红外接收电路设计

合集下载

红外接收发射(电路图和PCB)

红外接收发射(电路图和PCB)

学年论文(课程论文、课程设计)题目:红外发射接受作者:所在学院:信息科学与工程学院专业年级:电子信息工程08-1班指导教师:王建英职称:讲师2009年1月7日实验目的:1. 学会熟练操作Altium Designer 6软件。

2. 学会用Altium Designer 6软件进行电子线路设计并运用软件分析各种参数。

3.熟练掌握基本红外发射接收的设计、分析及运。

4. 学会红外发射接收电路基础的电路设计并进行研究分析。

实验要求:1.了解红外发射接收的基本电路结构。

2.概述音频放大器的构造及功能。

3.用Multisim完成对电压和功率放大器的电路设计。

4.对电路的各部分功能作简要解释。

5.要求所设计的电路实现对电压和功率的放大功能。

6.对电路进行调与仿真,得到重要性能参数且要求要有电路的输入与输出波形。

7.对放大器的一些性能指标进行研究分析。

(对输入输出波形研究以及对频率效应的研究等等)。

8.得出实验结论。

实验内容:一、实验原理图红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。

1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。

由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝色等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

红外通信收发系统的设计和实现实验报告

红外通信收发系统的设计和实现实验报告

红外通信收发系统的设计和实现实验报告学院:信息与通信工程学院姓名:班级:学号:红外通信收发系统的设计和实现实验报告1、课题名称红外通信收发系统的设计与实现2、摘要红外通信系统的设计是光通信系统的一个重要分支,红外数据传输,使用传输介质――红外线。

红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。

红外数据传输一般采用红外波段内的近红外线,波长在0.75~25um之间。

本实protel软件辅助设计,分析并设计了红外通信系统的发射电路与接收电路,实现了红外信号的无线传输功能和音乐信号的收发功能。

3、关键词红外线、收发系统、音乐芯片3、设计任务要求;1、基本要求:(1)设计一个正弦波振荡器,f≥1kHz,Uopp≥3v;(2)所设计的正弦波振荡器的输出信号作为红外光通信收发系统发送端的输入信号,在接收端可收到无明显失真的输入信号;(3)要求接收端LM386增益设计G=200;(4)设计该电路的电源电路(不要求实际搭建),用软件绘制完整的电路原理图(PROTEL)及印制电路板图(PCB)2、提高要求:利用音乐芯片产生乐曲,调制LED后发出,接收端接收信号利用喇叭将发送的乐曲无失真的播放出来。

3、探究环节:探索其它红外光通信收发系统的应用实例,数字调制的解决的方案,给出应用方案。

4、设计思路、总体结构框图;1、设计思路系统主要由信号产生电路,红外光发射系统,红外光接收系统三个模块完成基本实验要求,其中信号产生电路分别由信号发生器和音乐芯片代替,电信号经过发生系统转化为红外光信号,经接收系统接受后,光信号转化为电信号,再通过喇叭将其转化为语音信号,实现红外光通信的全过程。

首先主要用信号发生器发出电信号,微弱的电信号经过一个分压式共射电路适当放大,并通过LED红外发送管转化为光信号发送。

信号经接收管接收后,通过运放电路得到较高的输出功率,驱动喇叭发出声音。

利用放大器LM386,调节电位器改变其增益,驱动喇叭得到所需功率。

红外接收电路设计

红外接收电路设计

[光

Spectrum ]
b. Noise 频 系 Noise 在R/M上使用可以遮断可见光的光学滤波。 使用High Frequency(30KHz ~ 56.9KHz) Carrier Modulation 在Pre-Amp Chip上,使用 I-V Stage 可变impedance及低频噪声折断滤波器。
Receiver Module Transmitter Vcc Vout GND C R Vcc Rp µ-com GND
8
REMOCON
c. 由于Vcc line Ripple Noise而没有输出信号的事例 - Set 區 : 卫星接收器的机顶盒。 - Noise Source : 在前面板的显示使用的七段码现使用脉冲驱动开关电路的噪声流入到 R/M的 Vcc Line上.. Vcc line noise 觀 R/M Output 觀 – Transmitter signal
[ incandescent lamp & Halogenlamp ]
R球

- Electronic Ballast ]
* channel 構 - ch-1 : Lamp ˘ - ch-M : spectrum * Modulation = - 120 Hz *} ¯ - Main : 47.0KHz
Vcc line Noise signal Noise signal
= 120Hz
R/M Output
② EMI Noise
a. Noise Source - TV CRT 的 b. Noise - 应用可以遮断 以及其他周边设备放射的 .
的金属屏蔽设计, 即可简单的路掉电磁波噪声. 整机厂商的IQC or PCB Ass’y 检查时,必须将金属屏蔽外壳和GND相连。 如果不接地,可能会使遥控距离变短。

红外遥控开关接收电路

红外遥控开关接收电路

目录1、引言 (1)2、总体设计方案 (1)2.1 设计思路 (1)2.2 总体设计图 (2)2.3、电源电路 (2)2.4、红外发光二极管 (2)2.5、光敏三极管 (3)3、电路原理 (3)3.1红外发射电路 (3)3.2、红外接收电路 (4)4、总结与体会 (4)参考文献 (6)附录:红外遥控开关仿真图 (6)红外遥控开关设计机电系电气工程及其自动化094 张亚勇 2009190425摘要:红外线开关具有灵敏度高、抗干扰性能好等特点,其遥控距离为8m以上,可用于控制照明灯、电风扇等家用电器。

本例红外遥控开关利用常用的彩色遥控器去控制一种或多种家用电器。

该红外线遥控开关由电源部分、红外接收部分、解码与控制部分、执行电路组成。

由彩色遥控器发出红外信号,一体化接收头接收到遥控编码信号后送到解码与控制集成电路,由解码控制集成电路内部分析处理后输出信号送给执行电路去控制电器的开、关。

关键词:电源红外接收器执行电路1、引言红外遥控是当前使用最为广泛的通信和控制手段之一,由于其结构简单、体积小、功耗低、抗干扰能力强、可靠性高及成本低等优点而广泛应用于家电产品、工业控制和智能仪器系统中。

然而市场上的绝大部分遥控器都是针对各自特定的遥控对象设计的,不能直接应用于通用的智能仪器研发及其更一般的控制场合。

通常情况下,一般家庭所使用的电视机、空调、VCD/DVD等家用电器都使用了红外遥控器,而这些红外遥控器都是针对各自产品所设计的,从而导致了一般家庭中拥有数个遥控器,那么,能否将这些遥控器的功能进行复用,进而减少遥控器的数量,使遥控器的功能更加强大,就显得十分必要了。

2、总体设计方案2.1 设计思路一个完整的红外遥控开关包括红外发射和装臵和红外接收装臵,每一部分的设计思路不同。

对于红外发射装臵,应该包括控制电路、方波振荡器和红外发射装臵。

有开关控制产生的信号经过方波振荡器整形后控制三极管的基极控制三极管的导通与否而控制在其集电极的红外发光二极管的接通与断开,实现红外光脉冲的发射。

红外感应灯电路设计及原理

红外感应灯电路设计及原理

红外感应灯电路设计及原理1、电路主要光学元件(1)光敏电阻的应用光敏电阻又称光导管, 它几乎都是用半导体材料制成的光电器件。

光敏电阻没有极性, 是一个电阻器件。

制作光敏电阻的材料一般是金属硫化物和金属硒化物,通常采用涂敷、喷涂等方法,在陶瓷基片上涂上半导体薄膜,经烧结而成。

光敏电阻的结构:在底板上均匀地涂上一层薄薄的半导体物质,称为光导层。

半导体的两端装有金属电极与引出线端相连接,通过引出线端接入电路。

为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最大。

为了提高灵敏度,光敏电阻的电极一般采用梳状图案,光敏电阻结构,光敏电阻电极,光敏电阻接线图光敏电阻工作原理--内光电效应。

光照射到本征半导体上,材料中的价带电子吸收了光子能量跃迁到导带,激发出电子、空穴对,增强了导电性能,使阻值降低。

光照停止,电子空穴对又复合,阻值恢复。

亮电阻很小,暗电阻很大。

要使价带电电子跃迁到导带,入射光子的能量满足刚好发生内光电效应的临界波长。

常用的光敏电阻器是硫化镉光敏电阻器,它是由半导体材料制成的。

光敏电阻器的阻值随入射光线(可见光)的强弱变化而变化,在黑暗条件下,它的阻值(暗阻)可达1-10MΩ;在强光条件(100LX)下,它阻值(亮阻)仅有几百至数千欧姆。

光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4-0.76um)的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。

本电路采用MG42型CdS光敏电阻,CdS光敏电阻属半导体光敏器件,产品经受强化老练实验,除具有灵敏度高,反应速度快,光谱特性好等特点外,在高温、多湿的恶劣环境下,仍能保持其高度的稳定性和可靠性,适合于将其用于各种环境,MG42型光敏电阻与其它型号相比具有:工作电压和额定功率比较低的特点,其亮、暗电阻也适合于本照明电路的需要,所以在设计时选择了这个型号。

(2)可控硅元件的工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。

常用红外数据传输电路的设计及其注意事项

常用红外数据传输电路的设计及其注意事项

常用红外数据传输电路的设计及其注意事项摘要:简要介绍IrDA红外数据传输的特征;详细说明各种常见IrDA类型器件的构成;重点阐述常用红外数据传输电路的设计及其注意事项。

关键词:红外数据传输红外检测IrDA编/解码调制/解调引言红外数据传输,成本低廉、连接方便、简单易用、结构紧凑,在小型移动设备中得到了广泛的应用。

近年来,很多著名半导体厂商,如Agilent、Vishay、Sharp、Zilog、Omron 等,相继推出了许多遵循同一规范的不同类型的器件。

本文就IrDA红外数据传输、各种IrDA器件的构成及其不同类型的红外通信电路设计进行综合阐述。

1红外数据传输及其规范简介红外数据传输,使用传播介质——红外线。

红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。

红外数据传输一般采用红外波段内的近红外线,波长在μm~25μm之间。

红外数据协会成立后,为保证不同厂商的红外产品能获得最佳的通信效果,限定所用红外波长在850nm~900nm。

IrDA是国际红外数据协会的英文缩写,IrDA相继制定了很多红外通信协议,有侧重于传输速率方面的,有侧重于低功耗方面的,也有二者兼顾的。

协议基于异步收发器UART,最高通信速率在,简称SIR(SerialInfrared,串行红外协议),采用3/16ENDEC编/解码机制。

协议提高通信速率到4Mbps,简称FIR(FastInfrared,快速红外协议),采用4PPM(PulsePositionModulation,脉冲相位调制)编译码机制,同时在低速时保留协议规定。

之后,IrDA又推出了最高通信速率在16Mbps的协议,简称VFIR(VeryFastInfrared,特速红外协议)。

IrDA标准包括三个基本的规范和协议:红外物理层连接规范IrPHY(InfraredPhysicalLayerLinkSpecification),红外连接访问协议IrLAP(InfraredLinkAccessProtocol)和红外连接管理协议IrLMP(InfraredLinkManagementProtocol)。

红外遥控器信号接收和显示的设计

红外遥控器信号接收和显示的设计

电子电路综合设计总结报告题目:红外遥控器信号接收和显示的设计(设计选题十四)姓名:班级:学号:成绩:摘要:随着电子技术的发展,红外遥控器越来越多的应用到电器设备中,但各种型号遥控器的大量使用带来的遥控器大批量多品种的生产,使得检测成为难题,因此智能的红外遥控器检测装置成为一种迫切的需要。

在该红外遥控器信号的接收和显示电路以单片机和一体化红外接收器为核心技术,具体由单片机最小系统、单片机与PC机间的通信模块、红外接收模块、数码管显示模块和流水灯模块组成。

在本系统的设计中,利用红外接收器接收遥控器发出的控制信号,并通过软件编程将接收信号存储、处理、比较,并将数据处理送至数码管显示模块。

总之,通过对电路的设计和实际调试,可以实现红外遥控器信号的接收与显示功能。

根据比较接收信号的不同,在数码管显示电路及流水灯电路上显示相应的按键数字或闪烁变化功能,并可实现单片机及PC机之间的通信功能,使得控制信号能在PC机上显示。

关键词:单片机红外接收器HS0038 解码串口调试设计任务结合单片机最小电路和红外线接收接口电路共同设计一个基于单片机的红外遥控信号接收与转发系统,用普通电视机遥控器控制该系统,使用数码管显示信号的接收结果。

1、实现单片机最小系统的设计。

2、当遥控器按下数字键时,在数码管上显示其键值。

如按下数字键1,则在数码管上显示号码01。

3、当遥控器按下音量△及音量▽时,用两位数码的周围段实现顺时针或者逆时针旋转的流水灯功能。

(为使得音量的增减清晰显示,试验中在单片机的P1口外接一排流水灯,具体功能的实现见方案的可行性论证)* 运用串口调试助手,在遥控器有按键按下时,将其键值显示在PC机上。

* 当遥控器按下频道△及频道▽时,在数码管上显示加1或减1后的数值。

一、系统方案比较与论证1、方案比较与选择为了实现系统整体功能,红外解码部分是核心,红外解码是指将遥控发射器所产生的红外遥控编码脉冲所对应的键值翻译出来的过程。

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用红外接收电路是一种常用的电子电路,在很多领域中都有广泛的应用。

它主要用于接收和解码红外线信号,从而实现远程控制、通信、遥控器等功能。

本文将从红外接受电路的原理、设计和应用方面进行详细介绍。

一、红外接收电路的原理红外接收电路主要由红外传感器以及解码电路组成。

其中,红外传感器是将红外线信号转化为电信号的核心部件,而解码电路则用于解码接收到的电信号,以获取所需的信息。

红外传感器一般采用的是红外光敏二极管,常用的红外光敏二极管有HS0038、HS0038B等型号。

它们是一类特殊的二极管,只对红外线具有敏感性。

当红外线照射到光敏二极管时,光敏二极管内部会产生电压信号,信号的幅度与照射光的强度成正比。

然后,这个电压信号会通过一个电压比较器进行放大和处理,最后输出一个数字信号。

解码电路是将接收到的数字信号解码为对应的功能信号。

常用的解码电路有NEC、SONY等协议解码电路。

解码电路会识别数字信号的序列标识,根据标识的不同来生成相应的功能信号。

例如,遥控器的数字信号可以代表不同的按键操作,解码电路会根据接收到的数字信号来判断用户所按下的按键,并触发相应的功能。

二、红外接收电路的设计在设计红外接收电路时,需要考虑到传感器的信号放大、滤波以及解码等多个方面。

下面是一个简单的红外接收电路设计流程:1.选择合适的红外传感器:在选择红外传感器时,要根据具体的应用场景来确定。

不同的红外传感器有不同的特性和响应频率,需要根据实际需求进行选择。

2.放大和滤波电路设计:接收到的红外信号一般较弱,需要经过放大电路的放大处理。

常见的放大电路有共射放大电路、共集放大电路等。

此外,为了去除杂波信号,还需要设计一个合适的滤波电路。

3.解码电路设计:解码电路根据具体的协议来设计。

常用的解码协议有NEC、SONY等。

解码电路的设计需要根据协议的要求,选择合适的电子元件和电路连接方式。

4.供电电路设计:红外接收电路一般需要外部供电,因此需要设计一个合适的供电电路。

(完整版)红外遥控电路设计

(完整版)红外遥控电路设计

引言随着远程教育系统的不断发展和日趋完善,利用多媒体作为教学手段在各级各类学校都得到了广泛应用。

近年来,在多媒体教学系统的使用、开发和研制中,经常遇到同时使用多种设备,如:数字投影机、DVD 、VCD 、录像机、电视机等,由于各种设备都自带遥控器,而且不同的设备所遵循的红外传输规约也不尽相同,操纵这些设备得使用多种遥控器,给使用者带来了诸多不便。

本次毕业设计的主题就是红外遥控电路设计。

红外遥控的特点是利用红外线进行点对点通信的技术,不影响周边环境,不干扰其他电器设备。

室内近距离(小于10 米),信号无干扰、传输准确度高、体积小、功率低的特点,遥控中得到了广泛的应用。

通过基于单片机的控制指令来对多种设备进行远程控制,可以选择不同的按键来控制不同的设备。

从而方便快捷的实现远程控制。

常用的红外遥控系统一般分发射和接收两个部分。

发射部分的主要元件为红外发光二极管。

它实际上是一只特殊的发光二极管;由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。

红外发光二极管一般有黑色、深蓝、透明三种颜色。

判断红外发光二极管好坏的办法与判断普通二极管一样;用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。

红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉锯法来粗略判判定。

接收部分的红外接收管是一种光敏二极管。

在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。

红外发光二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率一般都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。

最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。

成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。

均有三只引脚,即电源正(VDD )、电源负(GND)和数据输出(VO 或OUT)。

电路原理初探——红外线发射与接收教案

电路原理初探——红外线发射与接收教案

电路原理初探——红外线发射与接收教案一、教学目标1.了解红外线的基本原理和应用范围;2.掌握红外线发射和接收电路的基本原理;3.实验设计和调试能力的培养。

二、教学重点和难点1.掌握红外线的基本原理和应用场合;2.掌握红外线发射和接收电路的基本原理和对应的电子元器件的参数选择;3.实验设计和调试能力的培养。

三、教学方法1.讲授法:讲解红外线的基本原理、发射器和接收器的工作原理和电路设计要点等;2.实验操作法:通过制作一套红外线的发射和接收的电路并进行实验,掌握具体的电路设计和调试要点;3.示范法:对电路制作和实验调试过程中需要注意的要点进行示范;4.讨论法:针对不同学生的问题进行讨论,帮助学生理解和把握重难点。

四、教学步骤1.红外线的基本原理第一节课将首先讲解红外线的基本原理。

红外线通常是指波长在0.75-1000微米之间的电磁波,因此不能被肉眼直接看到。

它主要是由热源向外发射,人体的辐射能量大约有50%以上集中在8-15毫米的波段,也就是我们所说的红外线区域。

红外线能够穿透一些透明物质,如水、玻璃、塑料等,但是它却被大多数不透明物质阻挡,所以在使用红外线技术时,需要考虑物体表面的透明度。

红外线广泛应用于遥控、空调、安防等方面。

2.红外线发射器的原理第二节课将讲解红外线发射器的原理。

红外线发射器是指通过电子元器件将电能转换为红外线辐射出去的器件。

常用的红外线发射器有两种:LED和半导体激光器。

在发射器中,LED是最为常见的发射器材料,这种器件具有结构 compact、广泛的功率输出范围、激发电压低和发射频率高等优点,其工作原理为:通过P型掺杂工艺形成p-n结,当加在p-n结上的电压将电子和空穴注入n型和p型半导体材料时,它们将交叉重组并释放出能量,从而产生电子激发态(excitation)或激子(exciton)。

当此时电子回到基态(ground state)时,所释放的能量以光的形式辐射出去,这样就形成了红外线。

红外遥控接收电路

红外遥控接收电路

接收数据 移位脉冲
SC9149A/SC9150A
标识 0.42ms
数据 "1" 0.84ms
标识
数据 "0"
校验脉冲
接收数据、移位脉冲和校验脉冲的状态如上图。移位脉冲由脉冲发生器根据接收信号的频率 和解码器的频率容差范围综合判断给出。
4、 用户码的比较
为了防止不同机型间的相互干扰,C1、C2和C3用来校验发射和接收的码是否吻合。 只有当两位码都吻合时,才会产生内部锁存电路驱动脉冲,以此脉冲来锁存接收到的数据和将 输出由低电平置成高电平。如果两位码不吻合,就不会产生内部锁存驱动脉冲,输出也就维持在低 电平。 根据接收电路的不同,用户码位的使用也就不同,见下表:
主要特点:
★ 可并行输出从遥控发射电路来的多重按键信号。 (SC9149A可并行输出5个功能,SC9150A可并行输 出6个功能)。
★ 可输出单脉冲(SP)、保持脉冲(HP)和循环脉冲 (CP)等信号。
★ 振荡电路的外接RC元件只用一个电路引脚。 ★ 有较强的接收码检查功能,以防止从其它电器设备来
的干扰。
循环码
CP1
18 0 0 1 0 0 0 0 0 1
循环码
CP2
C1~C3用户编码作为上述码位的补充。SC9150A能用所有的键,而SC9149A只能用键1#~5#
和键7#~11#以对应10条命令,SC9149AL/AHN 只能用键1#~5#,7#~9#和键17#,18#对应的10条命
令。
典型应用图例
单发键按下
12位
12位
单发码输出
锁存驱动脉冲
单脉冲输出
约107毫秒
在接受到两次12位的码数据,并校验正确后,输出单脉冲。输出由低电平到高电平,然后在107 毫秒之后回到低电平。

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用1.红外通信红外通信是利用950nm近红外波段的红外线作为传递信息的媒体,即通信通道。

发送端采用脉时调制(PPM)方式,将二进制数字信号调制成某一频率的脉冲序列,并驱动红外发射管以光脉冲的形式发送出去;接收端将接收到的光脉转换成电信号,经过放大、滤波等处理之后送给解调电路进行解调,还原为二进制数字信号后输出。

简而言之,红外通信的实质就是对二进制数字信号进行调制和解调,以便利用红外通道进行传输;红外通信接口就是针对红外信道的调制解调器。

2.红外传输协议红外发射系统发射的信号是有“0”和“1”的二进制代码组成的,不同的协议对“0”和“1”的编码不同。

红外信号的传输协议严格规定了红外信号的载波频率、编码方式和数据传输的格式,以确保发送端和接收端之间数据传输的准确无误。

常见的红外传输协议有:NEC协议,ITT协议,Nokia NRC 协议,Sharp协议等。

下面一NEC协议为例,了解一下各种协议的大同小异。

NEC 标准下的编码表示其中:引导码高电平约9000us 左右,低电平约4500us 左右;用户码16 位,数据码16 位,共32位;数据0 是用“高电平约560us +低电平约560us”表示。

数据1 可用“高电平约560us+低电平约1680us”表示。

*其实自己在做红外系统时,借助示波器,可以编写自己独特的红外协议。

但要尊守一点,要以38KHz的方波来驱动红外发射LED,同时要把这38KHz的波形斩断,也就是编码。

对应的接收管会在接收到38KHz的红外信号时输出低电平,没有信号就输出高电平。

3.HS0038简介:a)光电检测和前置放大器集成在同一封装上。

b)内带PCM频率滤波器。

c)对自然光有较强的抗干扰能力。

d)改进了对电场干扰的防护性。

e)低功耗。

f)输出电平兼容TTL,CMOS。

2).极限参数4.红外接受头工作方式:红外信号收发系统的典型电路如图1所示,红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。

红外光接收运放电路

红外光接收运放电路

红外光接收运放电路红外光接收运放电路是一种用于接收和放大红外光信号的电路,常用于红外遥控、红外通信等领域。

本文将详细介绍红外光接收运放电路的工作原理、设计要点以及应用案例。

一、工作原理红外光接收运放电路的工作原理基于红外光的特性。

红外光是指在电磁波谱中波长较长的光,其波长范围一般为700nm至1mm。

红外光可以被物体反射、透过或发射,因此可以用于传输信息。

红外光接收运放电路的核心部件是红外光接收器,它是一种特殊的半导体器件,能够感应、接收红外光信号并将其转换为电信号。

接收器通常由红外光敏电阻、红外滤光片和红外二极管等组成。

当红外光照射到红外二极管上时,红外二极管会产生电流,其电流大小与照射到二极管上的红外光强度成正比。

接下来,将红外二极管输出的微弱电流信号输入到运放电路中,通过运放电路的放大作用,可以将微弱的红外光电流信号放大到足够的幅度,以便后续的处理和解码。

二、设计要点设计红外光接收运放电路时,需要考虑以下几个要点:1. 选择合适的红外光接收器:不同的应用场景对红外光接收器的要求有所不同。

一般来说,要选择响应速度快、灵敏度高的红外光接收器。

2. 选择合适的运放电路:运放电路是将红外光接收器输出的微弱电流信号放大的关键。

常用的运放电路有差分放大电路、电流放大电路等。

根据具体应用需求选择合适的运放电路。

3. 电源稳定性:红外光接收运放电路对电源的稳定性要求较高,需要提供稳定的电源电压以保证电路的正常工作。

4. 抗干扰能力:红外光接收运放电路通常工作在复杂的环境中,需要具备一定的抗干扰能力,以减少外界信号对电路的影响。

三、应用案例红外光接收运放电路广泛应用于各种红外遥控设备和红外通信系统中。

以红外遥控器为例,当用户按下遥控器上的按键时,遥控器会发送一组特定的红外光信号。

这些红外光信号经过传输后,被红外光接收器接收并转换为电信号。

接着,红外光接收运放电路将电信号放大并进行解码,最终将解码后的信号传递给控制电路,实现对被控设备的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的主从红外通信系统的研究与设计2009-11-17 21:24出处:中华电子网作者:刘永春、王秀碧、陈彬【我要评论】[导读]发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。

接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。

本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。

1、引言
红外通信是目前比较常用的一种无线数据传输手段,其具有无污染、信息传输稳定、信息安全性高以及安装使用方便等优点,并且可以在很多场合应用,如家电产品,工业控制、娱乐设施等领域。

红外通信是利用950nm近红外波段的红外线作为传递信息的载体,通过红外光在空中的传播来传递信息,由红外发射器和接收器实现。

发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。

接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。

本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。

2、系统硬件电路设计
在主从式红外通信系统中,主机及从机的红外发射电路相同,红外线的载波频率都为38KHz,在同一时间内,可以是主机发射,从机接收;或者从机发射,主机接收。

2.1 红外发射电路设计
红外发射器电路主要由单片机,驱动管Q1和Q2、红外发射管D1等组成,电路如下:
红外发射器工作原理为:单片机通过I/O端口控制整个发射过程。

其中,红外载波信号采用频率为38KHz的方波,由PIC18F248的CCP模块的PWM功能实现,并由CCP1端口传输到三极管T2的基极。

待发送到数据由单片机的TX端口以串行方式送出并驱动三极管Q1,当TX为“0”时使Q1管导通,通过Q2管采用脉宽调制(PWM)方式调制成38KHz的载波信号,并由红外发射管D1以光脉冲的形式向外发送。

当TX为“1”时使Q1管截止,Q2管也截止,连接Q1和Q2的两个上拉电阻R1和R3把三极管的基极拉成高电平,分别保证两个三极管可靠截止,红外发射管D1不发射红外光。

因此通过待发送数据的“0”或“1”就可控制调制后两个脉冲串之间的时间间隔,即调制PWM的占空比。

比如若传送数据的波特率为1200bps,则每个数位“0”就对应32个载波脉冲调制信号。

红外发射管D1采用TSAL6200红外发射二极管,其实现将电信号转变成一定频率的红外光信号,它发射一种时断时续的高频红外脉冲信号,由于脉冲串时间长度是恒定的,根据脉冲串之间的间隔大小就可以确定传输的数据是“0”还是“1”。

2.2 红外接收电路设计
红外接收电路主要采用Vishay公司的专用红外接收模块HS0038B。

接收电路及
HS0038B内部结构如下:
接收电路工作原理为:当接收到载波频率为38KHz的脉冲调制信号时,首先,HS0038B 内的红外敏感元件将脉冲调制红外光信号转换成电信号,再由前置放大器和自动增益控制电路进行放大处理,然后通过带通滤波器进行滤波,滤波后的信号由解调电路进行解调,最后由输出电路进行反向放大并输出低电平;未接收到载波信号时,电路则输出高电平。

这样就可以将断断续续的红外光信号解调成一定周期的连续方波信号,并通过单片机的串口输入单片机,由单片机处理后便可以恢复出原始数据信号。

3、主从式红外通信软件设计
主从式红外通信中主机红外接收、发送电路与从机的电路完全相同,红外线的载波频率也相同。

在红外通信系统中,若采用不同载波频率来区分主机及从机之间的通信可以通过改善红外发射和接收电路的频率特性,但是这样会大大提高硬件成本,本系统通过配置适当的通信协议来降低硬件成本。

为了避免发射时造成对本机的干扰,系统采用异步半双工通信模式,在同一时间内可以是主机发送,从机接收;也可以是从机发射,主机接收。

主机及从机通信流程如下:
主机通信过程为:(1) 上电初始化,完成UART的工作模式、波特率的设置(系统波特率为2400bps);CCU模块PWM工作模式、PWM频率设定。

CCU模块工作在对称的、非反向的PWM模式,频率38KHz,占空比50%;(2) 等待数据发送控制信号到来;(3) 若接收到发送控制信号,则立即通过红外串行发送16字节数据;(4) 通过红外接口接收从机返回的16字节数据;(5) 比较接收到的16字节与发送到16字节数据,若一致则发送下一个数据,否则重发该数据。

从机通信过程为:(1) 上电初始化,完成UART的工作模式、波特率设置;CCU模块PWM 工作模式、PWM频率设定;(2) 通过红外接口从主机接收16字节数据;(3) 判断是否为重发数据,若是则覆盖前次接收到的数据。

主机和从机通信过程包括的函数主要有系统初始化函数UART_Init(),向串口发送数据函数UART_SendByte()、串口接收红外信号数据UART_RcvByte( )等。

部分函数程序代码如下:
4、结束语
红外通信可用于许多需短距离及非接触式传输数据的场合。

本文设计的主从式红外通信
接口具有硬件电路简单、成本低、通信可靠等特点,实现了主机及从机双方非接触式的数据传输。

适当修改通信软件就可以让系统用于红外抄表、遥控、遥测等许多场合。

原文出自【比特网】,转载请保留原文链接:/165/11036665.shtml。

相关文档
最新文档