函数的奇偶性课件PPT

合集下载

函数的奇偶性(课件PPT)

函数的奇偶性(课件PPT)

作业:
P39 : 1、2
5 5 f ( x ) ( x ) x f ( x) , 于原点对称,并且
所以函数是奇函数。
(4)函数的定义域为 (,0) (0,)关于原点
对称。对于函数定义域内的每一个
f ( x)
x ,都有
1 1 f ( x )所以函数是偶函数。 2 2 ( x) x
问题5:如何判断f(x)是奇函数? 1 形----函数图像关于原点对称(图像容易画出的
函数) 2 数----利用定义 (1)首先确定函数的定义域,并判断其定义域
是否关于原点对称
(2)确定f(x)与f(-x)的关系
(3)若f(-x)= -f(x),则f(x)是奇函数
问题6:你能举一些奇函数吗?
比如: f ( x ) x; f ( x ) 1 等等 x
问题5:请举出一些偶函数,为什么它是偶函数?
比如: f ( x ) x 2 1;f ( x ) 2 等等 2 x 11
练习:下列哪几个函数是偶函数?
(1) f ( x) 2 x
2
不是 不是 不是
(2) f ( x) x , x (1,2)
(3) f ( x ) x 2 (4) f ( x ) 3
问题4:如何判断一个函数是偶函数?
1 形----函数图像关于y轴对称(图像容易画出 的函数) 2 数----利用定义 (1)首先确定函数的定义域,并判断其定义域 是否关于原点对称 (2)确定 f ( x)与f ( x) 的关系 (3)若 f ( x) f ( x),则 f ( x )是偶函数
2
不是
奇函数和偶函数的比较:
函数 定义域 函数满足 的条件 图像特点 代表函数 奇函数 偶函数 函数的定义域关于原点对称

函数的奇偶性对称性周期性课件共19张PPT

函数的奇偶性对称性周期性课件共19张PPT

(2)已知 f (x) 是奇函数,且当 x 0 时,f (x) eax .若 f (ln 2) 8 ,则a ___-_3______.
(3)(2020·海南 8)若定义在 R 的奇函数 f(x)在(, 0) 单调递减,且 f(2)=0,则满足
xf (x 1) 0 的 x 的取值范围是( D )
A.13
B. 2
C.
13 2
D.123
专题三:函数的周期性
变式 5:(1)设定义在 R 上的函数 f x 满足 f x 2 f x ,若 f 1 2 ,则 f 99 _-_2__.
(2)(2022·湖北模拟)定义在 R 上的函数 f x 满足 f x 1 f x 2 ,则下列是周期函数的是 ( D )A. y f x x B. y f x x C. y f x 2x D. y f x 2x
叫做偶函数 一般地,设函数f(x)的定义域为I,如果∀x∈I, 奇函数 都有-x∈I,且_f_(-__x_)_=__-__f_(x_)_,那么函数f(x) 关于_原__点__对称 就叫做奇函数
复习回顾 2.周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且_f_(_x+__T__)=__f_(x_)_,那么函数y=f(x) 就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最_小___的正数, 那么这个_最__小__正__数__就叫做f(x)的最小正周期.
课堂小结
函数的性质
奇偶性
判断 求解析 求参数
对称性
轴对称: 中心对称:
周期性
求值 求解析 比较大小
祝同学们前程似锦!

函数的奇偶性ppt课件

 函数的奇偶性ppt课件

例4.1若函数f x ax21 bx 3x b是偶函数,定义域
a 1,2a,则实数a _3__,b _-_3_.
2已知函数f x x 1x a为奇函数,则实数a _-_1_.
x
例5.已知函数y=f(x) 在R上是奇函数,而且在 (0,+∞)上是增函数,判断y=f(x)在(-∞,0)的单调 性,并证明你的判断.
观察函数f(x)=x和f(x)=1/x的图像回答问题
(1)这两个函数图象有什么共同特征? (2)填函数值对应表
x f(x)=x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x
-3 -2 -1 1 2 3
f(x)=
1 x
13
1 2
-1
1
11 23
2.奇函数的概念
如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
练习:已知函数y=f(x)是偶函数,它在y 轴右边的图象如图,画出y=f(x)在 y轴左 边的图象.
解:
y
O
x
变式:若f(x)是奇函数呢?
例2. 判断下列函数的奇偶性
(1) y x2(2 x 3);
2 f x x3 2x
3 f x 2x4 3x2
4 f x x 2
(5)
f
x
x x
1, 1,
x x
0 0
注:奇、偶函数的定义域一定关于原点对称,
若函数的定义域不关于原点对称,则不具有奇偶性。
判断函数奇偶性的两种方法: (1)定义法:
(2)图象法:
利用函数的奇偶性求解析式
课堂篇 究学习
例3. 已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,

人教版函数的奇偶性-高中数学(共41张PPT)教育课件

人教版函数的奇偶性-高中数学(共41张PPT)教育课件

f(-x)= f(x) 函数f(x)叫作偶函数
图象关于 y轴 对称
f(-x)= -f(x) 函数f(x)叫作奇函数 图象关于 原点 对 称
3
知识点聚焦:
• 二、奇偶性
定义
如果函数f(x)是奇函数或是偶函数,那么就说函数 f(x)具有 奇偶性
图象特征 奇(偶)函数 图象关于原点或y轴对称
4
探究一 函数奇偶性的判断
∵f(x)是奇函数,

∴f(x)=-f(-x)=-[(-x)(1+x)]=x(1+x).
• 【答案】B
37
随堂训练
• 5.已知函数f(x)是定义域为R的奇函数且f(1)=-2,那么f(-1)+f(0)=( )

A.-2
B.0
C.1
D.2
38
解析:
• 【解析】函数f(x)是定义域为R的奇函数且f(1)=-2,

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。

函数的奇偶性课件(共14张PPT)

函数的奇偶性课件(共14张PPT)

y
则f (x) f (x) 2x
即2 f (x) 2x
2
即f (x) x
-2 o
2
x
故解集为:- 2,-1 0,1
-2
高中数学必修1同步辅导课程——函数的奇偶性
变式2:定义在R 上的函数 f (x), 对任意x, y R都有 f (x y) f (x) f ( y) 1, 且x 0时,f (x) 1, f (1) 2
f (x)单调递减,则f (1 m) f (m) 成立的 m 取值范围 是 ________。
高中数学必修1同步辅导课程——函数的奇偶性
例2:定义在 3,3 上的函数 f (x), g(x)分别为偶函数、
奇函数,图像如下,则不等式 f (x) 0的解集是:
g(x)
(_2_,_1_)__(_0_,1_) __(_2,_3_) 。
(1)求证:f (x)是R上的增函数; (2)解不等式: f (3x 1) 7; (3)求证:g(x) f (x) 1是奇函数。
高中数学必修1同步辅导课程——函数的奇偶性
课堂总结:
1:函数奇偶性的定义: “数”与“形”的特征
2:利用函数的奇偶性求值、求解析式
3:函数奇偶性与单调性的联系: “模拟图像”
题型三:奇偶性与单调性的联系:
例:已知函数 y f (x)(x 0)为奇函数,在 x 0,
上为单调增函数,且 f (1) 0 ,则不等式 f (2x 1) 0 解集为__________.
高中数学必修1同步辅导课程——函数的奇偶性
变式:定义在 2,2上的偶函数 f (x),当x 0 时,
高中数学必修1同步辅导课程——函数的奇偶性

《奇函数偶函数》课件

《奇函数偶函数》课件
偶函数在其定义域内可导 或不可导,但偶函数在y轴 两侧的导数符号相反。
奇函数和偶函数的性质
01
奇偶性是函数的固有属 性,不随函数图像的平 移、伸缩或翻转而改变 。
02
奇函数和偶函数的定义 域必须关于原点对称。
03
奇函数和偶函数的定义 域可以是全体实数、正 实数、非负实数等。
04
奇函数APTER 02
奇函数和偶函数的图像
奇函数的图像
奇函数的图像关于原点对称,即对于 任意点$P(x, y)$在奇函数上,关于原 点对称的点$P'(-x, -y)$也在该奇函数 上。
奇函数的图像在坐标轴上的交点数量 是偶数。
奇函数的图像可能出现在第一、三、 五或七象限,但不可能出现在第二、 四象限。
奇函数的图像
奇函数的图像关于原点对 称。
奇函数的性质
奇函数在其定义域内可导 或不可导,但奇函数在原 点的导数一定为0。
偶函数的定义
偶函数的定义
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
偶函数的图像
偶函数的图像关于y轴对称 。
偶函数的性质
数的性质和应用
06
思考题
总结词:拓展思维
总结词:培养创新能力
总结词:思考奇偶函数在 实际生活中的应用
总结词:激发探索精神
总结词:探究奇偶函数与 其他数学知识的联系
总结词:尝试设计一些有 趣的奇偶函数问题
THANKS FOR WATCHING
感谢您的观看
偶函数的图像
偶函数的图像关于y轴对称,即 对于任意点$P(x, y)$在偶函数上 ,关于y轴对称的点$P'( - x, y)$

1 第1课时 函数奇偶性的概念(共45张PPT)

1 第1课时 函数奇偶性的概念(共45张PPT)

【解】 (1)因为 x∈R, 所以-x∈R, 又因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-(|x+1|-|x-1|) =-f(x), 所以 f(x)为奇函数. (2)因为函数 f(x)的定义域为{-1,1}, 关于原点对称,且 f(x)=0, 所以 f(-x)=-f(x),f(-x)=f(x), 所以 f(x)既是奇函数又是偶函数.
解:(1)由题意作出函数图象如图所示:
(2)由图可知,单调递增区间为(-1,1). (3)由图可知,使 f(x)<0 的 x 的取值集合为(-2,0)∪(2,+∞).
巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性. (2)作出函数在[0,+∞)(或(-∞,0])上对应的图象. (3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的 函数图象. [注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称 点为(-x0,-y0),关于 y 轴的对称点为(-x0,y0).
C.坐标原点对称
D.直线 y=x 对称
解析:选 C.函数 f(x)=1x-x 是奇函数,其图象关于坐标原点对称.
3.(2020·武汉高一检测)函数 f(x)=x+x22+a+8 3为奇函数,则实数 a=
(
)
A.-1
B.1
C.-32
D.32
解析:选 C.由题得 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0,所以 a=
探究点 2 奇、偶函数的图象 已知函数 y=f(x)是定义在 R 上的偶函数,且当 x≤0 时,f(x)=x2+2x.
现已画出函数 f(x)在 y 轴左侧的图象,如图所示.
(1)请补出完整函数 y=f(x)的图象; (2)根据图象写出函数 y=f(x)的递增区间; (3)根据图象写出使 f(x)<0 的 x 的取值集合.

函数的奇偶性的性质PPT教学课件

函数的奇偶性的性质PPT教学课件

CH2—OH+ 3HO C R 催化剂 CH —O—C—R + 3H2O
加热
O
CH2—OH
CH2—O—C—R
2020/10/4
动物脂肪与植物油
2020/10/4
不同的油脂性质不同(R不同)
多数动物脂肪因饱和脂肪酸 甘油酯含量高在常温下呈固态
植物油因不饱和脂肪酸甘油 酯含量高而在常温下呈液态
油脂的生理功能
2020/10/4
水解 胃蛋白酶
氨基酸

多肽
肽键 人体蛋白质
3、氨基酸
(1)结构:
羧酸分子中烃基上的氢原子被氨基 ( NH2)取代的产物。
(2)通式:
2020/10/4
O R CH—C—OH
NH2
(3)常见氨基酸及其酸碱性
甘氨酸 (H2N—CH2—COOH) (中性)
谷氨酸(HOOC—CH2—CH—COOH)
吃哪类油脂更利于健康
富含不饱和高级脂肪酸的植物油 特别是:必需脂肪酸的植物油
必需脂肪酸(P27): 亚油酸 亚麻酸
花生四烯酸
2020/10/4
三、人必须吃含蛋白质的食物吗
1、蛋白质是构成人体的基础物质
人体内,肌肉、血液、内脏、神经、 毛发以及各种酶、抗体等都含有蛋白质。
2、蛋白质在人体内的转化
含有蛋白 质的食物
当x 0 时,f (x) x2 3x ,求 当x 0 时 f (x) 的解析式.
f (x) x2 3x(x 0)
例3、 设函数 f (x) 2x2 mx 3 ,
已知 f ( x 1) 是偶函数,求实数m的值.
例4、 已知f(x)是定义在R上的奇函数, 且对任意实数x都有 f (x 3) f ( x) 0 ,

函数的的奇偶性PPT教学课件

函数的的奇偶性PPT教学课件

又∵f(x)在(-1,1)上为减函数, ∴
1-a>a2-1 -1<1-a<1 -1<a2-1<1,解得0<a<1.
(2)因为函数g(x)在[-2,2]上是偶函数,则由g(1-m)<g(m),可得g(|1m|)<g(|m|),
又当x≥0时,g(x)为减函数,得到
|1-m|≤2 |m|≤2
1 解之得-1≤m< 2
(4)f(x)= 1 x2 x2 1
.
x
11
(1)x x 定1 1
(x)2 1 x2 x2
义 域 为
x1 x
得x2 1

3 )







A
=
{
学点二 由奇偶性求函数解析式 设f(x)是定义在R上的奇函数,当x>0时,f(x)= x2 +x+1,求 函数解析式. 【分析】由奇函数的图象关于原点对称,找x≥0和x<0时解析 式间的联系.
(2)如果一个函数的定义域关于原点不对称,那么这个 函数既不是奇函数,也不是偶函数.
(3)定义域关于原点对称,满足f(-x)=-f(x)=f(x)的函数, 既是奇函数,又是偶函数,如f(x)=0,x∈R.
判断下列函数的奇偶性:
1
1
(1)f(x)=x+ (3)f(x)=x+
xx
;
1
;
(2)f(x)=x2+ x2 ;
|1-m|>|m|,.
1.在函数的奇偶性中应注意什么问题?
(1)对于函数奇偶性的理解
①函数的奇偶性与单调性的差异:函数的奇偶性是相对于函数 的整个定义域来说的,这一点与函数的单调性不同.从这个意 义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是 函数的“整体”性质,只有对函数定义域内的每一个值x,都 有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇(或偶)函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并且f(x)是偶函数,g(x)是奇函数,试
将下图补充完整。
y
y
o
x
f(x)
o
x
g(x)
谷城县人民医院
欣赏下面的图片,你在生活中发现有什么地 方用到了今天的知识吗?
谷城县人民医院
欣赏下面的图片,你在生活中发现有什么地 方用到了今天的知识吗?
谷城县人民医院
欣赏下面的图片,你在生活中发现有什么地 方用到了今天的知识吗?
f(-1)=-1 =-f(1)
f(-x)=-f(x)
谷城县人民医院
奇函数:如果对于函数f(x)的定义域内 任意一个x,都有f(-x)=-f(x),那么函数 f(x)就叫做奇函数(odd function)。
6 y y=x
4 2
6y
4
y=
1 x
2
42 -2 -4 -6
2 4 6x
42 -2 -4 -6
谷城县人民医院
函数的奇偶性


1.教学目的 2.教学重点 3.教学难点 4.教学过程 5.教学小结
谷城县人民医院
教学目的:
谷城县人民医院
一、知识目标:
1、理解函数的奇偶性及其几何意义,掌握奇函数、偶函 数的定义,能利用定义判断一些简单函数的奇偶性。
2、了解奇、偶函数图像的对称性,能够根据函数的奇偶 性和一半函数的图像画出另一半函数的图像。
谷城县人民医院
观察图象,你能发现它们的共同特征吗?
6 4
y y=x
2
6y
4
y=
1 x
2
42 -2 -4 -6
2 4 6x
42 -2 -4 -6
2 4 6x
f(-3)=3=-f(3) f(-2)=2=-f(2) f(-1)=1=-f(1)
f(-3)=-
1 3
=-f(3)
f(-2)=-
1 2
=-f(2)
(1)f(x)=x4
(2)f(x)=x+
(3)f(x)=
1 x2
1 x
解:(3)对于函数f(x)=
1 x2
,其定义域为{x|x≠0}
因为定义域内的每一个x,都有:
f(-x)=
1 (-x)2
=
1 x2
=
f(x)
所以函数f(x)=
1 x2
是偶函数。
谷城县人民医院
已知f(x),g(x)是定义域为R的函数,
返回
课堂小结:
谷城县人民医院
如果定义域关于原点对称,且对定义域
内的任意一个x
偶函数
f(-x)=f(x)
图象关于y轴对称
奇函数
f(-x)=-f(x)
图象关于原点对称
返回
谷城县人民医院
f(-x)=f(x)
谷城县人民医院
对于函数f(x)的定义域内任意一个x,都有
f(-x)=f(x),那么函数f(x)就叫做偶函数(even
function)。
-3 -2 -1
y
5
4
3
y=x2+1
2
1
o1 2 3 x
0.20
y=
2 X2+11
0.10
-5 -4-3-2-1 o1 2 3 4 5 x
偶函数图象关于 y轴 对称,在定义域内都 有 f(-x)=f(x)。
(1)f(x)=x4
(2)f(x)=x+
(3)f(x)=
1 x2
1 x
解:(2)对于函数f(x)=x+
1 x
,其定义域为{x|x≠0}
因为定义域内的每一个x,都有:
f(-x)= (-x)+
1 (-x)
=
-(x+
1 x
)=
-f(x)
所以函数f(x)=x+
1 x
是奇函数。
谷城县人民医院
判断下列函数的奇偶性:
2 4 6x
奇函数图象关于 原点 对称,在定义域内都 有 f(-x)=-f(x) 。
谷城县人民医院
思考:
(1)f(x)=x在区间[-1,3]上是奇函数吗? (2)f(x)=x2在区间(-2,4)上是偶函数吗?
如果函数的定义域关于原点不对称,那么 它们在这个定义域内不具有奇偶性,这个函数 既不是奇函数也不是偶函数。
返回
知识回顾:
谷城县人民医院
1、我们已学过的函数的基本性质有哪些; 2、怎么判断或者证明函数的单调性; 3、什么是轴对称图形和中心对称图形。
谷城县人民医院
y y=x2
9
8
7
6
5
4
3
2
1
x
-3 -2 -1 0 1 2 3
从图象上你能发 现什么吗?
f(-3)=9 =f(3) f(-2)=4 =f(2) f(-1)=1 =f(1)
二、能力目标:
1、能根据奇函数、偶函数的定义判断简单函数的奇偶性。
2、通过具体函数,让学生经历奇源自数、偶函数定义的讨 论,体验数学概念的建立过程,培养其抽象的概括力。
返回
谷城县人民医院
教学重点:
奇函数和偶函数的定义及其判断 以及其图像特征
返回
教学难点:
奇偶函数概念的形成和 函数的奇偶性的判断
谷城县人民医院
谷城县人民医院
判断下列函数的奇偶性:
(1)f(x)=x4
(2)f(x)=x+
(3)f(x)=
1 x2
1 x
解:(1)函数f(x)=x4,其定义域为(-∞,+∞)
因为定义域内的每一个x,都有:
f(-x)= (-x)4= x4= f(x)
所以函数f(x)=x4是偶函数。
谷城县人民医院
判断下列函数的奇偶性:
相关文档
最新文档