第二章陀螺罗经误差
陀螺罗经的误差
第一类误差的消除
当罗经的等幅摆动周期等于一摆长为
地球半径的数学摆的摆动周期时,不产生 第一类冲击误差。
T 2
H
2
R e
84.4min
0
mglw
g
1
15/25
非周期过度的摆式罗经
❖第一类误差的消除
cos cos vsin K
0
Rw
ee
16/25
第二类冲击误差: ( BII)
S
陀螺罗经的误差
主讲 Ray 导航、制导与控制
目录
1
知识回顾
2 双转子摆式罗经的冲击误差
3
舒拉(Schuler)原理
4 舰船摇摆对陀螺球的指向的影响
5 双转子陀螺球消除摇摆误差的原理
2/25
知识回顾
❖ 自由陀螺仪的视运动
东
西 C
东
东 西
A西 东
B
地球自转
H西
w
东
PN
G
西
西D
东 F
东西 E 东 西
3/25
的控制设备上而引起的罗经的示度误差
21/25
舰船摇摆对陀螺球的指向的影响
❖与罗经的结构参数、罗经的安装位置、 船舶的摇摆姿态、地理纬度和船舶的摇 摆方向等参数有关。
mglh2 w2 4 sin 2K
a
0b
k
4g 2 Hw
1
22/25
双转子陀螺球消除摇摆误差的原理
由于双转子陀螺球绕主轴具有稳定性 减小了x轴偏转角 使摇摆力矩在垂直轴的分量近似为零 从而消除了摇摆误差
6/25
知识回顾 ❖1 下重式罗经的重力控制力矩(安许茨
罗经)
O H
《航海学》船舶定位课件2-6罗经差的测定
卫星定位校正可以通过与已知准确位 置的基准站进行比较,对卫星定位系 统进行校准。
04
CHAPTER
罗经差测定实例分析
磁罗经测定实例
磁罗经是一种利用地球磁场来指示方向的仪器,常用于船 舶导航。在测定罗经差时,磁罗经可以用来测量船舶的磁 航向,并与真航向进行比较,从而计算出罗经差。
磁罗经测定的优点是简单易行,不需要外部参照物,但缺 点是受地球磁场变化和船舶磁性干扰影响较大,精度相对 较低。
陀螺罗经法具有精度高、稳定性好、 不易受磁场干扰等优点,但成本较高 ,且需要定期维护和校准。
陆标法
陆标法是一种利用陆地标志物来测定罗经差的方法,通过观察陆地标志物相对于 磁北的位置变化来计算罗经差。
陆标法需要选择合适的陆地标志物,并注意观察时的气象条件和海况等因素对观 测结果的影响。
卫星定位法
卫星定位法是一种利用全球定位系统(GPS)来测定罗经差 的方法,通过接收GPS信号并利用相关算法计算出船舶的精 确位置和航向。
02
磁罗经是指利用地磁场的磁力来 指示方向的罗经,而陀螺罗经则 是利用陀螺仪来指示方向的罗经 。
罗经差产生的原因
地球自转
地球自转导致地磁场和陀螺仪的旋转 轴产生相对位移,从而产生罗经差。
地球磁场
地球磁场是一个复杂的磁场,其强度 和方向在不同地点和时间都存在变化 ,因此会对磁罗经和陀螺罗经的指示 产生影响,导致罗经差的出现。
磁罗经校正需要使用专业的校 正工具和设备,如磁力计和罗 盘校准器。
陀螺罗经校正
陀螺罗经是一种不受船舶摇摆影响的导航设备,但其也存在误差,需要进行校正。
陀螺罗经的校正包括静态校正和动态校正,静态校正是在船舶静止状态下进行,动 态校正则是在船舶运动中进行。
第二章 陀螺罗经误差及其消除
第一章 陀螺罗经误差及其消除陀螺罗经的主轴在方位上偏离地理真北方向的角度称为陀螺罗经误差。
陀螺罗经误差也是船舶真航向与陀螺罗经航向之间的差值或真北与陀螺罗经北之间的差角。
陀螺罗经误差有纬度误差、速度误差、冲击误差、摇摆误差和基线误差。
第一节 纬度误差 (latitude error)一. 纬度误差产生的原因在第一章讨论具有阻尼重物的液体连通器单转子式陀螺罗经时指出,在北纬φ处的静止基座上稳定位置为⎪⎩⎪⎨⎧-=-=M H tg M M r D r 2ωθϕα (2-1) 由(2-1)式可见,位于北纬φ处的具有阻尼重物的水银器式罗经,稳定后罗经主轴并不恰好位于子午面内,而是偏离子午面一个角度αr ,当罗经的结构参数M 、M D 确定后, αr 角仅与地理纬度φ有关,故称为纬度误差。
以具有阻尼重物的液体连通器式罗经为例,分析纬度误差产生的原因消除方法。
当罗经稳定后,罗经主轴指北端自水平面升高θr 角,产生沿水平轴OY 负向的控制力矩M Y =-Mθr ,使主轴产生绕垂直轴OZ 正向的主进动角速度ωPZ ,主轴指北端向西主进动的线速度u 2= Mθr ,与位于北纬φ处因地球自转角速度垂直分量ω2的影响,使主轴指北端东偏的线速度V 2=Hω2等值反向,亦即u 2=V 2。
于是,罗经主轴相对于子午面获得稳定。
由于罗经主轴指北端自水平面升高θr 角,阻尼重物则产生与θr 角成正比的阻尼力矩M D θr 沿垂直轴OZ 作用,指OZ 轴的正向。
因此,阻尼力矩M Z 将引起罗经主轴绕水平轴OY 的阻尼进动角速度ωPY =M D θr /H ,亦即主轴指北端以阻尼进动线速度u 3= M D θr 向下运动,罗经主轴不能在子午面内r 点稳定。
欲使罗经主轴获得相对于水平面的稳定。
只有借助于主轴相对于水平面的升降视运动的线速度V 1=Hω2α与阻尼进动线速度u 3的平衡。
为此,主轴指北端只有自子午面向东偏离适当的方位角αr ,并满足条件:⎩⎨⎧==r D r M H u V θαω131 (2-2) 即阻尼力矩M D θr 使主轴指北端向下进动的线速度u 3与视运动线速度V 1等值反向。
陀螺罗经指北原理
Z
N
S
N ZS
X
H
X
q
O
O H
PN
3)电磁摆控制力矩(阿玛-勃朗罗经)
? 电磁控制式罗经是利用电磁摆和水平 力矩器、垂直力矩所组成的电磁控制装 置将北
? 通过在陀螺球(仪)水平轴或垂直轴上加上 阻尼力矩,使陀螺仪主轴稳定指北。
? 1.安许茨罗经采用水平轴直接阻尼法 ? 2.斯伯利罗经采用垂直轴直接阻尼法 ? 3.阿玛-勃朗采用垂直轴间接阻尼法
2)自由陀螺仪主轴垂直于水平面放置(主轴与 地轴重合),地球自转一周,则陀螺仪主轴相 对于宇宙空间指向不变,相对地球子午面方位 不变。(如图B)
? 图B
6h
0h
地球自转
w
PN
18h
12h
? 图B
东
西
PN
位于北纬的视运动
? 自由陀螺仪主轴水平放置在北纬y 处(空间 A1 ),并南北指向(主轴相对子午面和水平面 平行)。地球绕地轴自转一段时间后,陀螺仪 随地球转至空间A2点,则陀螺仪主轴相对于宇 宙空间指向不变,但陀螺仪主轴a端相对于子午 面向东偏离方位角a, 主轴b端相对于子午面向 西偏离方位角a 。陀螺仪主轴a端相对于水平面 向上升高角q,主轴b端相对于水平面向下下降角 q (如图A)
(北纬指北偏上;南纬指北偏下)
4 .电控罗经采用的内补偿法施加的补偿力矩作用在什 么轴上?(垂直轴 OZ 上);稳定位置是什么?(水 平指北)。
5.什么叫速度误差?速度误差产生的原因是什么?
6 .速度误差的表达式是什么?
a rv
=
V cos C
Rewe cos ?
四、速度误差的数学表达式及速度误差的特性
第二章 陀螺罗经误差及其消除
航海仪器课件:陀螺罗经误差及消除
图2-3
三.速度误差的物理实质
航速的北向分量
主轴向西偏离一个 方位角
船舶所在的水平面 的北半部向下偏转
陀螺仪主轴产生 向上的视运动
注:本例为北半球航行 船舶且具有北向分速 度时的情况
四.大小及特性
在上图中根据V1=V3,有
V cosC
(1
VE Re
) rv
VN Re
rv
Re
1
V
sin Re
C
BZ rv
图2-7
3.船舶机动终了时,主轴的进动超过了r2而抵达1处
BZ rv
图2-8
上述第二、三种情况,船舶机动终了主轴不恰好在新稳定位置 上,但此时液体阻尼器处于工作状态将使其作减幅摆动,在较 长时间内具有误差,此误差称第一类冲击误差。
舒拉条件:不产生第一类冲击误差的条件
T0 2
H 2 M1
在惯性力作用下,主轴进动角位移
VN V cosC 称为北速度变化量 △VN为正时,BZ为正,向西进动,新在旧之西。 △VN为负时,BZ为负,向东进动,新在旧之东。
冲击位移与速度误差之差的比较有三种情况
1.当船舶机动终了时,主轴正好进动到新的稳定位置r2
BZ rv
图2-6
2.当船舶机动终了时,尚未由r1转向r2,落后于r2位于1的位置
第二章 误差及消除
陀螺罗经的主轴在方位上偏离地理
真北方向的角度称为陀螺罗经误差。陀
螺罗经误差也是船舶真航向与陀螺罗经
航向之间的差值或真北与陀螺罗经北之
间的差角。
陀螺罗经
误差分两类:
1、原理误差:
纬度误差、速度误差、 冲击误差、摇
摆误差
2、安装误差:基
线误差。
航海仪器教学课件——陀螺罗经指北原理1-2
n 两千多年前,我国劳动人民在生活和生产实践中发现了陀螺 的基本特性。
n 1852年,法国科学家福科第一个利用陀螺特性并与地球自转 相联系,它利用三自由度陀螺仪的定轴性来观测地球自转; 并提出了创见性的理论。
n 1878年,美国科学家霍布金发明了用电机推动的陀螺罗经。 n 1908年,德国人安许茨创造了世界上第一台实用陀螺罗经。
4
第一章
Edited by Foxit PDF Editor
陀螺罗经指北原理 Copyright (c) by Foxit Software Company, 2004 - 2007 For Evaluation Only.
n §1-1 n §1-2 n §1-3 n §1-4 n §1-5 n §1-6 n §1-7 n §1-8 n §19
第一篇 航海陀螺罗经
2008版
浙江省精品课程 宁大海运学院
3
Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 - 2007 For Evaluation Only.
主要内容
n 第一章 陀螺罗经指北原理 n 第二章 陀螺罗经误差及其消除 n 第三章 安许茨系列陀螺罗经 n 第四章 斯伯利系列陀螺罗经 n 第五章 阿玛勃朗系列陀螺罗经
n 动量矩:
n H == J × W
n 动量矩与角速度两者方向相同, n 在数值上相差一个J
2008版
浙江省精品课程 宁大海运学院
13
四、刚体的动量矩定理
n 刚体对某一点的动量矩对时间的导数等于作用 在刚体上所有外力对于同一点的总力矩。
n 又有
n d H / d t == M M
第二章 陀螺罗经误差及其消除
速度误差 α
=VcosC/(Reω ecosφ ) 校正方法: 1)查表法 2)外补偿法 3)内补偿法
,船舶的机 动惯性力作用于罗经,使罗经主轴在船舶 机动过程中和机动终了后的一段时间内偏 离其稳定位置而产生的指向误差。 第一类冲击误差:误差惯性力作用在陀螺 罗经重力控制设备上而产生的冲击误差。 第二类冲击误差:惯性力作用在阻尼设备 上而产生的冲击误差。
4.摇摆误差
船舶在海上航行受风浪的影响而产生摇 摆,安装在船上的陀螺罗经就会受船舶 摇摆产生的惯性力的影响而产生指向误 差。
安许茨系列陀螺罗经将灵敏部分制成双 转子陀螺球 。 斯伯利系列罗经采用在液体连通器内充 入高粘度液体 。 阿玛勃朗系列电控罗经把电磁摆密封 在盛有高粘度硅油的金属容器内。
电罗经组成结构
1.安许茨4型陀螺罗经 德国生产,是安许茨系列罗经的典型型 号。 下重式、水平轴阻尼的双转子摆式罗经 (two-gyro of pendulous gyrocompass)。 具有结构比较简单、使用寿命长、指向 稳定等优点。
安许茨4型罗经主要技术参数 指向精度(直航): ≤±1° 三相交流电:110V/330Hz(±3%) 单相交流电:50V/ 50Hz或60V/60Hz (±10%) 启动电流: 约3.5A
适用航速为0 ~60kn; 快速启动时,若陀螺球主轴偏北小于 10,约40min可稳定指北(误差小于 0.5)。 一般启动时间不超过6h; 陀螺球寿命约40000h; 最多可以带20个分罗经。
主要技术数据 直航时指向误差小于0.5; 工作电源为115V/400Hz的三相交流电和 70V(或35V)的直流电; 主罗经正常工作环境温度5C ~45C 范围内; 适用航速为0 ~40 kn;
罗经差的测定
低高度太阳法——计算举例 低高度太阳法 计算举例
例1.1995年11月4日ZT1612船位:ϕC27°15′.0N,λc122°10′.5E, 测得太阳 罗方位CB248°,求罗经差。 解:ZT 16 12 4/XI tT 304°06′.4 +1′.0 δT 15°15′.5S +0′.8 ∆t1 2 59.8 ZD -8 ∆δ TG 08 12 4/XI ∆t2 0.2 0.2 δ 15°15′.7S tG 307 06.4 ϕC 27°15′.0N 122 10.5E t 429 16.9 69°16′.9
•《航海天文历》 + 《航海天文历》 •《太阳方位表》 《太阳方位表》 •《航海天文历》 + 《B105表》 《航海天文历》 B105表 《太阳方位表》分上下册; 太阳方位表》分上下册; 上册为(Daris’s戴氏表 戴氏表) 上册为(Daris’s戴氏表) 下册为(Burdwood’s戴氏表 戴氏表) 下册为(Burdwood’s戴氏表) 函数计算器
低高度太阳法——计算规则 低高度太阳法——计算规则 ——
纬度不分南北,均为‘ 纬度不分南北,均为‘+’, 天体赤纬与纬度同名, 否则取‘ 天体赤纬与纬度同名,取‘+’;否则取‘-’ 天体地方时角为半圆时角,恒取+ 天体地方时角为半圆时角,恒取+ 计算所得天体方位为半圆方位, 计算所得天体方位为半圆方位,第一名称与测者纬度 同名,第二名称上午观测为E,下午观测为W E,下午观测为 同名,第二名称上午观测为E,下午观测为W
∆C = TB 差—
计算器计算太阳真出没方位公式:
sin δ cos A = cos ϕ
观测太阳真出没求罗经差 优点:不需要计时,计算简单 缺点:受时间限制
第二章陀螺罗经误差及其消除.
W
E
arv
•因此而产生了一个方位偏 差—速度误差(arv)。
三、速度误差的数学表达式及速度误差的特性
根据V3=V1有: H V CosC/Re = H 1 arv 则:arv=VCosC/Re eCos V3 V3 u3 u2 r V2 u2 r V2 V1 u3 E W
VcosC α rv R e ωe cos
V2
α
E
求得: αr =-MD/M× tan
北纬
四、纬度误差的性质
αr Φ =-MD/M tgΦ
1.采用垂直轴阻尼法的罗经所具有的误差。
2.北纬偏东误差,南纬偏西误差。 3.误差大小随纬度的增大而增大。
(W) (E) r
方位误差
α
南纬
N
五、纬度误差的消除
1.外补偿法:转动罗经基线或刻度盘,使基 线与转动的角度等于误差值, 或罗经刻度盘使其转动的角度 与纬度误差等值反向。 2.内补偿法:对罗经施加补偿力矩,使主
二、单转子摇摆误差的特性:
•与罗经的结构参数、罗经的安装位置、船舶的摇 摆姿态、地理纬度和船舶的摇摆方向等参数有关。
•在象限航向上航行且横摇时,摇摆误差最大。
三、摇摆误差的消除:
下重式(安许茨)罗经: 采用双转子。
液体连通器(斯伯利) 罗经:调整液体的流动周 期。
四、基线误差:
• 因陀螺罗经的基线安装与船首尾线不平 行所引起的读数误差。 •特性:为固定误差,与罗经本身无关。 基线偏左舷,罗方位<真方位,东误差; 基线偏右舷,罗方位>真方位,西误差。
理坐标系各坐标轴上的分量; •设船偏北航行,航速V、
V
N
VN
C O
航向C。 船速V在子午圈和纬度 圈的切线上的分量: VN=VCosC(北分量) VE=V SinC(东分量)
第二节 陀螺罗经
(2)斯伯利系列罗经获得控制力矩的方式
在陀螺仪主轴两端,加装液体连通器(liquid communicating vessel)的直接控制法获得控制力矩。
控制力矩的产生的方式:
图2-1-24
液体连通器:斯伯利系列罗经产生控制力矩的设备是在陀螺仪主轴两端加装液体容器,内充一定液体,液体可在两个容器之间流动。
阻尼设备(damper))(阻尼器):陀螺罗经产生阻尼力矩的设备(器件)。
阻尼方式(damping mode):陀螺罗经将阻尼力矩施加在陀螺仪(球)的哪一轴上
陀螺罗经的阻尼方式:水平轴阻尼方式(damping mode of horizotal axis)和垂直轴阻尼方式(damping dode of vertical axis)。
按力矩的产生方式不同:三大系列罗经的三种主要方式。
(1)安许茨系列罗经获得控制力矩的方式
将陀螺球重心下移的直接控制法获得控制力矩。
控制设备(controlling device):陀螺罗经产生控制力矩的设备(器件)。
陀螺球(gyrosphere):安许茨系列罗经是将双转子陀螺仪固定和密封在金属球内。
控制力矩(controlling moment)(用My表示):为了克服由于地球自转角速度的垂直分量2使自由陀螺仪主轴相对子午面的视运动,向陀螺仪施加的外力矩;
控制力矩必须作用于陀螺仪的水平轴。
3)陀螺罗经获得控制力矩的方式
按力矩的产生原理不同:直接产生法和间接产生法;
按力矩的性质不同:重力控制力矩和电磁控制力矩;
My=mgsin·a
≈mg 制力矩的大小与罗经结构参数和主轴高度角有关
罗经误差
○3 接下来就根据正确的天体格林时角 GHA 和天体赤纬 Dec 算出正确的天体地方 时角 LHA 和天体赤纬 Dec。
○4 因为纬度为 13-05.9N,所以根据算出来的正确的天体地方时角 LHA 和天体赤 纬 Dec 在 0°-15°的《SIGHT REDUCTION TABLE FOR MARINE NAVIGATION》书中 查找 LHA 和 Dec 相邻对应的 Z。
或
△G + GB = TB
TC – MC = △C
TB – MB = △C
又由于测磁罗经方位也得前往罗经甲板,所以实际情况是不能使用第二个公式的,
但是驾驶台有一个“HANDLE WITH CARE”,可以很方便的直接看到当前的 MC,所
以用第一个公式就很方便合理了。
测电罗经差
A. 利用陆标(叠标)测定电罗经差
3. 电罗经差△G 即为 Z(TB)-GB。 如何正确观测低高度太阳方位 ○1 首先观测时太阳要是低高度的(h<30°)。 ○2 方位圈要放水平,即可以看到两滴水珠位于中央。 ○3 读数要准确。
如何求取太阳计算方位 Z ○1 首先根据记录的观测时间在《航海天文历》中查出对应的天体格林时角 GHA 和 天体赤纬 Dec,然后由此算出正确的天体地方时角 LHA 和正确的天体赤纬 Dec。 ○2 由计算出来的天体地方时角 LHA 和天体赤纬 Dec 在《SIGHT REDUCTION TABLE FOR MARINE NAVIGATION》书中查出 Z,再根据内差算出正确的 Z。 例: UTC 23-Jun-2018,04:13:07 我利用早上升起的太阳进行了一次电罗经差的测定。 ○1 首先获取基本信息:
02陀螺罗经误差
② 基线误差校正 调整陀螺罗经的基线。 误差较大时,需转动罗经底座; 误差较小时,调整基线支架。
思考问题
1. 基本概念 纬度、速度、冲击、摇摆误差;固定(基线)误差 查表法、外补偿法、内补偿法 第一类冲击误差、第二类冲击误差 设计纬度;基线;舒拉条件 2. 陀螺罗经原理误差有哪些?各自产生原因及特点。 如何消除? 3. 陀螺罗经速度、纬度误差计算公式。 4. 采用内补偿法校正速度、纬度误差后罗经主轴稳定位置。 5. 陀螺罗经固定误差产生的原因及其测定和校正。
2. 第二类冲击误差 作用于阻尼设备上的惯性力产生的惯性力矩使罗经 产生的冲击误差称为第二类冲击误差。 经分析,摆式罗经第二类冲击误差BⅡ特点: ① 当船舶所在纬度低于设计纬度时(ϕ <ϕ 0), 第二类冲击误差和第一类冲击误差的符号相反; ② 当船舶所在纬度高于设计纬度时(ϕ >ϕ 0 ), 第二类冲击误差和第一类冲击误差的符号相同。 船舶机动时,总的冲击误差B = BⅠ+ BⅡ, ① 当ϕ <ϕ 0,BⅠ与BⅡ符号相反,总的冲击误差B 减小; ② 当ϕ >ϕ 0 ,BⅠ与BⅡ符号相同,总的冲击误差B 增大。 所以在船舶机动时,应关闭阻尼器。
电磁控制式罗经冲击误差规律: 在具有相同的机动条件下,基本不随纬度变化。 北向加速度产生西误差,南向加速度产生东误差; 附加阻尼力矩总是有减小冲击误差的趋势, 最大值发生在机动终了时。 二、误差处理 通常在船舶机动终了时冲击误差最大,然后罗经主轴围绕 新的稳定位置做周期性的减幅摆动,最后抵达新的稳定位 置。一般说来,冲击误差在船舶机动终了后约 1小时左右 即可消失,所以冲击误差一般不作处理,驾驶员在机动过 程和机动终了后1小时内读取罗经航向时应考虑此误差。
ΔVN = ΔV⋅cosC 是机动后船速与机动前船速的差值在南北向的分量。
电罗经
第二节陀螺罗经概述1.发展法国物理学家列昂.福科(Leon Foucault) 1852年提出的陀螺指向理论;现代船舶上普遍使用的陀螺罗经于本世纪初研制成功的船舶指向仪器。
1908年德国生产出了安许茨型陀螺罗经(ANSCHÜTZ gyrocompass);1911年美国生产出了斯伯利型陀螺罗经(SPERRY gyrocompass);1916年英国生产出了勃朗型陀螺罗经(BROWN gyrocompass)。
2.分类近百年,生产出了近百种型号的陀螺罗经,主要分为三大系列或两大类型。
按照结构特点和工作原理分为三大系列:即安许茨系列;斯伯利系列;阿玛-勃朗系列。
按照灵敏部分转子个数分为两大类型:即单转子陀螺罗经和双转子陀螺罗经。
按照控制力矩的性质分为两大类型:机械摆式陀螺罗经和电磁控制式陀螺罗经。
按照阻尼方式分两大类型:水平轴阻尼陀螺罗经和垂直轴阻尼陀螺罗经。
3.与磁罗经相比较,陀螺罗经的主要优缺点主要优点:指向精度高;多个复示器,有利于船舶自动化;不受磁干扰影响,指向误差小;安装位置不受限制等。
主要缺点:必须有电源才能工作(可靠性较差);工作原理、结构复杂。
4.发展趋势体积小型化;广泛采用先进技术;提高指向可靠性和使用寿命;简化维护保养。
一、陀螺罗经指北原理1.自由陀螺仪及其特性1)自由陀螺仪(free gyroscope)定义陀螺仪从广义讲就是一种能绕定点高速旋转的对称刚体。
实用陀螺仪是高速旋转的对称刚体及其悬挂装置的总称。
按其悬挂装置不同分为单自由度陀螺仪(single-degree of freedom gyro.)、二自由度陀螺仪(two-degree of freedom gyro.)和三自由度陀螺仪(three-degree of freedom gyro.)。
平衡陀螺仪(balanced gyroscope):若陀螺仪的重心(G)与中心(O)重合。
自由陀螺仪:重心(G)与中心(O)重合,不受任何外力矩作用的三自由度平衡陀螺仪。
陀螺罗经误差及消除
2.外补偿法
转动罗经基线或刻度盘
3.内补偿法
施加垂直轴补偿力矩,产生V1`以抵消V3
冲击误差
一.定义 船舶作机动航行时因为作机动航行旳加速度引起 旳惯性力作用于陀螺罗经上而使主轴偏离其稳定 位置所产生旳误差B。 二.冲击误差旳分类 第一类冲击误差:惯性力作用于控制设备上(BI) 第二类冲击误差:惯性力作用于阻尼设备上 (BII)
Re 84.4 min g
或: φ=φ0 (罗经旳设计纬度)
结论: 当摆式罗经旳等幅摆动周期等于84.4分钟时,
在船舶机动连续时间内罗经主轴将由旧旳稳定位置非 周期地过渡到新旳稳定位置而不产生第一类冲击误差
第一类冲击误差旳特点及补偿法
1.发生在机动终了时刻
2.当 0时B 0
3.当 0时B 0 约1小时左右自动消失
1
V
sin Re
C
V cos C
Ree cos V sin C
rv
V cos C
Ree cos
V cos C 57.3 V cos C
900 cos
5 cos
(度)
速度误差旳特点
1.任何罗经均会产生速度误差。仅取决于航速(V)、 航向(C)、和地理纬度( ),与罗经构造参数无 关。 2.随船速(V) 、纬度( )旳增大而本原因
二.纬度误差旳大小与方向:
由:V1=u3 , V2=u2
有:H1 αr=-MDθr
H 2=-M θr
求得: αr =-MD/M tg
•误差大小与罗经旳构造参数有关,且 随纬度旳增大而增大。 •北纬偏东误差,南纬偏西误差。 •采用短轴阻尼法旳罗经才有旳误差
陀螺罗经误差及消除
转动罗经基线或刻度盘
3.内补偿法
施加垂直轴补偿力矩,产生V1`以抵消V3
冲击误差
一.定义
船舶作机动航行时由于作机动航行的加速度引起 的惯性力作用于陀螺罗经上而使主轴偏离其稳定 位置所产生的误差B。 二.冲击误差的分类 第一类冲击误差:惯性力作用于控制设备上(BI )
第二类冲击误差:惯性力作用于阻尼设备上( BII)
H 2=-M θr
求得: αr =-MD/M tg
•误差大小与罗经的结构参数有关,且 随纬度的增大而增大。 •北纬偏东误差,南纬偏西误差。 •采用短轴阻尼法的罗经才有的误差
三.补偿法
•外补偿法:转动罗经基线或刻度盘 •内补偿法:对罗经施加补偿力矩, 使主轴返回子午面 •两种方法下主轴稳定位置的区别?
三、摇摆误差的消除:
➢下重式(安许茨)罗经:采用双转子。
➢液体连通器(斯伯利)罗经:采用高粘性的硅油 。
➢电控式罗经:采用在强阻尼电磁摆内设置高粘性 硅油。
➢总的消除原则:增长陀螺球的摇摆周期
一.定义:
基线误差
罗经的基线与船舶首尾线不平行引起的读数 误差。包括主罗经基线误差、分罗经基线误 差和传向误差。
1.发生在机动终了时刻
2.当
3.当
约1小时左右自动消失
的变化规律是:往北加速时,当航行纬度小于 设计纬度时为西误差;大于设计纬度时为东误 差;往南加速时情况与之相反。
一般不设校正装置
第二类冲击误差
1.定义:(强调是惯性力作用于陀螺罗经的阻尼设 备上引起的)
2.特点:
(1) 在机动终了后四分之一阻尼周期达最大值, 约1小时后自动消失。
(2)对摆式罗经而言, 与纬度无关,往北加速时 为东差;往南加速时为西差
航海仪器理论课程总结
陀螺罗经总结一、陀螺罗经基本工作原理:平衡陀螺仪:重心与几何中心重合的陀螺仪 自由陀螺仪:不受任何外力矩作用的平衡陀螺仪定轴性:在不受外力矩作用时,自由陀螺仪主轴保持它的空间的初始方向不变。
进动性:在外力矩作用下,陀螺仪主轴的动量矩H 矢端以捷径趋向外力矩M Y 矢端,作进动运动或称旋进。
注意区分“外力F 方向”与“外力矩M Y 方向”不在一个方向上。
用三个右手定则判断进动方向和进动角速度方向:1、四指弯曲为陀螺转动方向,大拇指指向动量矩H 方向,2、四指伸开动量矩H 穿过掌心,四指指向外力F 的方向,大拇指指向外力矩M Y 方向(进动方向),3、四指弯曲为陀螺进动方向(外力矩M Y 方向),大拇指指向进动角速度ωP 方向。
动量矩H 大小与外力矩M Y 、进动角速度ωP 之间关系:ωP =HM , 方位角:西正东负。
高度角:上负下正。
地球自转角速度的垂直分量ω2是影响自由陀螺仪不能指北的主要矛盾。
陀螺仪在地球上的视运动规律:“北纬东偏、南纬西偏、东升西降、全球一样” 要使自由陀螺仪能够稳定指北,必须对其施加控制力矩和阻尼力矩。
产生控制力矩、阻尼力矩方法:1、控制力矩:下重式,重心下移,阻尼力矩:液体阻尼器(安许茨系列)2、控制力矩:上重式,液体连通器,阻尼力矩:陀螺球西侧配重(斯伯利系列)3、控制力矩:电磁控制式,阻尼力矩:电磁控制式(阿玛—勃朗系列)在控制力矩作用下陀螺罗经产生等幅摆动,其周期T 0与罗经结构参数H 、M 及船舶所在地理纬度φ有关,与主轴起始位置无关,当罗经结构参数H 、M 确定后, 等幅摆动周期T 0随纬度φ增高而增大。
舒拉周期:为了消除摆式罗经的第一类冲击误差,在罗经设计纬度φ0上,使T 0=84.4min,此时的T 0称之为舒拉周期。
在阻尼力矩作用下陀螺罗经产生减幅摆动,分为:1、水平轴阻尼法(液体阻尼器,如安许茨),稳定位置在北半球指北偏上,南半球指北偏下;2、垂直轴阻尼法(西侧加重物、如斯伯利,电磁控制、如阿玛—勃朗),稳定位置在北半球偏东偏上,南半球偏西偏下。
航海仪器课程教学大纲-海上专业试验教学中心-集美大学
中文:航海仪器课程名称英文:Navigation Apparatus课程编号 1105300 学分/学时 3.5/60所属教研室航海教研室先修课程 高等数学、大学物理、理论力学、电路与电机、无线电技术等课程类型 专业课 考核方式 考试开课专业 航海技术专业教学目的和要求目的:本课程是航海技术专业的一门主干专业课。
其目的是使学生掌握正确使用航海仪器应具备的基本知识和技能,并通过国家海事局要求的《航海仪器的正确使用》评估项目和《航海学》考试。
要求:1、理解陀螺罗经和磁罗经的指北原理及其结构组成,掌握测定和校正仪器误差的方法,熟练掌握仪器的正确使用方法与保养工作。
2、掌握测深仪和计程仪的基本原理、正确使用方法与维护保养工作。
3、掌握罗兰C系统、GPS/DGPS卫星导航系统的组成、定位原理和定位精度,熟练掌握GPS 卫导仪和罗兰C接收机的正确使用方法。
4、掌握AIS系统的功能、组成与特点,并能正确使用AIS收发机。
5、了解VDR和组合导航系统的主要功能与特点等。
教学内容和基本要求(分章节)绪论第一章 陀螺罗经的指北原理第一节 陀螺仪及其特性第二节 陀螺仪在地球上的视运动第三节 变自由陀螺仪为陀螺罗经的方法第四节 摆式罗经的等幅摆动和减幅摆动第五节 电磁控制式罗经原理第六节 光纤陀螺罗经定向原理基本要求:正确理解陀螺罗经的指北原理。
本章重点:陀螺罗经的指北原理。
本章难点:陀螺罗经的指北原理。
教学内容及基本要求(分章节)第二章 陀螺罗经误差及其消除第一节 纬度误差第二节 速度误差第三节 冲击误差第四节 其它误差基本要求:掌握陀螺罗经的各种误差的定义、特点及其校正方法。
本章重点:陀螺罗经的各种误差的特点及其校正方法。
本章难点:陀螺罗经纬度误差、速度误差的原因分析。
第三章双转子陀螺罗经第一节 安许茨4型罗经概述、主罗经结构组成、使用与保养第二节 安许茨20型罗经第三节 北辰CMZ500型罗经基本要求:掌握安许茨罗经的主罗经结构组成及各主要部件的作用,能熟练使用安许茨4型陀螺罗经。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、摇摆误差的消除:
下重式(安许茨)罗经:采用双转子。
液体连通器(斯伯利) 罗经:采用高黏度硅油。
四、基线误差:
因陀螺罗经的基线安装与船首尾线不 平行所引起的读数误差。
•特性:为固定误差,与罗经本身无关。 基线偏左舷,罗方位<真方位,东误差; 基线偏右舷,罗方位>真方位,西误差。
罗经误差的修正公式:
电航仪器
大连海事大学
航海类专业“航海仪器(电)”课 程教案
• 第一章 陀螺罗经指北原理 • 第二章 陀螺罗经误差及其消除 • 第三章 安许茨4型陀螺罗经 • 第四章 斯伯利37型陀螺罗经 • 第五章 阿玛——勃朗型陀螺罗经 • 第六章 回声测深仪 • 第七章 船用计程仪 • 第八章 磁罗经自差校正
第二章 陀螺罗经误差及其消除
第二节 速 度 误 差(speed error)
以北纬下重式罗经为例:
V3
u2 r V2 u2 r
V1 (W)
arv
V3 V2
(E)
•V3打破了原有的平衡, 迫使主轴必须偏向子午 面的西侧,利用西降的 视运动(V1)与V3抵消。
•因此而产生了一个方位
偏差—速度误差(arv)。
第二章 陀螺罗经误差及其消除
第二节 速 度 误 差(speed error)
四、速度误差的数学表达式及速度误差的特性
根据V3=V1有:
H V CosC/Re = H 1 arv 则:arv=VCosC/Re eCos
rv
V cos C
Ree cos
V3 V3
u2 r V2 u2 r V2
第二章 陀螺罗经误差及其消除
第一节 纬 度 误 差(latitude error) 二、纬度误差产生的原因
u2 r (W)
M
V1
r
V2 u2 r V2
u3
u3
α
(E)
(方位误差)
M`
垂直轴阻尼法是纬度误差产生的根本原因
第二章 陀螺罗经误差及其消除
第一节 纬 度 误 差(latitude error)
第二章 陀螺罗经误差及其消除
重点是使学生清晰理解船用陀螺罗经的 误差,了解在航海实践中的消除及补偿方法
• 第一节 纬度误差 • 第二节 速度误差 • 第三节 冲击误差 • 第四节 其他误差
第二章 陀螺罗经误差及其消除
第一节 纬 度 误 差(latitude error)
一、纬度误差的定义:
• 采用垂直轴阻尼的罗经,其主轴指北端的稳定 位置不在子午面内,而是偏离子午面一个角度, 该角度在罗经参数确定后,将随罗经所在纬度 的正切变化而变化 ,故称为纬度误差。
第二类冲击误差的消除:
高于和等于设计纬度时, BI与BII符号相同,B=BI+BII,
可关闭阻尼器,减小总的 冲击误差。 低于设计纬度时, BI与BII 符号相反, B=BI-BII,
不关闭阻尼器,减小总的 冲击误差。
可以将设计纬度定为60°, 则船舶大部分时间使航行在 低于设计纬度状态,因此可 以不装阻尼器 。
第二章 陀螺罗经误差及其消除
第二节 速 度 误 差(speed error)
五、速度误差的消除
V3 u2 r V2
V1
(W)
V3
u2 r
V2
V1`
1.查表法: 2.外补偿法:移动刻度盘。 3.内补偿法:施加补偿力矩。
•可施加垂直轴补 偿力矩,产生V1` (E) 以抵消V3。
第二节 冲 击 误 差(Ballistic error)
第四节 摇 摆 误 差 及 基 线 误 差
一、摇摆误差的定义:
船舶摇摆时所产生的惯性力作用 于罗经的控制设备上而引起的罗经的 示度误差。
二、单转子摇摆误差的特性:
•与罗经的结构参数、罗经的安装位置、船舶 的摇摆姿态、地理纬度和船舶的摇摆方向等参 数有关。
•在象限航向上航行且横摇时,摇摆误差最大。
真航向(TC)=罗航向(CC)±误差(△C) (东误差取+,西误差取-)
练习:某船向正北做恒速向航行,罗经指示的航向为 357 .5° ,若罗经基线偏向船首右舷3°,速度误差为2.5° , 则该液体连通器罗经的纬度误差为多少?
V
E
1
W
arv
1。北纬东偏,南纬西偏; V1 2。东升西降,全球一样。 V2
1.什么叫纬度误差?纬度误差产生的原因是什么?其 符号如何确定?
2 .有哪两种消除纬度误差的方法?两种方法下主轴稳 定位置的区别?
3 .液体连通器罗经采用的内补偿法施加的补偿力矩作 用在什么轴上?(水平轴OY上);稳定位置是什么?
三、第一类冲击误差: (以下重式罗经为例)
b 2a1 c
rv1
BI BI
∆rv rv2
BI在加速终了后经过约 3/4个TD(约1小时)自动 消失。
•设船北纬、加速、 北航(V2>V1)
•主轴由稳定位置 1向2进动:
a:冲击不到,有BI b:冲击过头,有BI
c:冲击正好,无BⅠ
不产生第一类冲击误差的舒拉条件:
BⅠ
arv1
arv2
高纬不到,低纬超; 设计纬度正恰巧。
四、第二类冲击误差: ( BII)
第二类冲击误差是由于惯性力作用于阻尼设备上而产生的。 下重式罗经—液体阻尼器
M
S
N
r2
r1
(BⅡ )-J
O
BII
rv1
J
G
rv2
M’
惯性力作用于阻尼设备上而产生的力矩总是使主轴离开新的稳定位置,则 BII与BI符号相反.且最大值发生在机动后1/4 个TD。
三、纬度误差的大小与方向
由:V1=u3 , V2=u2 有:H1 αr=MDθr
H 2=-M θr 求得: αr =-MD/M tg
r (W)
V1
u2 r V2
u3
α
(E)
(方位误差)
二、纬度误差的性质:
αr Φ =-MD/M tgΦ 1.采用垂直轴阻尼法的罗经所具有的误差。 2.北纬偏东误差,南纬偏西误差。
u2 (W)
V1`
V1
r
V2 u2 r V2
u3
αr Φ
u3 (E)
A.施加垂直轴 补偿力矩;
V2` r
(W)
V1
u2 r
V2
V2 u3 (E)
B.施加水平轴 补偿力矩;
第二章 陀螺罗经误差及其消除
第二节 速 度 误 差(speed error) 一、速度误差的定义
船舶作恒速恒向航行时,陀螺罗经主 轴稳定位置与船静止时稳定位置的方位 差角。
S
N
O
G
阻尼开关
1.速度误差的特性?速度误差的符号如何确定? 2 .消除速度误差的方法有哪几种?内补偿法消除速度误差其补 偿力矩施加在什么轴上?(OZ轴上) 3 .什么是冲击误差?试分析它与速度误差的关系和区别? 4 .什么是第一类冲击误差?第一类冲击误差的特性?
(高纬不到,低纬超;设计纬度正恰巧) 5 .什么是第二类冲击误差?如何消除?(关闭阻尼器) 6 .什么情况下消除第二类冲击误差? (高于和等于设计纬度时,即 > 0 时) 7.什么情况下不消除第二类冲击误差? (低于设计纬度时,即 < 0 时)
rv
V cos C
Ree cos
1.仅取决于航速(V)、航向(C)、和地理纬度( ), 与罗经结构参数无关。任何罗经均会产生速度误差。
2.随船速(V) 、纬度( )的增大而增大。
3.航向偏北,αrv>0,西误差; 航向偏南, αrv<0,东误差。
4 . 东西航向无误差,南北航向误差最大。
(北纬指北偏上;南纬指北偏下)
4 .电控罗经采用的内补偿法施加的补偿力矩作用在什 么轴上?(垂直轴OZ上);稳定位置是什么?(水 平指北)。
5.什么叫速度误差?速度误差产生的原因是什么?
6 .速度误差的表达式是什么?
rv
V cos C
Ree cos
四、速度误差的数学表达式及速度误差的特性
一、冲击误差的定义:
船舶在机动航行过程中,由于惯性对 陀螺罗经的影响而引起的误差。
二、冲击误差的分类:
第一类冲击误差(BI ): 惯性力作用于控制设备上。 第二类冲击误差(BII ): 惯性力作用于阻尼设备上。
S
N
(BⅡ )-J
O
J
(BⅠ )-J
G
第二节 冲 击 误 差(Ballistic error) rv:速度误差 BZ:冲击位移 BI:冲击误差
当罗经的等幅摆动周期等于一摆 长为地球半径的数学摆的摆动周期时, 不产生第一类冲击误差。
T0 2
H 2 Me cos
Re 84.4 min g
对应的纬度( )称为设计纬度( 0)
第一类冲击误差的特性:
BI
( rv2
rv1
)(
cos cos 0
1)
b 2a1 c
第二章 陀螺罗经误差及其消除
第二节 速 度 误 差(speed error) 二、船舶作恒速恒向运动时的旋转角速度及其在 地理坐标系各坐标轴上的分量;
N VN
C O
V VE E
•设船偏北航行,航速V, 航向C。
VN=VCosC
VE=V SinC
•VN引起的角速度:
VN
e
W
•VE引起的角速度:
Φ
e
VE Re
W=VN/Re=VCosC/Re
Φ =VE/ReCos
( Φ相对于 e很小, 可忽略不计。)
w对主轴的影响