横坐标能否在所给区间。

2)假如在所给区间,一个最值在极点处获得,另一个最值在与极点横坐标较远的端点处获得。

3)若不在所给区间,利用函数的单一性确立其最值。

2、二次函数所给区间确立,对称轴地点变化,如何求最值 ?答: 1)挪动对称轴,将对称轴平移到定区间的左边、右边及区间内议论, 2)在区间内,只考虑对称轴与区间端点的距离即可。

3、二次函数所给区间变化,对称轴地点确立,如何求最值 ?答:分类议论,分为四种状况: 1)对称轴在闭区间左边;2)对称轴在闭区间右边3)对称轴在闭区间内且在中点的左边; 4)对称轴在闭区间内且在中点的右边(或过中点);4、二次函数所给区间、对称轴地点都不确立,如何求最值 ?答:将此中一个看作是“定”的,另一个看作是“动”的,而后如上分四种状况进行议论。

5、什么状况下运用基本不等式求最值?答:当两个变量的和或积为定值时运用,有时需要变形。

即两个正数的积为定值时,它们的和有最小值,两个正数的和为定值时,它们的积有最大值。

6、对于多项式乘积的最值问题,如何求解答:能够考虑睁开后,利用基本不等式求解7、如何求复合型函数的最值答:若函数f ( x), g( x) 在 [ mn.] 上单调性相同,则h( x) f (x)g(x) 在 [m.n] 上与 f ( x), g( x) 有同样的单一性,可利用单一性求h( x) 在[ mn.] 上的最值。

高考数学二轮复习微专题13利用基本不等式求代数式的最值问题(含解析)

高考数学二轮复习微专题13利用基本不等式求代数式的最值问题(含解析)

微专题13 利用基本不等式求代数式的最值问题基本不等式是高中数学的一个重要知识点,在全国各地的高考考纲中都属于C 级(熟例题:(2017·苏锡常镇二模)已知a ,b 均为正数,且ab -a -2b =0,求a24-2a +b2-1b 的最小值.变式1若x>0,y>0,且x2+y2=1,则x 1-x2+y1-y2的最小值是________________.变式2(2018·苏州调研三)设正实数x ,y 满足xy =x +9yy -x,则y 的最小值是________________.串讲1已知正实数x ,y 满足x +2x +3y +4y =10,则xy 的取值范围为________________.串讲2已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM 的值为________________.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________________.若正数a ,b 满足1a +1b =1,求4a -1+16b -1的最小值.答案:16.解析:因为a>0,b>0,1a +1b =1,所以a +b =ab ,2分则4a -1+16b -1=4(b -1)+16(a -1)(a -1) (b -1)=4b +16a -20ab -(a +b )+1又4b +16a =4(b +4a)⎝ ⎛⎭⎪⎫1a +1b =20+4×b a +4a b ≥20+4×2× b a ·4ab=36,6分 微专题13例题答案:7.解法1a 24-2a +b 2-1b =a 2+4b 24-1,下面只要求a 2+4b 2的最小值即可.因为a +2b =ab≥2ab ,所以ab≥8,当且仅当a =2b =4时取等号;又a 2+4b 2≥2(a·2b)≥32,当且仅当a =2b =4时取等号,则a 2+4b24-1≥7.解法2a 24-2a +b 2-1b =a 2+4b 24-1=(a +2b )2-4ab 4-1=a 2b 2-4ab 4-1=(ab -2)2-44-1;因为a +2b =ab≥2ab ,得ab≥8,当且仅当a =2b =4时取等号,所以(ab -2)2-44-1≥7.解法3因为ab -a -2b =0,所以a =2b b -1.那么a 2+4b 2=4b 2+4b 2(b -1)24⎣⎢⎡⎦⎥⎤(c +1)2+(c +1)2c 2= 4⎣⎢⎡⎦⎥⎤c 2+1c 2+2⎝ ⎛⎭⎪⎫c +1c +2=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫c +1c 2+2⎝ ⎛⎭⎪⎫c +1c≥4(22a 2+4b24-1≥7.解法4因为ab -a -2b =0,有2a +1b =1,则a 2+4b 2=(a 2+4b 2)⎝ ⎛⎭⎪⎫2a +1b 2≥4ab·⎝ ⎛⎭⎪⎫22ab 2=32.,则a 2+4b24-1≥7.解法5因为ab -a -2b =0,则2a +1b =1,则a 2+4b 2=(a 2+4b 2)⎝ ⎛⎭⎪⎫2a +1b 2=a 2b 2+16b 2a 2+4a b +16b a a 2+4b24-1≥7.解法6因为ab -a -2b =0,令a =m +n ,2b =m -n ,有m 2-n 2=4m ,n 2=m 22+4b 2=2(m 2+n 2)=2(2m 2-4m)=4(m -1)2-4≥4(4-1)2a 2+4b 24-1≥7.解法7因为ab -a -2b =0,则2a +1b =1,设a =2cos 2θ,b =1sin 2θ;那么a 2+4b 2=4cos 4θ+4sin 4θ=4·sin 4θ+cos 4θsin 4θcos 4θ= 4·1-2sin 2θcos 2θsin 4θcos 4θ=4⎝ ⎛⎭⎪⎫1t 2-2t ,其中t = sin 2θcos 2θ=sin 22θ4≤14,则4⎝ ⎛⎭⎪⎫1t 2-2t a 2+4b 24-1≥7. 解法8因为ab -a -2b =0,则2a +1b =1,设a =2cos 2θ,b =1sin 2θ,那么a 2+4b 2=4cos 4θ+4sin 4θ=4⎣⎢⎡(sin 2θ+cos 2θ)2sin 4θ+ ⎦⎥⎤(sin 2θ+cos 2θ)2cos 4θ=4 ⎣⎢⎡sin 4θ+cos 4θ+2sin 2θcos 2θsin 4θ+⎦⎥⎤sin 4θ+cos 4θ+2sin 2θcos 2θcos 4θ=4⎣⎢⎡⎦⎥⎤1+t 4+2t 2+2t 2+1t 4+1a 2+4b 24-1≥7. 说明:也可利用幂平均不等式得到如下结果:4cos 4θ+4sin 4θ= 4⎣⎢⎡⎦⎥⎤13(sin 2θ)2+13(cos 2θ)2≥4(1+1)3(sin 2θ+cos 2θ)2=32. 变式联想变式1答案:2 2.解析:x 1-x 2+y 1-y 2=x y 2+yx 2≥21xy =2xy≥2x 2+y 22= 2 2. 变式2答案:3+10.解析:由题意可知y -x =1y +9x ,即y -1y =x +9x ≥6,当且仅当x =3时,取等号;由y>0,y -1y ≥6可知y 2-6y -1≥0,解得y≥3+10. 串讲激活串讲1答案:⎣⎢⎡⎦⎥⎤1,83.解析:设xy =k ,代入整理得10=⎝ ⎛⎭⎪⎫1+4k x +3k +2x ≥2⎝ ⎛⎭⎪⎫1+4k (3k +2),解得1≤k≤83.串讲2 答案:22. 解法1令a =1-x ,b =x +3,则a 2+b 2=4.又由-1≤x≤3可知a ,b ∈[0,2].由(a +b )24=a 2+2ab +b 2a 2+b 2=1+2ab a 2+b 2,当ab =0时,a +b =2;当ab≠0,(a +b )24=1+2aba 2+b 2=1+2b a +a b,由b a +a b ≥2得1<(a +b )24≤2,即2<a +b≤2 2.综上可知,a +b∈[2,22],m M =22.解法2y 2=4+24-(x +1)2∈[4,8],∵y ≥0,∴y ∈[2,22]∴m=α,M =22,∴m M =22. 解法3设1-x =2cos α,3+x =2sin α,α∈[0,π2],∴y =22sin ⎝⎛⎭⎪⎫α+π4α+π4∈⎣⎢⎡⎦⎥⎤π4,3π4,∴y ∈[2,22],下面同解法2. 新题在线答案:14.解析:由a -3b +6=0可知a -3b =-6,且2a +18b =2a +2-3b ,因为对于任意x ,2x>0恒成立,结合均值不等式的结论可得2a+2-3b≥2×2a ×2-3b=2×2-6=14,当且仅当⎩⎪⎨⎪⎧2a =2-3b,a -3b =6,即⎩⎪⎨⎪⎧a =3,b =-1,时等号成立.综上可得2a +18b 的最小值为14.。

高考数学不等式中最值问题全梳理

高考数学不等式中最值问题全梳理

高考数学不等式中最值问题全梳理模块一、题型梳理题型一 基本不等式与函数相结合的最值问题例题1 若方程ln x m =有两个不等的实根1x 和2x ,则2212x x +的取值范围是( )A .()1,+∞B.)+∞C .()2,+∞ D .()0,1【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞,12,Inx m Inx m =-=故可得()120In x x =,解得211x x =,则2212x x +=212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 2291sin cos αα+的最小值为( ) A .2B .16C .8D .12【分析】利用22sin cos 1αα+=将2291sin cos αα+变为积为定值的形式后,根据基本不等式可求得最小值.【解析】∵22sin cos 1αα+=,∵()2222229191sin cos sin cos sin cos αααααα⎛⎫+=++ ⎪⎝⎭2222sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,21cos 4α=时“=”成立,故2291sin cos αα+的最小值为16.【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最值,属于基础题.例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +yn -4=0(m >0,n >0)上,则m +n 的最小值为________.【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∵1m +1n =4,∵m >0,n >0,∵m +n =14(m +n )⎝⎛⎭⎫1m +1n =14⎝⎛⎭⎫2+n m +m n ≥14⎝⎛⎭⎪⎫2+2n m ·m n =1,当且仅当m =n =12时等号成立,∵m +n 的最小值为1.题型二 基本不等式与线性规划相结合的最值问题例题4 已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3B .1C .2D .32【分析】画出可行域,根据目标函数z 最大值求,m n 关系式23m n +=,再利用不等式求得112m n+最小值.【解析】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()11111151519322323232322n m m n m n m n m n ⎛⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32.故选:D【小结】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.题型三 基本不等式与数列相结合的最值问题例题5 已知递增等差数列{}n a 中,122a a =-,则3a 的( ) A .最大值为4- B .最小值为4C .最小值为4-D .最大值为4或4-【分析】根据等差数列的通项公式可用1a 表示出d .由数列单调递增可得10a <.用1a 表示出3a ,结合基本不等式即可求得最值.【解析】因为122a a =-,由等差数列通项公式,设公差为d ,可得()112a a d +=-,变形可得112d a a =--因为数列{}n a 为递增数列,所以1120d a a =-->,即10a <,而由等差数列通项公式可知312a a d =+ ()11111242a a a a a ⎛⎫⎛⎫=+--=-+- ⎪ ⎪⎝⎭⎝⎭,由10a ->,140a >-结合基本不等式可得 ()31144a a a ⎛⎫=-+-≥= ⎪⎝⎭,当且仅当12a =-时取得等号,所以3a 的最小值为4。

2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。

2025年高考数学一轮复习-数列中的最值、范围及奇偶项问题-专项训练【含答案】

2025年高考数学一轮复习-数列中的最值、范围及奇偶项问题-专项训练【含答案】

2025年高考数学一轮复习-数列中的最值、范围及奇偶项问题-专项训练一、基本技能练1.已知等差数列{a n }与数列{b n }满足a 2=1,b 1=a 3≠0,且数列{a n ·b n }的前n 项和S n =(n -2)·2n +1+4,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)n 项和为T n ,若T n >20222023,求n 的最小值.2.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .3.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.二、创新拓展练4.已知在数列{a n }中,a 1=12,a n +1=a n 2a n +3(n ∈N *).(1){a n }的通项公式;(2)已知数列{b n }满足b n =n (3n -1)2na n .①求数列{b n }的前n 项和T n ;②若不等式(-1)n λ<T n +n 2n 对一切n ∈N *恒成立,求实数λ的取值范围.参考答案与解析一、基本技能练1.解(1)a 1·b 1=S 1=0,且b 1≠0,所以a 1=0,又a 2=1,所以{a n }的公差为1,所以a n =n -1(n ∈N *).n ≥2时,a n ·b n =S n -S n -1=(n -1)×2n ,此时b n =2n (n ≥2),又b 1=a 3=2,满足b n =2n ,所以b n =2n (n ∈N *).(2)b n a b n ·a b n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1>20222023,得2n +1-1>2023,所以n 的最小值为10.2.解(1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列,∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1(n ∈N *).(2)由(1)可得b n =(-1)n -14n a n a n +1=(-1)n -当n 为偶数时,T n …1-12n +1=2n 2n +1;当n 为奇数时,T n …1+12n+1=2n+2 2n+1.∴T nn为偶数,n为奇数.3.解(1)设等比数列{a n}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,于是q2=a5a3=14.又{a n}不是递减数列且a1=3 2,所以q=-1 2 .故等比数列{a n}的通项公式为a n=32×-1=(-1)n-1×32n(n∈N*).(2)由(1)得S n=1+12n,n为奇数,-12n,n为偶数.当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=3 2,故0<S n-1S n≤S1-1S1=32-23=56.当n为偶数时,S n随n的增大而增大,所以34=S2≤S n<1,故0>S n-1S n≥S2-1S2=34-43=-712.综上,对于n∈N*,总有-712≤S n-1S n≤56.所以数列{T n}最大项的值为56,最小项的值为-712.二、创新拓展练4.(1)证明因为a 1=12,a n +1=a n 2a n +3(n ∈N *),所以1a n +1=3a n+2,所以1a n +1+1=又1a 1+1=3,3为首项,3为公比的等比数列,故1a n+1=3×3n -1=3n ,则a n =13n -1(n ∈N *).(2)解①由(1)知b n =n 2n ,所以T n =12+222+323+…+n 2n ,所以12T n =122+223+324+…+n -12n +n 2n +1,两式相减,得12T n =12+122+123+…+12n -n 2n +1=121n 1-12-n 2n +1=1-n +22n +1,所以T n =2-n +22n.②由①得(-1)n λ<2-n +22n +n 2n =2-22n ,设c n =2-22n ,则数列{c n }是递增数列.当n 为偶数时,λ<2-22n 恒成立,又c2=32,所以λ<32;当n为奇数时,-λ<2-22n恒成立,又c1=1,所以-λ<1,所以λ>-1.综上所述,λ1。

高考数学复习等差数列的前n项和Sn的最值问题

高考数学复习等差数列的前n项和Sn的最值问题

10×9 15×14 解法 2 设公差为 d.因为 S10=S15,所以 10a1+ 2 d=15a1+ 2 d, nn-1 5 5 2 125 代入 a1=20,得 d=-3.所以 Sn=na1+ 2 d=-6n + 6 n= 12×11 5 2 -6(n -25n), 所以当 n=12 或 13 时, Sn 取得最大值为 12a1+ 2 5 ×-3=130.
S7<S8, 所以 S9<S8, 49+21d<56+28d, 7 即 解得-1<d<-8. 63+36d<56+28d,
即d
7 的取值范围为-1,-8 .
a11 5.在等差数列{an}中,a <-1,若它的前 n 项和 Sn 有最大值,则使 Sn 10 取得最小正数的 n=
1 3 - - q∈ . 2 2,2 7
8.在等差数列{an}中,已知 a1=20,前 n 项和为 Sn,且 S10=S15,求当 n 取何值时,Sn 取得最大值,并求出它的最大值.
答案:当 n=12 或 13 时,Sn 取得最大值为 130.
解法 1 因为 S10=S15,所以 S15-S10=0,即 a11+a12+a13+a14+a15=0, 也即 5a13=0,所以 a13=0,即 a1>a2>…>a12>a13=0>a14>a15>…, 13a1+a13 13×20+0 故当 n=12 或 13 时,Sn 取得最大值为 = = 2 2 130.
微专题47
等差数列的前n项和Sn的最 值问题
2 4 1.已知等差数列{an}:5,47,37,…,当 n=
7 或8
时,数列
{an}的前 n 项和 Sn 最大?

考点18导数与函数的极值、最值(2种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点18导数与函数的极值、最值(2种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点18导数与函数的极值、最值(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x=b附近的左侧,右侧,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的;②将函数y=f(x)的各极值与比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值【例题1】(2024·四川广安·二模)已知函数()()1e xf x ax =+,给出下列4个图象:其中,可以作为函数()f x 的大致图象的个数为( )A .1B .2C .3D .4【变式1】(23-24高三上·黑龙江·阶段练习)如图是函数()y f x =的导函数()y f x ¢=的图象,下列结论正确的是( )A .()y f x =在=1x -处取得极大值B .1x =是函数()y f x =的极值点C .2x =-是函数()y f x =的极小值点D .函数()y f x =在区间()1,1-上单调递减【变式2】(2023·河北·模拟预测)函数4211()f x x x =-的大致图象是( )A . B .C .D .【变式3】(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是( )A .曲线y =f (x )在点(1,f (1))处的切线斜率小于零B .函数f (x )在区间(-1,1)上单调递增C .函数f (x )在x =1处取得极大值D .函数f (x )在区间(-3,3)内至多有两个零点命题点2 求已知函数的极值【例题2】(2024·宁夏银川·一模)若函数()2()2e xf x x ax =--在2x =-处取得极大值,则()f x 的极小值为( )A .26e -B .4e-C .22e -D .e-【变式1】(2023·全国·模拟预测)函数()2tan πf x x x =--在区间ππ,22æö-ç÷èø的极大值、极小值分别为( )A .π12+,π12-+B .π12-+,3π12-+C .3π12-,π12-+D .π12--,3π12-+【变式2】(多选)(2024·全国·模拟预测)已知2e ,0,()41,0,xx f x x x x x ì>ï=íï---£î则方程2()(3)()30f x k f x k -++=可能有( )个解.A .3B .4C .5D .6【变式3】(2024·辽宁鞍山·二模)()2e xf x x -=的极大值为 .命题点3 已知极值(点)求参数【例题3】(2024·全国·模拟预测)设12,x x 为函数()()()2f x x x x a =--(其中0a >)的两个不同的极值点,若不等式()()120f x f x +³成立,则实数a 的取值范围为( )A .[]1,4B .(]0,4C .()0,1D .()4,+¥【变式1】(2024·四川绵阳·三模)若函数()()21ln 02f x ax x b x a =-+¹有唯一极值点,则下列关系式一定成立的是()A .0,0a b ><B .0,0a b <>C .14ab <D .0ab >【变式2】(2024·辽宁·一模)已知函数()322f x x ax bx a =+++在=1x -处有极值8,则()1f 等于 .【变式3】(2024·全国·模拟预测)已知函数()()2ln 2f x x x ax a =-+-ÎR .(1)若()f x 的极值为-2,求a 的值;(2)若m ,n 是()f x 的两个不同的零点,求证:()0f m n m n ¢+++<.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值【例题4】(2024·陕西·模拟预测)[]1,2x "Î,有22ln a x x x ³-+恒成立,则实数a 的取值范围为( )A .[)e,+¥B .[)1,+¥C .e ,2éö+¥÷êëøD .[)2e,+¥【变式1】(2024·四川·模拟预测)已知 ()()22ln f x x x a x x =-+-,若存在(]0,e 0x Î,使得()00f x £成立,则实数a 的取值范围是.【变式2】(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l 相交于点O ,一根长度为8的直杆AB 的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ^,则OAP △面积的取值范围是 .【变式3】(2024·全国·模拟预测)已知函数()ln f x x =.(1)求函数()()f xg x x=的最值.(2)证明:()2431e 3e e 044xx x x f x ---->(其中e 为自然对数的底数).命题点2 含参函数的最值【例题5】(2024·四川成都·模拟预测)已知函数21()e (R)2(1)xf x x bx a b a =--Î+,没有极值点,则1ba +的最大值为( )A B .e 2C .eD .2e 2【变式1】(23-24高三下·重庆·阶段练习)若过点(),a b 可以作曲线ln y x =的两条切线,则( )A .ln b a>B .ln b a<C .0a <D .e ab >【变式2】.(2024·全国·模拟预测)函数()()()2ln 1f x x x ax =++-只有3个零点1x ,2x ,3x ()1233x x x <<<,则2a x +的取值范围是 .【变式3】(2024·北京海淀·一模)已知函数12()e a x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+Î+¥存在最大值,求a 的取值范围.【课后强化】基础保分练一、单选题1.(2023·广西·模拟预测)函数()3f x x ax =+在1x =处取得极小值,则极小值为( )A .1B .2C .2-D .1-2.(2024·四川凉山·二模)若()sin cos 1f x x x x =+-,π,π2x éùÎ-êúëû,则函数()f x 的零点个数为( )A .0B .1C .2D .33.(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数()y f x =及其导函数()y f x =¢的图象如图所示,已知两图象有且仅有一个公共点,其坐标为()0,1,则( )A .函数()e xy f x =×的最大值为1B .函数()e xy f x =×的最小值为1C .函数()exf x y =的最大值为1D .函数()e xf x y =的最小值为14.(2024·陕西安康·模拟预测)已知函数()2e e 2x xf x a b x =++有2个极值点,则( )A .2016b a <<B .0b >C .4a b <D .2b a>5.(2024·全国·模拟预测)已知函数()()sin cos e xa f x x x x +=+在()0,π上恰有两个极值点,则实数a 的取值范围是( )A .π4e æöç÷ç÷èøB .()π,e-¥C .()π0,eD .π4e ,ö÷÷ø+¥二、多选题6.(2024·全国·模拟预测)已知函数()e xbf x a x=+在定义域内既存在极大值点又存在极小值点,则( )A .0ab > B .24e b a £C .24e 0a b ->D .对于任意非零实数a ,总存在实数b 满足题意7.(2024·湖北武汉·模拟预测)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则下列结论正确的是( )A .当()*m n m n >ÎN ,时,m na a >B .212n n n S S S +++<C .数列{}2n S 是等差数列D .1ln n nS n S -³三、填空题8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ÐODF Ð均为直角.若1AB =百米,则此步道的最大长度为百米.9.(2023·江西赣州·模拟预测)当0x =时,函数()e x f x a bx -=+取得极小值1,则a b +=.四、解答题10.(2023·河南洛阳·一模)已知函数()211122f x x x =++.(1)求()f x 的图像在点()()22f ,处的切线方程;(2)求()f x 在1,22éùêúëû上的值域.11.(2024·上海静安·二模)已知R k Î,记()x x f x a k a -=+×(0a >且1a ¹).(1)当e a =(e 是自然对数的底)时,试讨论函数()y f x =的单调性和最值;(2)试讨论函数()y f x =的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数()y f x =的图象在x 轴上存在对称中心?请说明理由;②请提出函数()y f x =的一个新性质,并用数学符号语言表达出来.(不必证明)综合提升练一、单选题1.(2024·全国·模拟预测)若函数()()1ln 1f x x x ax =+-+是()0,¥+上的增函数,则实数a 的取值范围是( )A .(],2ln 2-¥B .(]0,2ln 2C .(],2-¥D .(]0,22.(2024·陕西渭南·模拟预测)已知函数()e x f x x a =+在区间[]0,1上的最小值为1,则实数a 的值为( )A .-2B .2C .-1D .13.(23-24高三下·内蒙古赤峰·开学考试)已知函数()ln f x x x ax =-有极值e -,则=a ( )A .1B .2C .eD .34.(2024·广东佛山·二模)若函数()24ln bf x a x x x =++(0a ¹)既有极大值也有极小值,则下列结论一定正确的是( )A .a<0B .0b <C .1ab >-D .0a b +>5.(2023·甘肃兰州·一模)已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则( )A .12x x >B .21x x >C .12x x ³D .21x x ³6.(2024·全国·模拟预测)记函数()y f x =的导函数为y ¢,y ¢的导函数为y ¢¢,则曲线()y f x =的曲率()3221y K y ¢¢=éù+ëû¢.则曲线ln y x =的曲率的极值点为( )ABCD7.(2024·北京朝阳·一模)已知n 个大于2的实数12,,,n x x x ×××,对任意()1,2,,i x i n =×××,存在2i y ³满足i i y x <,且i i y x i i x y =,则使得12115n n x x x x -++×××+£成立的最大正整数n 为( )A .14B .16C .21D .238.(2023·河南洛阳·模拟预测)已知函数()f x 及其导函数()f x ¢的定义域均为R ,且()()()22e ,00x f x f x x f ¢-==,则()f x ( )A .有一个极小值点,一个极大值点B .有两个极小值点,一个极大值点C .最多有一个极小值点,无极大值点D .最多有一个极大值点,无极小值点二、多选题9.(2023·全国·模拟预测)对函数()f x ,()g x 公共定义域内的任意x ,若存在常数M ÎR ,使得()()f x g x M -£恒成立,则称()f x 和()g x 是M -伴侣函数,则下列说法正确的是( )A .存在常数M ÎR ,使得()()2log 5f x x =与()125log g x x=是M -伴侣函数B .存在常数M ÎR ,使得()13x f x +=与()13x g x -=是M -伴侣函数C .()ln f x x =与()2g x x =+是1-伴侣函数D .若()()f x g x ¢¢=,则存在常数M ÎR ,使得()f x 与()g x 是M -伴侣函数10.(2024·全国·模拟预测)已知函数()()2e =++xf x ax bx c 的极小值点为0,极大值点为()0m m >,且极大值为0,则( )A .2m =B .4b a=C .存在0x ÎR ,使得()00f x >D .直线3y a =与曲线()y f x =有3个交点11.(2024·全国·模拟预测)已知函数()()2ln e e x f x a b a x =+-,其中e 为自然对数的底数,则( )A .若()f x 为减函数,则()00f <B .若()f x 存在极值,则e 1b a >C .若()10f =,则ln2b >D .若()0f x ³,则b a³三、填空题12.(2022·广西·模拟预测)已知函数()21xx x f x e++=,则()f x 的极小值为 .13.(2023·广东汕头·一模)函数()36f x ax x =-的一个极值点为1,则()f x 的极大值是 .14.(2024·上海闵行·二模)对于任意的12x x ÎR 、,且20x >,不等式1122e ln x x x x a -+->恒成立,则实数a 的取值范围为 .四、解答题15.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x ¢=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.16.(2024·海南·模拟预测)已知函数()2ln 1,f x x a x a =-+ÎR .(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 有最小值2,求a 的值.17.(2024·陕西西安·模拟预测)已知函数ln 1()ex f x x =-.(1)求()f x 的最大值;(2)证明:当0x >时,()e x f x x <.18.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.19.(2024·全国·模拟预测)已知函数()()21e 2e 22xx f x a ax =+--.(1)若曲线()y f x =在30,2a æö-ç÷èø处的切线方程为4210ax y ++=,求a 的值及()f x 的单调区间.(2)若()f x 的极大值为()ln2f ,求a 的取值范围.(3)当0a =时,求证:()2535e ln 22x f x x x x +->+.拓展冲刺练一、单选题1.(2023·湖南衡阳·模拟预测)若曲线()(0)kf x k x=<与()e x g x =有三条公切线,则k 的取值范围为( )A .1,0e æö-ç÷èøB .1,eæö-¥-ç÷èøC .2,0e æö-ç÷èøD .2,e æö-¥-ç÷èø2.(2023·河南·三模)已知函数2()ln f x x x =,则下列结论正确的是( )A .()f x 在=x 12e -B .()f x 在x =e2C .()f x 在=x 12e -D .()f x 在x =e 23.(2023·湖北·模拟预测)设函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数b ,c ,d 满足(,())a f a ,(,())b f b ,(,())c f c ,(,())d f d 恰好为一个矩形的四个顶点,则a 的取值范围为( )A .10,2æùçúèûB .1,12éùêúëûC .æçèD .ùúû4.(2024·湖北·二模)已知函数()1e e e x x xaxf x x +=++(e 为自然对数的底数).则下列说法正确的是( )A .函数()f x 的定义域为RB .若函数()f x 在()()0,0P f 处的切线与坐标轴围成的三角形的面积为2e 2e 2-,则1a =C .当1a =时,()f x m =可能有三个零点D .当1a =时,函数的极小值大于极大值二、多选题5.(2023·安徽·一模)已知函数()()3R f x x x x =-Î,则( )A .()f x 是奇函数B .()f x 的单调递增区间为,æ-¥ççè和ö¥÷÷ø+C .()f xD .()f x 的极值点为,æççè6.(2024·浙江杭州·二模)过点()2,0P 的直线与抛物线C :24y x =交于,A B 两点.抛物线C 在点A 处的切线与直线2x =-交于点N ,作NM AP ^交AB 于点M ,则( )A .直线NB 与抛物线C 有2个公共点B .直线MN 恒过定点C .点M 的轨迹方程是()()22110x y x -+=¹D .3MN AB的最小值为三、填空题7.(2024·全国·模拟预测)函数()()2ln ln f x x k x x k =-++在定义域内为增函数,则实数k的取值范围为 .8.(2023·江苏淮安·模拟预测)已知函数()2ln f x x ax =-有三个零点,则a 的取值范围是 .四、解答题9.(23-24高三下·山东菏泽·阶段练习)已知函数()()21e x f x x ax =--,R a Î.(1)当e2a =时,求()f x 的单调区间;(2)若方程()0f x a +=有三个不同的实根,求a 的取值范围.10.(2024·山西吕梁·二模)已知函数()()2ln 20a f x a x x a x =--¹.(1)当1a =时,求()f x 的单调区间和极值;(2)求()f x 在区间(]0,1上的最大值.。

2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版

2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展19等差数列中Sn 的最值问题(精讲+精练)一、等差数列的通项公式和前n 项和公式1.等差数列的通项公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是1(1)=+-n a a n d .2.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和11()(1)22+-=+=n n n a a n n S na d .注:数列{}n a 是等差数列⇔2=+n S An Bn (、A B 为常数).二、等差数列的前n 项和的最值1.公差0{}>⇔n d a 为递增等差数列,n S 有最小值;公差0{}<⇔n d a 为递减等差数列,n S 有最大值;公差0{}=⇔n d a 为常数列.2.在等差数列{}n a 中(1)若100,><a d ,则满足1+≥0⎧⎨≤0⎩m m a a 的项数m 使得n S 取得最大值m S ;(2)若100,<>a d ,则满足1+≤0⎧⎨≥0⎩m m a a 的项数m 使得n S 取得最小值m S .即若100>⎧⎨<⎩a d ,则n S 有最大值(所有正项或非负项之和);若100<⎧⎨>⎩a d ,则n S 有最小值(所有负项或非正项之和).【典例1】(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.二、题型精讲精练一、知识点梳理又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.【题型训练-刷模拟】一、单选题若5,故②正确;当8n =或9n =时,n S 取得最大值,所以211k a b +-=或12,故选:B【点睛】关键点点睛:本题考查的是等差数列的前n 项和最大值问题,思路是不难,大,即确定数列是递减数列,判断前多少项为非负项即可,但关键点在于如何求得正负项分界的项,即求得90a =,100a <,所以这里的关键是利用()217e 1ln 21a bS a b --≤≤-+,构造函数()e 1x f x x =--,利用导数判断函数单调性,结合最值解决这一问题.二、多选题三、填空题1四、解答题32.(2023·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,且1121526,a S S =-=.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)228n a n =-;(2)227n S n n =-,最小值为182-.【分析】(1)设等差数列{}n a 的公差为d ,根据等差数列前n 项和公式由1215S S =列出方程即可解出d ,从而可得数列{}n a 的通项公式;(2)根据二次函数的性质或者邻项变号法即可判断何时n S 取最小值,并根据等差数列前n 项和公式求出nS。

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

高考数学一轮复习三角函数与解三角形中的最值(范围)问题

,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π

减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3

3
3
2
1+ 2

|解题技法|
sin+

高三数学专题备考——高考中的最值问题的解题策略

高三数学专题备考——高考中的最值问题的解题策略

高三数学专题备考——高考中的最值问题的解题策略主讲人:黄冈中学高级教师汤彩仙一、复习策略1、函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等.2、求几类重要函数的最值方法;(1)二次函数:配方法和函数图像相结合;(2):均值不等式法和单调性加以选择;(3)多元函数:数形结合或转化为一元函数.3、三角函数、数列、解析几何中的最值问题,往往将问题转化为函数问题,利用求函数最值的方法或基本不等式法求解.4、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,二次函数的最值).5、不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.6、参数范围问题内容涉及代数和几何的多个方面,解题的关键是不等关系的建立,其途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.解决这一类问题,常用的思想方法有:函数思想、数形结合等.二、典例剖析问题1:函数的最值问题例1、(07江苏卷)已知二次函数的导数为,,对于任意实数,都有,则的最小值为()A.3B.C.2D.解:=,依题意,有:,可得,==+1≥2+1≥2+1=2,故选(C).例2、如下图(1)所示,定义在D上的函数,如果满足:对任意,存在常数A,都有≥A成立,则称函数在D上有下界,其中A称为函数的下界. (提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)(1)(2)(Ⅰ)试判断函数在(0,+)上是否有下界?并说明理由;(Ⅱ)又如具有上右图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数在D上有上界的定义,并判断(Ⅰ)中的函数在(-,0)上是否有上界?并说明理由;(Ⅲ)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.分析:利用导数判断函数的单调性,求出函数的最值,从而可以确定函数的下界或上界;或用重要不等式求最值.解:(Ⅰ)解法1:∵,由得,∵,∴x=2,∵当时,,∴函数在(0,2)上是减函数;当时,,∴函数在(2,+)上是增函数;∴是函数在区间(0,+)上的最小值点,.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.解法2:.当且仅当即x=2时“=”成立.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.(Ⅱ)类比函数有下界的定义,函数有上界可以这样定义:定义在D上的函数,如果满足:对任意,存在常数B,都有≤B 成立,则称函数在D上有上界,其中B称为函数的上界.设则,由(Ⅰ)知,对任意,都有,∴,∵函数为奇函数,∴.∴,∴.即存在常数B=-32,对任意,都有,∴函数在(-,0)上有上界.(Ⅲ)质点在上的每一时刻的瞬时速度.依题意得对任意有.对任意恒成立.令,∵函数在[0,+∞)上为减函数.∴.∴.问题2:三角函数、数列、解析几何中的最值问题将问题转化为函数问题,利用求函数最值的方法求解.例3、(05年上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.分析:将d用点M的坐标表示出来,,然后求其最小值.解:(1)由已知可得点A(-6,0),F(0,4).设点P(x,y),则={x+6,y},={x-4,y},由已知可得,则2x2+9x-18=0,解得x=或x=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2) 直线AP的方程是x-y+6=0.设点M(m,0),则M到直线AP的距离是.于是=,又-6≤m≤6,解得m=2.椭圆上的点(x,y)到点M的距离d有,由于-6≤≤6,∴当=时,d取得最小值.例4、(05年辽宁)如图,在直径为1的圆中,作一关于圆心对称、邻边互相垂直的十字形,其中.(Ⅰ)将十字形的面积表示为的函数;(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?分析:将十字型面积S用变量表示出来,转化为三角函数的极值问题,利用三角函数知识求出S的最大值.(Ⅰ)解:设S为十字形的面积,则(Ⅱ)解法一:其中当最大.所以,当最大. S的最大值为解法二:因为所以令S′=0,即可解得,所以,当时,S最大,S的最大值为例5、已知点A(-1,0),B(1,-1)和抛物线,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(I)若△POM的面积为,求向量与的夹角;(II)试探求点O到直线PQ的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.分析:可先设出M与P点的坐标,再利用斜率相等求出的值,利用向量的数量积求出夹角.第二问中可用重要等式求出最值.解:(I)设点、M、A三点共线,设∠POM=α,则由此可得tanα=1.又(II)由第(I)问答案知,令,则. ∴O到PQ的距离:,即当且仅当t=16时取最大值,且最大值为.故存在最大值,且最大值为.问题3:最值的实际应用在数学应用性问题中经常遇到有关用料最省、成本最低、利润最大等问题,可考虑建立目标函数,转化为求函数的最值.例6、(06年江苏卷)请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如下图所示).试问当帐篷的顶点O到底面中心O的距1离为多少时,帐篷的体积最大?分析:将帐蓬的体积用x表示(即建立目标函数),然后求其最大值.解:为,则.设OO1由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:)求导得.令,解得(不合题意,舍去),,当时,,为增函数;当时,,为减函数.∴当时,最大.答:当OO为2m时,帐篷的体积最大,最大体积为.1点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力.例7、(05年湖南)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99,有两种方案可供选择.方案甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为.设用单位质量的水初次清洗后的清洁度是.用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方法用水量较小.(2)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.点拨与提示:设初次与第二次清洗的用水量分别为与,,.于是+,利用均值不等式求最值.方案甲与方案乙的用水量分别为x与z,由题设有,解得x=19,由c=0.95得方案乙初次用水量为3,第二次用水量y满足方程:,解得y=4a,故z=4a+3,即两种方案的用水量分别为19与4 a +3,因为当1≤a≤ 3时,x-z =4(4-a)>0,即x>z.故方案乙的用水量较少.(II)设初次与第二次清洗的用水量分别为与,类似(I)得,(*)于是+.当a为定值时,.当且仅当时等号成立,此时(不合题意,舍去)或.将代入(*)得,.故时用水量最少,此时第一次与第二次用水量分别为与,最少总用水量为.当1≤a≤3时,,故T(a)是增函数(也可用二次函数的单调性来判断),这说明随着a的值的增加,最少总用水量增加.问题4:恒成立问题不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.例8、已知函数f(x)=.(Ⅰ)当时,求的最大值;(Ⅱ) 设,是图象上不同两点的连线的斜率,是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.分析:利用导数求出函数的单调性,再比较其极大值与端点值的大小求出的最大值.解:(Ⅰ)当-2≤<时,由=0得x1=显然-1≤x1<,<x2≤2,又=-.当≤x≤x2时,≥0,单调递增;当x<x≤2时,<0,单调递减,2=(x2)=∴max=-(Ⅱ)答:存在符合条件.解:因为=.不妨设任意不同两点,其中.则.由知:1+<1.又,故.故存在符合条件.解法二:据题意在图象上总可以找一点,使以P为切点的切线平行于图象上任意两点的连线,即存在.故存在符合条件.问题五:参数的取值范围问题参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力.在历年高考中占有较稳定的比重.解决这一类问题,常用的思想方法有:函数思想、数形结合等.例9、设直线过点P(0,3)且和椭圆顺次交于A、B两点,求的取值范围.分析:=.要求的取值范围,一是构造所求变量关于某个参数(自然的想到“直线AB的斜率k”)的函数关系式(或方程),通过求函数的值域来达到目的.二是构造关于所求量的一个不等关系,由判别式非负可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来.韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称式.问题找到后,解决的方法自然也就有了,即我们可以构造关于的对称式:.由此出发,可得到下面的两种解法.解法1:当直线垂直于x轴时,可求得;当l与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得.解之得由椭圆关于y轴对称,且点P在y轴上,所以只需考虑的情形.当时,,,所以===.由,解得,所以,即.解法2:设直线的方程为:,代入椭圆方程,消去得(*)则,令,则,在(*)中,由判别式可得,从而有,所以,解得.结合得.综上,.点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.本题也可从数形结合的角度入手,给出又一优美解法.例10、在直角坐标平面中,过点作函数的切线,其切点为;过点作函数的切线,其切点为;过点作函数的切线,其切点为;如此下去,即过点作函数的切线,其切点为;过点作函数的切线,其切点为….(1)探索与,与的关系,说明你的理由,并求,的值;(2)求数列通项公式;(3)是否存在正实数,使得对于任意的自然数,不等式恒成立?若存在,求出这样的实数的取值范围;若不存在,则说明理由.分析:利用导数先找出切线方程,从而可以确定数列与,与的关系,再分奇数项与偶数项来求出数列的通项,在第三问中可用错位相消法求出不等式左端的和,再证明其单调性来求解.解:(1)∵,∴切线的方程为,又切线过点,∴,且,∴∴.又,∴切线的方程为,而切线过点,∴,且,∴∴.(2)由(1) 可知,即,∴数列为等比数列,且首项为4,∴,即.而,故数列通项公式为(3)令∴,两式相减得∴.∴,∴数列递增.又当时,.∴,而,∴.∴对于任意的正整数和任意的实数不等式恒成立等价于,而,所以有,解得或(舍).故存在这样的正实数,其取值范围为.冲刺练习一、选择题1、若,则a的取值范围是()A.B.C.D.2、下列结论正确的是()A.当B.C.的最小值为2D.当无最大值3、在R上定义运算:.若不等式对任意实数x 成立,则()A.B.C.D.4、设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.5、若动点()在曲线上变化,则的最大值为()A.B.C.D.2b6、已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,则()A.⊥B.⊥(-)C.⊥(-)D.(+)⊥(-)7、已知函数在区间上的最小值是,则的最小值等于()A.B.C.2D.38、设,对于函数,下列结论正确的是()A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值9、在约束条件下,当时,目标函数的最大值的变化范围是()A.B.C.D.10、已知不等式对任意正实数恒成立,则正实数的最小值为()A.2B.4C.6D.8[提示]二、填空题11、已知,则的最小值是__________.12、在△OAB中,O为坐标原点,,则△OAB的面积达到最大值时,__________.13、设实数x,y满足__________.14、在中,O为中线AM上一个动点,若AM=2,则的最小值是__________.15、已知函数在[0,1]上的最大值与最小值的和为a,则a的值为____________.[答案]三、解答题16、若函数的最大值为,试确定常数a的值.[答案]17、已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.(1)求a、b的值与函数f(x)的单调区间.(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.[答案]18、已知函数,其中0<a<4.(Ⅰ)将的图像向右平移两个单位,得到函数,求函数的解析式;(Ⅱ)函数与函数的图像关于直线对称,求函数的解析式;(Ⅲ)设,已知的最小值是,且,求实数的取值范围.[答案]19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.[答案]20、已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.提示:1、①当,即时,无解;②当,即时,,故选C.2、A中lgx不满足大于零,C中的最小值为2的x值取不到,D中当x=2时有最大值,选B.3、∵,∴不等式对任意实数x成立,则对任意实数x成立,即使对任意实数x成立,所以,解得,故选C.4、因为,所以(A)恒成立;在(B)两侧同时乘以得,所以(B)恒成立;(C)中,当a>b时,恒成立,a<b时,不成立;(D)中,分子有理化得恒成立,故选(C).5、由曲线方程得,=,∵-b≤y≤b,∴若即b≥4,则当y=b时,最大值为2b;若即0<b<4,则当时,最大值为.(本题也可用三角代换求解).6、由|-t|≥|-|得|-t|2≥|-|2展开并整理得,由,所以,得,即,选(C).7、,解得,选B.8、令,则函数的值域为函数的值域,又,所以是一个减函减,故选B.9、解:由,交点为,(1)当时可行域是四边形OABC,此时,.(2)当时可行域是△OA此时,.10、,∴≥9,≥4.11、12、13、14、-2 15、提示:11、表示直线=0上动点P(x,y)到点(1,1)的距离,的最小值就是点(1,1)到直线=0的距离,可求得.12、,当即时,面积最大.13、表示两点(0,0),P(x,y)的斜率,作出不等式组表示的平面区域即△ABC及其内部,由图形可得AO的斜率最大,可求得A(1,),.14、如图,即的最小值为-2.15、若a>1,与是增函数,为增函数,f(x)的最大值为f(1),最小值为f(0),所以f(1)+f(0)=a;若0<a<1,与是减函数,为减函数,f(x)的最大值为f(0),最小值为f(1),所以f(0)+f(1)=a;故+=a,解得a =.16、解:因为的最大值为的最大值为1,则所以17、解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b.由f′()=,f′(1)=3+2a+b=0得a=,b=-2.f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:,-) -,所以函数f(x)的递增区间是(-∞,-)与(1,+∞).递减区间是(-,1).(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(x)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值.要使f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c.解得c<-1或c>2.18、(Ⅰ);(Ⅱ)设点是函数上任一点,点关于的对称点是,由于函数与函数的图像关于直线对称,所以,点在函数的图像上,也即:.所以,;(Ⅲ).解法一:注意到的表达式形同,所以,可以考虑从的正负入手.(1)当,即时,是R上的增函数,此时无最小值,与题设矛盾;(2) 当,即时,.等号当且仅当,即时成立.由及,可得:,解之得:.解法二:由可得:.令,则命题可转化为:当时,恒成立.考虑关于的二次函数.因为,函数的对称轴,所以,需且只需,解之得:.此时,,故在取得最小值满足条件.19、解:(Ⅰ)设双曲线方程为由已知得故双曲线C的方程为(Ⅱ)将由直线l与双曲线交于不同的两点得即①设,则而于是②由①、②得故k的取值范围为。

2023届全国高考数学复习:专题(含参函数的极值、最值讨论)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(含参函数的极值、最值讨论)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(含参函数的极值、最值讨论)重点讲解与练习考点一 含参函数的极值【例题选讲】[例1] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程.(2)求函数f (x )的极值.[例2] 已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.[例3] 设f (x )=x ln x -32ax 2+(3a -1)x .(1)若g (x )=f ′(x )在[1,2]上单调,求a 的取值范围;(2)已知f (x )在x =1处取得极小值,求a 的取值范围.[例4] (2016ꞏ山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.[例5] 已知函数f (x )=⎝⎛⎭⎫x -1-a 6e x +1,其中e =2.718…为自然对数的底数,常数a >0. (1)求函数f (x )在区间(0,+∞)上的零点个数;(2)函数F (x )的导数F ′(x )=()e x-a f (x ),是否存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点?请说明理由.【对点训练】1.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.3.已知函数f (x )=x 2-3x +a x .(1)若a =4,讨论f (x )的单调性;(2)若f (x )有3个极值点,求实数a 的取值范围.4.已知函数f(x)=ax-x2-ln x(a∈R).(1)求函数f(x)的单调区间;(2)若函数f(x)存在极值,且这些极值的和大于5+ln2,求实数a的取值范围.5.(2018ꞏ全国Ⅲ)已知函数f (x )=(2+x +ax 2)ꞏln(1+x )-2x .(1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)若x =0是f (x )的极大值点,求a .考点二 含参函数的最值【例题选讲】[例1] 已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[例2] 已知函数f (x )=ax 2+(1-2a )x -ln x .(1)当a >0时,求函数f (x )的单调递增区间;(2)当a <0时,求函数f (x )在⎣⎡⎦⎤12,1上的最小值.[例3] 已知函数f (x )=ln x x 1.(1)求函数f (x )的单调区间及极值;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.[例4] 已知函数f (x )=m ln x x +n ,g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2(m ,n ,a ∈R ),且曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(1)求实数m ,n 的值及函数f (x )的最大值;(2)当a ∈⎝⎛⎭⎫-e ,1e 时,记函数g (x )的最小值为b ,求b 的取值范围.[例5] (2019ꞏ全国Ⅲ)已知函数f (x )=2x 3-ax 2+b .(1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【对点训练】1.已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).2.已知函数f (x )=(x -a )e x (a ∈R ).(1)当a =2时,求函数f (x )的图象在x =0处的切线方程;(2)求函数f (x )在区间[1,2]上的最小值.3.已知函数f (x )=ax -ln x ,F (x )=e x +ax ,其中x >0,a <0.(1)若f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a ∈⎝⎛⎦⎤-∞,-1e 2,且函数g (x )=x e ax -1-2ax +f (x )的最小值为M ,求M 的最小值.4.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.5.已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围.考点三 含参函数的极值与最值的综合问题【例题选讲】[例1] 已知函数f (x )=e x1+ax 2,其中a 为正实数,x =12是f (x )的一个极值点. (1)求a 的值;(2)当b >12时,求函数f (x )在[b ,+∞)上的最小值.[例2] 已知函数f (x )=a ln (x +b )-x .(1)若a =1,b =0,求f (x )的最大值;(2)当b >0时,讨论f (x )极值点的个数.[例3] 设函数f (x )=a x +e -x (a >1). (1)求证:f (x )有极值;(2)若x =x 0时f (x )取得极值,且对任意正整数a 都有x 0∈(m ,n ),其中m ,n ∈Z ,求n -m 的最小值.[例4] 已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.[例5] 已知函数f (x )=(ax -1)ln x +x 22.(1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],求g (x 1)-g (x 2)的最小值.[例6] 已知函数g (x )=x 22+x +ln x .(1)若函数g ′(x )≥a 恒成立,求实数a 的取值范围;(2)函数f (x )=g (x )-mx ,若f (x )存在单调递减区间,求实数m 的取值范围;(3)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.【对点训练】1.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1)求f (x )在区间(-∞,1)上的极小值和极大值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.(1)若x=3是f(x)的极值点,求f(x)的单调区间;(2)求g(x)=f(x)-2x在区间[1,e]上的最小值h(a).4.已知常数a≠0,f(x)=a ln x+2x.(1)当a=-4时,求f(x)的极值;(2)当f(x)的最小值不小于-a时,求实数a的取值范围.(1)若f (x )在⎝⎛⎭⎫0,π2上有极值点,求a 的取值范围; (2)若a =1,x ∈⎝⎛⎭⎫0,2π3时,f (x )≥bx cos x ,求b 的最大值.6.已知函数f (x )=ln x +12x 2-ax +a (a ∈R ).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值参考答案【例题选讲】[例1] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程. (2)求函数f (x )的极值.解析 (1)由已知,得f ′(x )=x -(a +1)+ax (x >0),又由题意可知y =f (x )在(2,f (2))处切线的斜率为1, 所以f ′(2)=1,即2-(a +1)+a2=1,解得a =0,此时f (2)=2-2=0,故所求的切线方程为y =x -2.(2)f ′(x )=x -(a +1)+a x =x 2-(a +1)x +a x =(x -1)(x -a )x(x >0). ①当0<a <1时,若x ∈(0,a ),则f ′(x )>0,函数f (x )单调递增;若x ∈(a ,1),则f ′(x )<0,函数f (x )单调递减;若x ∈(1,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =a 是f (x )的极大值点,x =1是f (x )的极小值点,函数f (x )的极大值是f (a )=-12a 2+a ln a ,极小值是f (1)=-12. ②当a =1时,f ′(x )=(x -1)2x ≥0,所以函数f (x )在定义域(0,+∞)内单调递增, 此时f (x )没有极值点,故无极值.③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增;若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减;若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点, 函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a ,极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a .[例2] 已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解析 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.x (0,2) 2 (2,+∞) f ′(x )+-f (x ) ln 2-1 故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x . 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,若x ∈⎝⎛0,1a ,则f ′(x )>0, 若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0,故函数在x =1a 处有极大值. 综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a . [例3] 设f (x )=x ln x -32ax 2+(3a -1)x .(1)若g (x )=f ′(x )在[1,2]上单调,求a 的取值范围; (2)已知f (x )在x =1处取得极小值,求a 的取值范围.解析 (1)由f ′(x )=ln x -3ax +3a ,即g (x )=ln x -3ax +3a ,x ∈(0,+∞),g ′(x )=1x -3a ,①g (x )在[1,2]上单调递增,∴1x -3a ≥0对x ∈[1,2]恒成立,即a ≤13x 对x ∈[1,2]恒成立,得a ≤16; ②g (x )在[1,2]上单调递减,∴1x -3a ≤0对x ∈[1,2]恒成立,即a ≥13x 对x ∈[1,2]恒成立,得a ≥13, 由①②可得a 的取值范围为⎝⎛⎦⎤-∞,16∪⎣⎡⎭⎫13,+∞.(2)由(1)知,①当a ≤0时,f ′(x )在(0,+∞)上单调递增,∴x ∈(0,1)时,f ′(x )<0,f (x )单调递减, x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,∴f (x )在x =1处取得极小值,符合题意;②当0<a <13时,13a >1,又f ′(x )在⎝⎛⎭⎫0,13a 上单调递增,∴x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,13a 时,f ′(x )>0, ∴f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,13a 上单调递增,f (x )在x =1处取得极小值,符合题意; ③当a =13时,13a =1,f ′(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意;④当a >13时,0<13a <1,当x ∈⎝⎛⎭⎫13a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,∴f (x )在x =1处取得极大值,不符合题意. 综上所述,可得a 的取值范围为⎝⎛⎭⎫-∞,13. [例4] (2016ꞏ山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.解析 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).所以g ′(x )=1x -2a =1-2ax x . 当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a 1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞. [例5] 已知函数f (x )=⎝⎛⎭⎫x -1-a6e x +1,其中e =2.718…为自然对数的底数,常数a >0. (1)求函数f (x )在区间(0,+∞)上的零点个数;(2)函数F (x )的导数F ′(x )=()e x-a f (x ),是否存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点?请说明理由.解析 (1)f ′(x )=⎝⎛⎭⎫x -a 6e x ,当0<x <a 6时,f ′(x )<0,f (x )单调递减;当x >a6时,f ′(x )>0,f (x )单调递增, 所以当x ∈(0,+∞)时,f (x )min =f ⎝⎛⎭⎫a 6,因为f ⎝⎛⎭⎫a 6<f (0)=-a 6<0,f ⎝⎛⎭⎫1+a 6=1>0, 所以存在x 0∈⎝⎛⎭⎫a 6,1+a 6,使f (x 0)=0,且当0<x <x 0时,f (x )<0,当x >x 0时,f (x )>0. 故函数f (x )在(0,+∞)上有1个零点,即x 0.(2)方法一 当a >1时,ln a >0.因为当x ∈()0,ln a 时,e x -a <0;当x ∈()ln a ,+∞时,e x -a >0. 由(1)知,当x ∈(0,x 0)时,f (x )<0;当x ∈(x 0,+∞)时,f (x )>0.下面证:当a ∈()1,e 时,ln a <x 0,即证f ()ln a <0.f ()ln a =⎝⎛ln a -1-a 6a +1=a ln a -a -a 26+1,记g (x )=x ln x -x -x26+1,x ∈(1,e), g ′(x )=ln x -x3,x ∈(1,e),令h (x )=g ′(x ),则h ′(x )=3-x 3x >0,所以g ′(x )在()1,e 上单调递增, 由g ′(1)=-13<0,g ′(e)=1-e3>0,所以存在唯一零点t 0∈()1,e ,使得g ′()t 0=0, 且x ∈()1,t 0时,g ′(x )<0,g (x )单调递减,x ∈()t 0,e 时,g ′(x )>0,g (x )单调递增. 所以当x ∈()1,e 时,g (x )<max {}g (1),g (e).由g (1)=-16<0,g (e)=6-e 26<0, 得当x ∈()1,e 时,g (x )<0.故f ()ln a <0,0<ln a <x 0.当0<x <ln a 时,e x -a <0,f (x )<0, F ′(x )=()e x -a f (x )>0,F (x )单调递增;当ln a <x <x 0时,e x -a >0,f (x )<0,F ′(x )=()e x-a f (x )<0,F (x )单调递减.所以存在a ∈()1,e ⊆(1,4),使得ln a 为F (x )的极大值点. 方法二 因为当x ∈()0,ln a 时,e x -a <0;当x ∈()ln a ,+∞时,e x -a >0. 由(1)知,当x ∈(0,x 0)时,f (x )<0;当x ∈(x 0,+∞)时,f (x )>0. 所以存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点, 即存在无数个a ∈(1,4),使得ln a <x 0成立,①由(1),问题①等价于存在无数个a ∈(1,4),使得f ()ln a <0成立,因为f ()ln a =⎝⎛⎭⎫ln a -1-a 6a +1=a ln a -a -a 26+1,记g (x )=x ln x -x -x26+1,x ∈(1,4), g ′(x )=ln x -x3,x ∈(1,4),设k (x )=g ′(x ),因为k ′(x )=3-x 3x ,当x ∈⎝⎛⎭⎫32,2时,k ′(x )>0,所以g ′(x )在⎝⎛⎭⎫32,2上单调递增,因为g ′⎝⎛⎭⎫32=ln 32-12<0,g ′(2)=ln 2-23>0, 所以存在唯一零点t 0∈⎝⎛⎭⎫32,2,使得g ′()t 0=0,且当x ∈⎝⎛⎭⎫32,t 0时,g ′(x )<0,g (x )单调递减;当x ∈()t 0,2时,g ′(x )>0,g (x )单调递增; 所以当x ∈⎣⎡⎦⎤32,2时,g (x )min=g ()t 0=t 0ln t 0-t 0-t206+1,② 由g ′()t 0=0,可得ln t 0=t 03,代入②式可得g (x )min =g ()t 0=t 206-t 0+1,当t 0∈⎝⎛⎭⎫32,2时,g ()t 0=t 206-t 0+1=()t 0-326-12<-18<0,所以必存在x ∈⎝⎛⎭⎫32,2,使得g (x )<0,即对任意a ∈⎝⎛⎭⎫32,2,f ()ln a <0有解, 所以对任意a ∈⎝⎛⎭⎫32,2⊆(1,4),函数F (x )存在极大值点为ln a . 【对点训练】1.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.1.解析 (1)当a =0时,f (x )=ln x +x ,则f (1)=1,∴切点为(1,1),又f ′(x )=1x +1,∴切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x , ①当a ≤0时,∵x >0,∴g ′(x )>0,∴g (x )在(0,+∞)上是增函数,函数g (x )无极值点.②当a >0时,g ′(x )=-ax 2+(1-a )x +1x=-a ⎝⎛⎭⎫x -1a (x +1)x ,令g ′(x )=0得x =1a . ∴当x ∈⎝⎛⎭⎫0,1a 时,g ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,g ′(x )<0. 因此g (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,+∞上是减函数. ∴x =1a 时,g (x )取极大值g ⎝⎛⎭⎫1a =ln 1a -a 2×1a 2+(1-a )×1a +1=12a -ln a . 由①②得,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a -ln a ,无极小值. 2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围.2.解析 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e .由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e≠0.所以a 的值为1. (2)f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0,所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 3.已知函数f (x )=x 2-3x +ax .(1)若a =4,讨论f (x )的单调性;(2)若f (x )有3个极值点,求实数a 的取值范围. 3.解析 (1)因为a =4时,f (x )=x 2-3x +4x ,所以f ′(x )=2x -3-4x 2=2x 3-3x 2-4x 2=2x 3-4x 2+x 2-4x 2=(x -2)(2x 2+x +2)x 2(x ≠0), 令f ′(x )>0,得x >2;令f ′(x )<0,得x <0或0<x <2.所以f (x )在(-∞,0),(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意知,f ′(x )=2x -3-a x 2=2x 3-3x 2-a x2(x ≠0),设函数g (x )=2x 3-3x 2-a , 则原条件等价于g (x )在(-∞,0)∪(0,+∞)上有3个零点,且3个零点附近的左、右两侧的函数值异号,又g ′(x )=6x 2-6x =6x (x -1), 由g ′(x )>0,得x >1或x <0;由g ′(x )<0,得0<x <1.故g (x )在(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,故原条件等价于g (x )在(-∞,0),(0,1),(1,+∞)上各有一个零点,令g (0)=-a >0,得a <0, 当a <0时,--a <0,g (--a )=2(--a )3-3(-a )-a =2a (-a +1)<0, 故a <0时,g (x )在(-∞,0)上有唯一零点;令g (1)=-1-a <0,解得a >-1,故-1<a <0时,g (x )在(0,1)上有唯一零点; 又-1<a <0时,g (2)=4-a >0,所以g (x )在(1,+∞)上有唯一零点. 综上可知,实数a 的取值范围是(-1,0). 4.已知函数f (x )=ax -x 2-ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)若函数f (x )存在极值,且这些极值的和大于5+ln2,求实数a 的取值范围.4.解析 (1)f (x )的定义域为(0,+∞).f ′(x )=a -2x -1x .∵2x +1x ≥22⎝⎛⎭⎫当且仅当x =2时等号成立,当a ≤22时,f ′(x )≤0,函数f (x )在(0,+∞)上单调递减. 当a >22时,f ′(x )=a -2x -1x =-2x 2-ax +1x. 由f ′(x )=0得x 1=a -a 2-84,x 2=a +a 2-84且x 2>x 1>0. 由f ′(x )>0得x 1<x <x 2,由f ′(x )<0得0<x <x 1,或x >x 2, ∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫a -a 2-84,a +a 2-84, 单调递减区间为⎝ ⎛⎭⎪⎫0,a -a 2-84,⎝ ⎛⎭⎪⎫a +a 2-84,+∞. 综上所述,当a ≤22时,函数f (x )的单调递减区间为(0,+∞),无单调递增区间; 当a >22时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,a -a 2-84,⎝ ⎛⎭⎪⎫a + a 2-8,+∞, 单调递增区间为⎝ ⎛⎭⎪⎫a -a 2-84,a +a 2-84.(2)由(1)知,当f (x )存在极值时,a >22.即方程2x 2-ax +1=0有两个不相等的正根x 1,x 2,∴⎩⎨⎧x 1+x 2=a2>0,x 1x 2=12>0.∴f (x 1)+f (x 2)=a (x 1+x 2)-(x 21+x 22)-(ln x 1+ln x 2)=a (x 1+x 2)-[](x 1+x 2)2-2x 1x 2-ln(x 1x 2)=a 22-a 241-ln 12=a 24+1-ln 12.依题意a 24+1-ln 12>5+ln 2,即a 2>16,∴a >4或a <-4. 又a >22.∴a >4,即实数a 的取值范围是(4,+∞). 5.(2018ꞏ全国Ⅲ)已知函数f (x )=(2+x +ax 2)ꞏln(1+x )-2x .(1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)若x =0是f (x )的极大值点,求a .5.解析 (1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=f ′(x )=ln (1+x )-x1+x,则g ′(x )=x (1+x )2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0.故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0.所以f (x )在(-1,+∞)单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)(ⅰ)若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ꞏln (1+x )-2x >0=f (0),这与x =0是f (x )的极大值点矛盾.(ⅱ)若a <0,设函数h (x )=f (x )2+x +ax 2=ln(1+x )-2x 2+x +ax 2. 由于当|x |<min{1,1|a |}时,2+x +ax 2>0,故h (x )与f (x )符号相同. 又h (0)=f (0)=0,故x =0是f (x )的极大值点当且仅当x =0是h (x )的极大值点. h ′(x )=11+x -2(2+x +ax 2)-2x (1+2ax )(2+x +ax 2)2=x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2.如果6a +1>0,则当0<x <-6a +14a ,且|x |<min{1,1|a |}时,h ′(x )>0,故x =0不是h (x )的极大值点.如果6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min{1,1|a |}时,h ′(x )<0,所以x =0不是h (x )的极大值点. 如果6a +1=0,则h ′(x )=x 3(x -24)(x +1)(x 2-6x -12)2, 则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0.所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点. 综上,a =-16.考点二 含参函数的最值 【例题选讲】[例1] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝⎛0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. (2)①当0<1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a . ②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a . ③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数. 又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ; 当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln2时,函数f (x )的最小值是f (1)=-a ;当a ≥ln2时,函数f (x )的最小值是f (2)=ln2-2a .[例2] 已知函数f (x )=ax 2+(1-2a )x -ln x . (1)当a >0时,求函数f (x )的单调递增区间; (2)当a <0时,求函数f (x )在⎣⎡⎦⎤12,1上的最小值.解析 (1)因为f (x )=ax 2+(1-2a )x -ln x ,所以f ′(x )=2ax +1-2a -1x =(2ax +1)(x -1)x . 因为a >0,x >0,所以2ax +1>0,令f ′(x )>0,得x >1,所以f (x )的单调递增区间为(1,+∞).(2)当a <0时,令f ′(x )=0,得x 1=-12a ,x 2=1,当-12a >1,即-12<a <0时,f (x )在(0,1]上是减函数,所以f (x )在⎣⎡⎦⎤12,1上的最小值为f (1)=1-a . 当12≤-12a ≤1,即-1≤a ≤-12时,f (x )在⎣⎡⎦⎤12,-12a 上是减函数,在⎣⎡⎦⎤-12a ,1上是增函数, 所以f (x )在⎣⎡⎦⎤12,1上的最小值为f ⎝⎛⎭⎫-12a =1-14a +ln(-2a ). 当-12a <12,即a <-1时,f (x )在⎣⎡⎦⎤12,1上是增函数,所以f (x )在⎣⎡⎦⎤12,1上的最小值为f ⎝⎛⎭⎫12=12-34a +ln 2. 综上,函数f (x )在区间⎣⎡⎦⎤12,1上的最小值为f (x )min=⎩⎪⎨⎪⎧12-34a +ln 2,a <-1,1-14a +ln(-2a ),-1≤a ≤-12,1-a ,-12<a <0.[例3] 已知函数f (x )=ln xx 1. (1)求函数f (x )的单调区间及极值;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.解析 (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2,由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得0<x <e ; 由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e .所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞), 且f (x )极大值=f (e)=1e -1,无极小值.(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m ,2m ]上单调递增,所以f (x )max =f (2m )=ln 2m2m -1; ②当m <e<2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e ,2m )上单调递减, 所以f (x )max =f (e)=ln e e -1=1e -1;③当m ≥e 时,函数f (x )在区间[m ,2m ]上单调递减,所以f (x )max =f (m )=ln mm -1.综上所述,当0<m ≤e 2时,f (x )max =ln 2m 2m -1;当e 2<m <e 时,f (x )max =1e -1;当m ≥e 时,f (x )max =ln mm -1. [例4] 已知函数f (x )=m ln xx +n ,g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2(m ,n ,a ∈R ),且曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(1)求实数m ,n 的值及函数f (x )的最大值;(2)当a ∈⎝⎛⎭⎫-e ,1e 时,记函数g (x )的最小值为b ,求b 的取值范围. 解析 (1)函数f (x )的定义域为(0,+∞),f ′(x )=m (1-ln x )x 2, 因为f (x )的图象在点(1,f (1))处的切线方程为y =x -1,所以⎩⎪⎨⎪⎧f ′(1)=m =1,f (1)=m ln 11+n =0,解得⎩⎪⎨⎪⎧m =1,n =0. 所以f (x )=ln xx ,f ′(x )=1-ln x x 2,令f ′(x )=0,得x =e ,当0<x <e 时,f ′(x )>0,f (x )单调递增;当x >e 时,f ′(x )<0,f (x )单调递减. 所以当x =e 时,f (x )取得最大值,最大值为f (e)=1e .(2)因为g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2=x ln x -ax22-x ,所以g ′(x )=ln x -ax =x ⎝⎛⎭⎫ln x x -a . ①当a ∈⎝⎛⎭⎫0,1e 时,x →+∞时,g (x )→-∞,g (x )无最小值. ②当a =0时,g ′(x )=ln x ,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,g (x )的最小值b =g (1)=-1. ③当a ∈(-e ,0)时,由(1)知方程ln xx -a =0有唯一实根,又f ⎝⎛⎭⎫1e =-e ,f (1)=0,f (x )在⎝⎛⎭⎫1e ,1上单调递增,所以存在t ∈⎝⎛⎭⎫1e ,1,使得g ′(t )=0,即ln t =at . 当x ∈(0,t )时,g ′(x )<0;当x ∈(t ,+∞)时,g ′(x )>0, 所以g (x )在(0,t )上单调递减,在(t ,+∞)上单调递增,g (x )的最小值b =g (t )=t ln t -a 2t 2-t =t ln t 2-t ,令h (t )=t ln t2-t ,t ∈⎝⎛⎭⎫1e ,1, 则h ′(t )=ln t -12<0,所以h (t )在⎝⎛⎭⎫1e ,1上单调递减,从而b =h (t )∈⎝⎛⎭⎫-1,-32e . 综上所述,当a ∈(-e ,0]时,b ∈⎣⎡⎭⎫-1,-32e ;当a ∈⎝⎛⎭⎫0,1e 时,b 不存在. [例5] (2019ꞏ全国Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.解析 (1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a 3,+∞时,f ′(x )>0;当x ∈⎝⎛⎭⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝⎛⎭⎫a 3,+∞单调递增,在⎝⎛0,a 3单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎫-∞,a 3∪(0,+∞)时,f ′(x )>0; 当x ∈⎝⎛⎭⎫a 3,0时,f ′(x )<0.故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)单调递增,在⎝⎛⎭⎫a 3,0单调递减. (2)满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝⎛⎭⎫a 3=-a 327+b ,最大值为b 或2-a +b . 若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.【对点训练】1.已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).1.解析 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x =(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增, h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e .从而p (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p (x )min =p (e 2)=-1e 2,当a ≤-1e 2时,a ≤1-ln x x ,即e ax -1-1x ≤0,当x ∈⎝⎛⎭⎫0,-1a 时,ax +1>0,g ′(x )≤0,g (x )单调递减, 当x ∈⎝⎛⎭⎫-1a ,+∞时,ax +1<0,g ′(x )≥0,g (x )单调递增,∴g (x )min =g ⎝⎛⎭⎫-1a =M , 设t =-1a ∈(0,e 2],M =h (t )=t e 2-ln t +1(0<t ≤e 2),则h ′(t )=1e 2-1t ≤0,h (t )在(0,e 2]上单调递减,∴h (t )≥h (e 2)=0,即M ≥0,∴M 的最小值为0.4.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.4.解析 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-x x ,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e .从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎦⎤-1a ,e 上单调递减, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a .令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2. ∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.5.已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围.5.解析 (1)当a =1时,f (x )=x 2-3x +ln x (x >0),所以f ′(x )=2x -3+1x =2x 2-3x +1x , 所以f (1)=-2,f ′(1)=0.所以切线方程为y +2=0.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域为(0,+∞),当12<b <32时,f (x )在[b ,32)上单调递减,在⎝⎛⎭⎫32,+∞上单调递增. 所以f (x )在[b ,+∞)上的最小值为f ⎝⎛⎭⎫32=e e 4;当b ≥32时,f (x )在[b ,+∞)上单调递增,所以f (x )在[b ,+∞)上的最小值为f (b )=e b 1+ab 2=3e b3+4b 2. [例2] 已知函数f (x )=a ln (x +b )-x .(1)若a =1,b =0,求f (x )的最大值;(2)当b >0时,讨论f (x )极值点的个数.解析 (1)当a =1,b =0时,f (x )=ln x -x ,此时,f (x )的定义域是(0,+∞),f ′(x )=1x -12x =2-x 2x ,由f ′(x )>0,解得0<x <4,由f ′(x )<0,解得x >4, 故f (x )在(0,4)上单调递增,在(4,+∞)上单调递减,故f (x )max =f (4)=2ln 2-2.(2)当b >0时,函数的定义域是[0,+∞),f ′(x )=a x +b -12x =-x +2a x -b 2x x +b , ①当a ≤0时,f ′(x )<0对任意x ∈(0,+∞)恒成立,故此时f (x )的极值点的个数为0;②当a >0时,设h (x )=-x +2a x -b ,(ⅰ)当4a 2-4b ≤0即0<a ≤ b 时,f ′(x )≤0对任意x ∈(0,+∞)恒成立,即f ′(x )在(0,+∞)上无变号零点, 故此时f (x )的极值点个数是0;(ⅱ)当4a 2-4b >0即a >b 时,记方程h (x )=0的两根分别为x 1,x 2,由于x 1+x 2=2a >0,x 1x 2=b >0,故x 1,x 2都大于0,即f ′(x )在(0,+∞)上有2个变号零点, 故此时f (x )的极值点的个数是2.综上,a ≤b 时,f (x )极值点的个数是0;a >b 时,f (x )极值点的个数是2.[例3] 设函数f (x )=a x +e -x (a >1). (1)求证:f (x )有极值;(2)若x =x 0时f (x )取得极值,且对任意正整数a 都有x 0∈(m ,n ),其中m ,n ∈Z ,求n -m 的最小值. 解析 (1)由题意得f ′(x )=a x ln a -e -x ,令h (x )=f ′(x )=a x ln a -e -x , 则h ′(x )=a x (ln a )2+e -x >0,所以函数h (x ),即f ′(x )在R 上单调递增. 由f ′(x )=0,得a x e x ln a =1,因为a >1,所以a x e x =1ln a >0,得x =log a e 1ln a ,当x >log a e 1ln a 时,f ′(x )>0;当x <log a e 1ln a 时,f ′(x )<0. 所以函数f (x )在⎝⎛⎭⎫-∞,log a e 1ln a 上单调递减,在⎝⎛⎭⎫log a e 1ln a ,+∞上单调递增,因此,当x =log a e 1ln a 时函数f (x )取极值.(2)由(1)知,函数f (x )的极值点x 0(即函数f ′(x )的零点)唯一.由f ′(-1)=ln a a -e ,令g (a )=ln a a ,则g ′(a )=1-ln a a 2,由g ′(a )=0,得a =e ,当a >e 时,g ′(a )<0;当0<a <e 时,g ′(a )>0.所以g (a )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (a )≤g (e)=1e ,所以f ′(-1)=ln a a -e <0.当a 为大于1的正整数时,f ′(0)=ln a -1的值有正有负.f ′(1)=a ln a -1e ,因为a 为正整数且a >1,所以a ln a ≥2ln 2>1e ,所以f ′(1)>0.所以x 0∈(-1,1)恒成立,所以n -m 的最小值为2.[例4] 已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解析 由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0解得x <1a ,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减;当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a ≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1, 解得a =e ,而1e ≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a +1e =0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.[例5] 已知函数f (x )=(ax -1)ln x +x 22.(1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],求g (x 1)-g (x 2)的最小值.解析 (1)当a =2时,f (x )=(2x -1)ln x +x 22,则f ′(x )=2ln x +x -1x +2,f ′(1)=2,f (1)=12,∴切线l 的方程为y -12=2(x -1),即4x -2y -3=0.(2)函数g (x )=a ln x +x -1x +a ,定义域为(0,+∞),则g ′(x )=1+a x +1x 2=x 2+ax +1x 2, 令g ′(x )=0,得x 2+ax +1=0,其两根为x 1,x 2,且x 1+x 2=-a ,x 1x 2=1,故x 2=1x 1,a =-⎝⎛⎭⎫x 1+1x 1. g (x 1)-g (x 2)=g (x 1)-g ⎝⎛⎭⎫1x 1=a ln x 1+x 1-1x 1+a -⎝⎛⎭⎫a ln 1x 1+1x 1-x 1+a =2⎝⎛⎭⎫x 1-1x 1+2a ln x 1=2⎝⎛⎭⎫x 1-1x 1-2⎝⎛⎭⎫x 1+1x 1ln x 1, 令h (x )=2⎝⎛⎭⎫x -1x -2⎝⎛⎭⎫x +1x ln x .则[g (x 1)-g (x 2)]min =h (x )min , 又h ′(x )=2(1+x )(1-x )ln x x 2,当x ∈(0,1]时,h ′(x )≤0,当x ∈(1,e]时,h ′(x )<0, 即当x ∈(0,e]时,h (x )单调递减,∴h (x )min =h (e)=-4e ,故[g (x 1)-g (x 2)]min =-4e[例6] 已知函数g (x )=x 22+x +ln x .(1)若函数g ′(x )≥a 恒成立,求实数a 的取值范围;(2)函数f (x )=g (x )-mx ,若f (x )存在单调递减区间,求实数m 的取值范围;(3)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.解析 (1)∵g ′(x )=x +1x +1,g ′(x )=x +1x +1≥2x ꞏ1x +1=3,g ′(x )≥a ,∴a ≤3.(2)∴f ′(x )=x +1-m +1x =x 2+(1-m )x +1x,又∵f ′(x )<0在(0,+∞)上有解, 令h (x )=x 2+(1-m )x +1,则h (0)=1>0,只需⎩⎪⎨⎪⎧ m -12>0,(m -1)2-4>0,解得⎩⎪⎨⎪⎧m >1,m >0或m <-1,即m >3 (3)∵f ′(x )=x 2+(1-m )x +1x,令f ′(x )=0,即x 2+(1-m )x +1=0,两根分别为x 1,x 2,则⎩⎪⎨⎪⎧x 1+x 2=m -1,x 1x 2=1, 又∵f (x 1)-f (x 2)=12(x 21-x 22)+(1-m )(x 1-x 2)+ln x 1x 2=12(x 21-x 22)-(x 21-x 22)+ln x 1x 2, =ln x 1x 2-12(x 21-x 22)=ln x 1x 2-12⎝⎛⎭⎫x 1x 2-x 2x 1. 令t =x 1x 2,由于x 1<x 2,∴0<t <1. 又∵m ≥72,(x 1+x 2)2=(m -1)2≥254,即(x 1+x 2)2x 1x 2=x 1x 2+2+x 2x 1,即t +2+1t ≥254 ∴4t 2-17t +4≥0,解得t ≥4或t ≤14,即0<t ≤14.令h (t )=ln t -12⎝⎛⎭⎫t -1t (0<t ≤14),h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在(0,14]上单调递减,h (t )min =h (14)=-2ln2+158.∴f (x 1)-f (x 2)的最小值为-2ln2+158.【对点训练】1.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).1.解析 (1)f ′(x )=ln x +1,x >0,由f ′(x )=0,得x =1e .当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0, 所以f (x )在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增. 所以x =1e 是函数f (x )的极小值点,极大值点不存在.(2)g (x )=x ln x -a (x -1),则g ′(x )=ln x +1-a ,由g ′(x )=0,得x =e a -1. 所以在区间(0,e a -1)上,g (x )单调递减,在区间(e a -1,+∞)上,g (x )单调递增. 当e a -1≥e ,即a ≥2时,g (x )在(0,e]上单调递减,∴g (x )min =g (e)=a +e -a e , 当e a -1<e 即a <2时,g (x )在(0,e a -1)上单调递减,在(e a -1,e]上单调递增, ∴g (x )min =g (e a -1)=a -e a -1,令g (x )的最小值为h (a ), 综上有h (a )=⎩⎪⎨⎪⎧a -e a -1,a <2,a +e -a e ,a ≥2.2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1)求f (x )在区间(-∞,1)上的极小值和极大值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.2.解析 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0当x =23时,函数f (x )取到极大值,极大值为f ⎝⎛⎭⎫23=427.(2)①当-1≤x <1时,根据(1)知,函数f (x )在[-1,0)和⎝⎛⎭⎫23,1上单调递减,在⎣⎡⎦⎤0,23上单调递增. 因为f (-1)=2,f ⎝⎛⎭⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增.则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.3.已知函数f (x )=a ln x +x 2-ax (a ∈R ). (1)若x =3是f (x )的极值点,求f (x )的单调区间;(2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ).3.解析 (1)f (x )的定义域为(0,+∞),f ′(x )=a x +2x -a =2x 2-ax +a x, 因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a 3=0, 解得a =9,所以f ′(x )=2x 2-9x +9x =(2x -3)(x -3)x, 所以当0<x <32或x >3时,f ′(x )>0,当32<x <3时,f ′(x )<0,即x =3是f (x )的极小值点,所以f (x )的单调递增区间为⎝⎛⎭⎫0,32,(3,+∞),单调递减区间为⎝⎛⎭⎫32,3.(2)g ′(x )=2x 2-ax +a x -2=(2x -a )(x -1)x,令g ′(x )=0,得x 1=a 2,x 2=1. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上为减函数,在⎝⎛⎦⎤a 2,e 上为增函数, h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上为减函数,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e , 1-e a +e 2-2e ,a ≥2e.4.已知常数a ≠0,f (x )=a ln x +2x .(1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围.4.解析 (1)由已知得f (x )的定义域为(0,+∞),f ′(x )=a x +2=a +2x x .当a =-4时,f ′(x )=2x -4x .所以当0<x <2时,f ′(x )<0,即f (x )在(0,2)上单调递减;当x >2时,f ′(x )>0,即f (x )在(2,+∞)上单调递增.所以f (x )只有极小值,且当x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2,无极大值.(2)因为f ′(x )=a +2x x a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在(0,+∞)上单调递增,没有最小值.当a <0时,由f ′(x )>0,得x >-a 2,所以f (x )在⎝⎛⎭⎫-a 2,+∞上单调递增; 由f ′(x )<0,得x <-a 2,所以f (x )在⎝⎛⎭⎫0,-a 2上单调递减. 所以当a <0时,f (x )的最小值为f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a 2. 根据题意,知f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a 2≥-a ,即a [ln (-a )-ln 2]≥0. 因为a <0,所以ln (-a )-ln 2≤0,解得a ≥-2,所以实数a 的取值范围是[-2,0).5.已知函数f (x )=a sin x +sin2x ,a ∈R .。

2025年高考数学一轮复习-三角中的最值、范围问题-专项训练【含答案】

2025年高考数学一轮复习-三角中的最值、范围问题-专项训练【含答案】

2025年高考数学一轮复习-三角中的最值、范围问题-专项训练一、基本技能练1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且0,则ω的最小值为()A.2B.4C.6D.82.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为()A.π12 B.π6C.π3 D.5π63.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin A +2c sin C =2b sin C cosA ,则角A 的最大值为()A.π6 B.π4C.π3 D.2π34.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b=cos Ccos B ,b =4,则△ABC 的面积的最大值为()A.43B.23C.2D.35.若函数f (x )=cos 2x +x (0,α)上恰有2个零点,则α的取值范围为() A.5π6,,4π3 C.5π3,,8π36.已知函数f (x )=cos(ωx +φ)(ω>0)的最小正周期为π,且对x ∈R ,f (x )≥f立,若函数y=f(x)在[0,a]上单调递减,则a的最大值是()A.π6B.π3C.2π3D.5π67.已知函数f(x)=2sinωx(ω>0)在区间-π3,π4上的最小值为-2,则ω的取值范围是________.8.已知函数f(x)=cosωx+ω>0)在[0,π]上恰有一个最大值点和两个零点,则ω的取值范围是________.9.在△ABC中,内角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC 的角平分线交AC于点D,且BD=1,则4a+c的最小值为________.10.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A≠π2,c+b cos A-a cos B=2a cos A,则ba=________;内角B的取值范围是________.11.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围.12.已知向量a b=(-sin x,3sin x),f(x)=a·b.(1)求函数f(x)的最小正周期及f(x)的最大值;(2)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,若1,a=23,求△ABC面积的最大值并说明此时△ABC的形状.二、创新拓展练13.设锐角△ABC的三个内角A,B,C所对边分别为a,b,c,且a=1,B=2A,则b的取值范围为()A.(2,3)B.(1,3)C.(2,2)D.(0,2)14.(多选)设函数f(x)=ω>0),已知f(x)在[0,2π]上有且仅有3个极小值点,则()A.f(x)在(0,2π)上有且仅有5个零点B.f(x)在(0,2π)上有且仅有2个极大值点C.f(x)D.ω的取值范围是7 3,15.(多选)在△ABC中,内角A,B,C的对边分别为a,b,c,且c=6,记S为△ABC的面积,则下列说法正确的是()A.若C=π3,则S有最大值93B.若A=π6,a=23,则S有最小值33C.若a=2b,则cos C有最小值0D.若a+b=10,则sin C有最大值242516.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2c=a(b2+c2-a2).(1)若A=π3,求B的大小;(2)若a≠c,求c-3ba的最小值.参考答案与解析一、基本技能练1.答案A解析函数f (x )的周期T ≤π,则2πω≤π,解得ω≥2,故ω的最小值为2.2.答案B解析将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到图象的函数解析式为y =cos 2φ=x -2π3+,此函数为奇函数,所以-2π3+φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),则当k =-1时,|φ|取得最小值π6.3.答案A解析因为a sin A +2c sin C =2b sin C cos A ,由正弦定理可得,a 2+2c 2=2bc cos A ,①由余弦定理得,a 2=b 2+c 2-2bc cos A ,②①+②得2a 2=b 2-c 2,所以cos A =b 2+c 2-a 22bc=b 2+c 2-12(b 2-c 2)2bc=b 2+3c 24bc ≥23bc 4bc =32(当且仅当b =3c 时取等号),所以角A 的最大值为π6.4.答案A解析∵在△ABC 中,2a -c b=cos Ccos B ,∴(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C ,整理得sin(B +C )=2sin A cos B ,∵A ∈(0,π),∴sin A ≠0.∴cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时取等号,∴△ABC 的面积S =12ac sin B =34ac ≤43.即△ABC 的面积的最大值为4 3.5.答案B解析由题意,函数f (x )=cos 2x +x =3sin x 因为0<x <α,所以π3<2x +π3<2α+π3,又由f (x )在(0,α)上恰有2个零点,所以2π<2α+π3≤3π,解得5π6<α≤4π3,所以α,4π3.故选B.6.答案B解析因为函数f (x )=cos(ωx +φ)的最小正周期为π,所以ω=2ππ=2,又对x ∈R ,都有f (x )≥所以函数f (x )在x =π3时取得最小值,则2π3+φ=π+2k π,k ∈Z ,即φ=π3+2k π,k ∈Z ,所以f (x )=x令2kπ≤2x+π3≤π+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,则函数y=f(x)在0,π3上单调递减,故a的最大值是π,故选B.7.答案32,+∞解析x∈-π3,π4,因为ω>0,-π3ω≤ωx≤π4ω,由题意知-π3ω≤-π2,即ω≥3 2,故ω取值范围是3 2,+8.答案5 3,解析函数f(x)=cosωx+3sinω>0),由x∈[0,π],得ωx+π3∈π3,ωπ+π3.又f(x)在[0,π]上恰有一个最大值点和两个零点,则2π≤ωπ+π3<52π,解得53≤ω<136.9.答案9解析因为∠ABC=120°,∠ABC的平分线交AC于点D,所以∠ABD=∠CBD=60°,由三角形的面积公式可得12ac sin120°=12a×1·sin60°+12c·1·sin60°,化简得ac=a+c,又a>0,c>0,所以1a+1c=1,则4a +c =(4a +c 5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.10.答案22,π4解析由c +b cos A -a cos B =2a cos A 结合正弦定理得sin C +sin B cos A -sinA cosB =2sin A cos A ,即sin(A +B )+sin B cos A -sin A cos B =2sin A cos A ,化简得2sin B cos A =2sin A cos A .因为A ≠π2cos A ≠0,则2sin B =2sin A ,所以b a =sin B sin A =22,则由余弦定理得cos B =a 2+c 2-b 22ac =2b 2+c 2-b 222bc =b 2+c 222bc ≥2bc 22bc =22,当且仅当b =c 时等号成立,解得0<B ≤π411.(1)证明由a =b tan A 及正弦定理,得sin A cos A =a b =sin Asin B,所以sin B =cos A ,即sin B =又B 为钝角,因此π2+A 故B =π2A ,即B -A =π2.(2)解由(1)知,C =π-(A +B )=πA =π2-2A >0,所以A于是sin A +sin C =sin A +2sin A +cos 2A =-2sin 2A +sin A +1=-A +98.因为0<A <π4,所以0<sin A <22,因此22<-A +98≤98.由此可知sin A +sin C ,98.12.解(1)由已知得a =(-sin x ,cos x ),又b =(-sin x ,3sin x ),则f (x )=a ·b =sin 2x +3sin x cos x =12(1-cos 2x )+32sin 2x=x +12,所以f (x )的最小正周期T =2π2=π,当2x -π6=π2+2k π(k ∈Z ),即x =π3+k π(k ∈Z )时,f (x )取得最大值32.(2)在锐角△ABC 中,因为+12=1,所以=12,所以A =π3.因为a 2=b 2+c 2-2bc cos A ,所以12=b 2+c 2-bc ,所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c =23时等号成立),此时△ABC 为等边三角形,S △ABC =12bc sin A =34bc ≤33.所以当△ABC 为等边三角形时面积取最大值3 3.二、创新拓展练13.答案A解析∵B =2A ,∴sin B =sin 2A =2sin A cos A .∵a =1,∴b =2a cos A =2cos A .又△ABC 为锐角三角形,A <π2,A <π2,-3A <π2,∴π6<A <π4,∴22<cos A <32,即2<2cos A <3,故选A.14.答案CD解析因为x ∈[0,2π],所以ωx +π3∈π3,2πω+π3.设t =ωx +π3∈π3,2πω+π3,画出y =cos t 的图象如图所示.由图象可知,若f (x )在[0,2π]上有且仅有3个极小值点,则5π≤2πω+π3<7π,解得73≤ω<103,故D 正确;故f (x )在(0,2π)上可能有5,6或7个零点,故A 错误;f (x )在(0,2π)上可能有2或3个极大值点,故B 错误;当x ωx +π3,π6ω因为73≤ω<103,所以13π18≤π6ω+π3<8π9,故f (x )C 正确.15.答案ABD解析对于选项A ,对角C 由余弦定理得36=c 2=a 2+b 2-ab ≥2ab -ab =ab ,因此,S =12ab sin C =34ab ≤93,当且仅当a =b =6时取等号,故A 正确;对于选项B ,对角A 用余弦定理得12=a 2=c 2+b 2-3bc =36+b 2-63b ,解得b =23或b =43,因此,S =12bc sin A =32b ≥33,当且仅当b =23时取等号,故B 正确.对于选项C ,若a =2b ,由三边关系可得a -b =b <c =6<a +b =3b ⇒2<b <6,此时,由余弦定理,得cos C =a 2+b 2-c 22ab =5b 2-364b2=54-9b 2∈(-1,1),故C 错误.对于选项D ,若a +b =10,则cos C =a 2+b 2-c 22ab =(a +b )2-c 2-2ab 2ab=32ab -1,又ab ≤(a +b )24=25,当且仅当a =b =5时取等号,∴cos C =32ab -1≥725⇒sin C =1-cos 2C ≤2425,故D 正确,故选ABD.16.解(1)因为b 2c =a (b 2+c 2-a 2),所以由余弦定理得cos A =b 2+c 2-a 22bc=b 2a .因为A =π3,所以b 2a =12a =b ,所以B =A =π3.(2)由(1)及正弦定理得cos A =sin B 2sin A,即sin B =2sin A cos A =sin 2A ,所以B =2A 或B +2A =π.当B +2A =π时,A =C ,与a ≠c 矛盾,故舍去,所以B =2A .c -3b a =sin C -3sin B sin A =sin (A +B )-3sin Bsin A=sin A cos B +cos A sin B -3sin Bsin A=cos B +(cos A -3)sin 2Asin A =cos 2A +2(cos A -3)·cos A=4cos 2A -6cos A -1=A -134.因为C =π-A -B =π-3A >0,即A <π3,所以cos A >12,所以当cos A =34时,c -3b a 有最小值-134.。

高考数学总复习考点知识专题讲解9---导数与函数的极值、最值

高考数学总复习考点知识专题讲解9---导数与函数的极值、最值

角度2:已知函数求极值
【例1-2】
(1)(2020·广东深圳质检)已知函数f(x)=
1 2
x2
-(a+1)x+alnx+1,a∈R.若x=3是f(x)的极值点,求f(x)的
极大值.
(2)(2020·泉州质检)已知函数f(x)=x-1+
a ex
(a∈R,e为
自然对数的底数),求函数f(x)的极值.
[思路引导] (1)由f′(3)=0求出a→确定f′(x)的符号→
已知函数 求极值
求f′(x)→求方程f′(x)=0的根→列 表检验f′(x)在f′(x)=0的根的附近 两侧的符号→下结论.
若函数f(x)在x=x0处取得极 已知极值求 值,则f′(x0)=0,且在该
点左、右两侧的导数值符 参数值或范
号相反,求出参数后要检 围
验所求参数值是否满足x0的 极值点特征.
(2)f′(x)=ex(cosx-sinx)-1, 设h(x)=ex(cosx-sinx)-1,则 h′(x)=ex(cosx-sinx-sinx-cosx)=-2exsinx. 当x∈0,π2时,h′(x)<0, 所以h(x)在区间0,π2上单调递减.
所以对任意x∈0,π2有h(x)<h(0)=0,即f ′(x)<0. 所以函数f(x)在区间0,π2上单调递减. 因此f(x)在区间 0,π2 上的最大值为f(0)=1,最小值为 fπ2=-π2.
3ax2+bx-2a2在x=2时有极值0,那么a+b的值为( B )
A.14
B.40
C.14或40
D.52
(2)(2019·沈阳模拟)已知函数f(x)=x(lnx-ax)有两个极值 点,则实数a的取值范围是__0_,__12___.

解三角形中的最值与范围问题-高考数学复习

解三角形中的最值与范围问题-高考数学复习

∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

数学高考必备技巧如何快速解决函数题中的最值问题

数学高考必备技巧如何快速解决函数题中的最值问题

数学高考必备技巧如何快速解决函数题中的最值问题在数学高考中,函数题是一个较为常见的题型。

而函数题中的最值问题,往往是考察学生在解析几何、导数、极限等内容应用能力的重要环节。

为了帮助同学们更好地解决函数题中的最值问题,下面将分享一些数学高考必备技巧。

一、确定函数的定义域在解决函数题中的最值问题时,首先要确定函数的定义域。

因为只有正确确定函数的定义域,才能保证在确定最值时不遗漏结果。

二、化简函数式子在求解函数的最值问题时,化简函数式子是一个常用的技巧。

通过对函数式子进行整理,可以简化计算过程,使问题更容易解答。

三、求函数的导数对函数求导是解决最值问题的常用方法之一。

通过求导,可以得到函数的单调性和极值点的信息,从而帮助我们找到最值点。

四、用导数判断最值点通过函数的导数,我们可以判断函数在某个区间上的单调性,从而确定最值点的大致位置。

当导数为正时,函数单调递增;当导数为负时,函数单调递减。

通过对导数符号的判断,可以排除一部分已知不是最值点的位置。

五、考虑函数在区间端点处的值在解决最值问题时,除了使用导数判断最值点外,还要考虑函数在自变量区间的端点处的取值情况。

通过比较函数在端点处的大小,可以确定最值点的具体位置。

六、用图像法辅助解题对于一些复杂的函数,可以通过画出函数图像的方式来帮助解题。

通过观察函数图像的走向和凹凸性质,可以更加直观地找到函数的最值点。

七、对称性的利用在解决函数最值问题时,有时候可以利用函数的对称性来简化计算。

如利用奇偶函数的性质,可以通过仅计算函数在定义域的一半上的取值情况,得到整个定义域的最值点。

八、注意边界条件在解决函数最值问题时,要特别注意边界条件,比如函数在某些点上无定义,或者在某些点上可能取到无穷大等情况。

这些边界条件的考虑对于正确求解最值问题非常重要。

九、化最值问题为优化问题在解决函数最值问题时,有时可以将最值问题转化为优化问题进行求解。

通过建立相应的优化模型,可以运用最优化理论进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9课时最值问题
要点·疑点·考点
课前热身
能力·思维·方法
延伸·拓展
误解分析
要点·疑点·考点
1.能够根据条件恰当地选择自变量建立目标函数,然后利用求函数最值的方法(如配方法、基本不等式法、三角函数的值域、函数的单调性、判别式法等)求出最大、最小值
2.能够结合曲线的定义和几何性质,运用“数形结合”或者用“几何法”求出某些最大、最小值.
返回
1322=-y x 1.定长为12的线段AB 的端点在双曲线的右支上,则AB 中点M 的横坐标的最小值为_____.2.已知点,F 是椭圆的左焦点,一动点M 在椭圆上移动,则|AM|+2|MF|的最小值为_____.3.若动点P 在直线2x+y+10=0上运动,直线PA 、PB 与圆x 2+y 2=4分别切于点A 、B ,则四边形PAOB 面积的最小值为_______.112
1622=+y x ()
32,A 课前热身
2
7
108
返回
4.椭圆且满足,若离心率为e ,则的最小值为()(A)2(B)(C)(D)()0122
22>>=+b a b y a x b a 3≤221e e +6133132
35.设点P 是椭圆上的动点,F 1、F 2是椭圆的两个焦点,则sin ∠F 1PF 2的最大值为_________________12222=+b y a x 783B
能力·思维·方法
1.过椭圆2x2+y2=2的一个焦点作直线交椭圆于P,Q两点,求△POQ面积S的最大值.
【解题回顾】本题若选择PQ为底表示△POQ的面积则运算量较大
【解题回顾】本题是通过建立二次函数求最值,基本手法是配方,要注意顶点横坐标是否在此区间内的讨论.2.已知定点A (a ,0),其中0<a <3,它到椭圆上的点的距离的最小值为1,求a 的值.149
2
2=+y x
3.已知抛物线x2=4y和圆x2+y2=32相交于A、B两点,圆与y 轴正方向交于点C,l是过ACB弧上的点且与圆相切的直线,l与抛物线相交于M、N两点,d是M、N两点到抛物线焦点的距离之和.
求(1)A、B、C三点的坐标;
(2)当d取最大值时l的方程
【解题回顾】通常函数表达式中若有两个变量,应寻找两变量之间关系,通过代换变为一个变量,由此变量的范围求得函数的最值.
【解题回顾】要善于将所求问题进行转化.比如本题是把CD 长的
最大值转化为求纵截距b 的取值范
围问题,结合图形分析则更直观.4.已知直线y=kx+1与双曲线x 2-y 2=1的左支交于A 、B 两点,直线l 经过点(-2,0)及AB 中点,CD 是y 轴上的一条线段,对任意的直线l 都与线段CD 无公共点,求CD 长的最大值.
返回
延伸·拓展
5.在直角坐标平面上给定一曲线y 2=2x
(1)设点A 的坐标为(2/3,0),求曲线上距点A 最近的点P 之坐标及相应的距离|PA|;
(2)设点A 的坐标为(a ,0),a ∈R ,求曲线上的点到点A 距离之最小值d ,并写出d=f (a )的函数表达式.
返回
【解题回顾】一般而言,对抛物线y 2=2px ,则有
()()()⎪⎩
⎪⎨⎧<≥==p a a p a p -ap a f d 22
误解分析
(1)误以为抛物线上距A 最近的点一定为抛物线的顶点是导
返回(2)建立目标函数后,d 2是关于x 的二次函数,要进行分类讨论求得d 2的最小值,否则会出现的错误结果.
12min -a d。

相关文档
最新文档