张宇-信号与系统各章内容整理48学时

张宇-信号与系统各章内容整理48学时
张宇-信号与系统各章内容整理48学时

第一章 信号与系统

主要内容

重点

难点

1.信号的描述x[n]、x (t ),两者不同之处

2.【了解】 信号的功率和能量

3.【掌握】自变量变换(计算题目)、理解变换前后图片的缩放或信号的变化

4.【了解】 常见信号:指数(j t j n e e w w 、)、正弦(cos cos t n w w 、)、单位冲激(()[]t n d d 、)、单位阶跃(()[]u t u n 、)

5.【掌握】用阶跃函数表示矩形函数;冲激与阶跃信号的关系;冲激信号的提取作用;指数信号和正弦信号的周期性。

6.【了解】系统互联

7.【掌握】系统的基本性质:记忆与无记忆性、可逆性、因果性、稳定性、时不变与线性。对已知系统进行性质判断(掌握)

1.3、5、7

1.0

0cos j n n e w w 、的周期性判断,是周期的条件,若是周期的,则周期: 2.00cos j t

t e

w w 、的周期:

自变量变换的量值

确定

0cos j n

n e w w 、的周期

性和频率逆转性。

系统的时不变性与线性等性质的证明

2T ωπ

=

2N m

ωπ

=

第二章 线性时不变系统

第三章 周期信号的傅里叶级数表示FS

本章内容安排基本思路:

主要内容

难点 ? 系统的单位冲激响应容易求出:令 ()()x t t d =,对应的输出即为单位

冲激响应() h t ;

? 将任意信号分解为冲激信号()[]t n d d 、的线性组合

[][][]; ()()()k x n x k n k x t x t d d t d t t ¥

-

=-

=

-=

-?

ò

? 利用LTI 系统的线性和时不变性,在单位冲激响应[]() h t h n 、 已知的情况下,推导连续时间和离散时间系统对任意输入x 的响应:

[][][]y n =x n * h n ; y(t)=x(t)* h(t)

? 利用输入输出的卷积关系,根据单位冲激响应[]() h t h n 、 ,判断ITI 系统的性质

1.【掌握】卷积和

2.【掌握】卷积积分

3.【掌握】用[]() h t h n 、 判断LTI 的性质

4.【理解】 初始松弛

5. 【掌握】任意信号与冲

激信号、阶跃函数的卷积性质(对比1章冲激信号抽取作用)

卷积运算中,求和或者求

积时,上下限的确定

本章内容安排基本思路:

主要内容 难点

第四章 连续时间傅里变换CFT

? LTI 系统对复指数信号st n

e z 、响应容易求得:()st H s e 、()n H z z 其中()()s H s h e d t

t t +

--

=

ò

、()[]k

k H z h k z

+

-=-

=?

? 将周期信号分解为0jk t

e

w 的线性组合,即傅立叶级数表示式:

()()()0021jk t

jk t T

k k k k jk t k T

x t a e a e a x t e dt T π

ωω+∞

+∞

=-∞=-∞-?==???

?=??∑∑?

? 傅立叶级数收敛条件分析

? 从频域分析系统对信号的作用(3.9、3.10)

1.【掌握】连续时间周期信号的傅立叶级数公式,求常见信号的傅立叶级数

2.【掌握】收敛条件、傅立叶截断时的吉伯斯现象

3..【理解】滤波和频谱的概念,能够判断信号是否能通过一确定的滤波器 5.【掌握】RC 回路实现的滤波器的滤波特性分析,滤波器设计时的折衷思想。提醒:可用第4章FT 方法。

4

本章内容安排基本思路: 主要内容

难点 ? LTI 系统对复指数信号j t

e

w 响应容易求得:()j t H j e w w ? 将非周期连续时间信号分解为j t

e w 的线性组合,即傅立叶变换

1.【掌握】连续时间信号的傅立叶变换

2.【掌握】傅立叶变换的收敛条件

3.【掌握】常见信号的傅立叶变换、傅立叶变换

1.积分性

第五章 离散时间傅里变换DFT (不考试)

? 研究傅立叶变换的性质,简化求复杂信号的傅里叶变换

? 利用FT 变换工具,建立频域分析微分方程的方法

的性质应用 4.【掌握】调制与解调的思想,根据已知条件,对调制解调系统各个环节能够写出表达式、画出频谱图

5.【掌握】用FT 方法求解微分方程的输入、输出、单位脉冲响应等。

2.对偶性

质 2.性质与自变量变

换结合求信号傅立叶变换

本章内容安排基本思路: 主要内容 难点

? LTI 系统对复指数信号j n

e

w 响应容易求得: ()j j n H e e w w ? 将非周期离散时间信号分解为j n

e w 的线性组合,即傅立叶变换

? 研究傅立叶变换性质,简化求复杂信号的傅里叶变换 ? 利用FT 变换工具,建立频域分析微分方程的方法

1.【掌握】离散时间非周期信号傅立叶变换

2.【理解】常见信号的傅立叶变换、傅立叶变换的性质(所有性质)

3.【掌握】连续时间、离散时间FT 的对比

4.【掌握】用FT 方法对差分方程进行求解 几种对偶

性;

离散信号的

有效频率范围

第六章信号与系统的时域和频域分析

本章内容安排基本思路: 主要内容难点

信号或者系统通过FT,可以转换为频域(即信号或者系统的傅立叶变换)表示,那么傅立叶变化的模和相位分别代表了信号或者系统的那部分特征?呢?

另外从频率来看,信号在什么传输条件下,通过系统传输不失真?1.【掌握】图象的傅立叶变换的模和相位代表什么?

2.【理解】系统的模和相位

3.【掌握】信号的不失真传输的条件,线性相位和非线性相位

4.【理解】群时延的概念和意义

5.【掌握】滤波器设计时,时域和频域不可兼顾,折衷思想,

6.【理解】对一个已知滤波器,能够根据其时频图,判断滤波

器的时域和频域的优劣,并说明原因,结合3.章

群时延

的概念

和意义

第七章 采样

第八章 通信系统

主要内容

主题 1.【掌握】采样定理;

2.【掌握】冲激串采样、零阶保持采样及其信号的重建的时频分析;

3.【掌握】判断一个信号的奈奎斯特频率(结合FT 的性质),并确定如何才能合理;

4..【掌握】欠采样造成的混叠现象,找出几种欠采样的应用,并能对相应的现象从理论角度进行说明。

将连续信号变为离散样

本并内插重建的理论。 主要内容

主题 1.【了解】调制、解调、调制信号、载波等基本概念 2.【掌握】正弦幅度调制:正弦和复指数做载波;

3.【掌握】同步解调和非同步解调的时频分析;能对调制、解调系统各个环节的表达式和频谱进行分析。

从时域和频域,介绍了通

信系统中的各种调制技术、

第九章 拉普拉斯变换

第十章 Z 变换(不考试)

4.【了解】频分多路复用及其的理论基础(调制技术)

5.【了解】时分多路复用技术。

对应的解调方法

主要内容

主题

1.【掌握】拉氏变换的公式及其收敛域,和傅立叶变换的关系;

2.【掌握】拉氏变换及其收敛域的性质;

3.【掌握】用拉氏变换对傅立叶变换几何求解;

4.【掌握】利用拉氏变换的性质a.求解复杂信号的拉氏变换b.分析系统特性,特别是稳定性和因果性;

5.【掌握】用单边拉氏变换,对不满足初始松驰条件(零输入响应不为零)的系统,进行求解。(重点)

拉氏变换是对傅立叶变换的推广; 不稳定系统也可

在s 域研究; 特别对于非零初始

条件的系统,可以用单边拉氏变换进行求解。

主要内容

主题

胡春筠 《数字通信原理》

我想了一下,在信号系统中要强调的知识点主要有:

1、时域有限,频域无限;反之亦然 ;

2、抽样定理 ;

3、理想低通传输特性;

4、时域波形的变化和频率之间的关系;

5、冲激序列经过一个系统,它的输出波形是怎样的? 6矩形信号的频谱; 7怎样求一个信号的直流分量?

1.【掌握】Z 变换的公式及其收敛域,和傅立叶变换的关系;

2.【掌握】Z 变换及其收敛域的性质;

3.【掌握】用Z 变换对傅立叶变换几何求解;

4.【掌握】利用Z 变换的性质a.求解复杂信号的拉氏变换b.分析系统特性,特别是稳定性和因果性;

5.【掌握】用单边Z 变换,对不满足初始松驰条件(零输入响应不为零)的系统,进行求解。(重点)

Z 变换是对傅立叶变换的推广; 不稳定离散系统

也可在Z 域研究; 特别对非零初始条

件的系统,可以用Z 变换进行求解。

(精品)信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号? 图1-1 图1-2

解 信号分类如下: ??? ?? ? ????--???--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号; (e )离散信号,数字信号; (f )离散信号,数字信号。 1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ; (4)为任意值)(00)sin(ωωn ; (5)2 21??? ??。 解 由1-1题的分析可知: (1)连续信号; (2)离散信号; (3)离散信号,数字信号; (4)离散信号; (5)离散信号。 1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ; (3)2)]8t (5sin [; (4)[]为整数)(n )T nT t (u )nT t (u )1(0 n n ∑∞ =-----。 解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各 分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。 (1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15 T 2π=。由于 5π

奥本海姆 信号与系统 第一章知识点总结

第一章 信号与系统 一.连续时间和离散时间信号 1.两种基本类型的信号: 连续时间信号和离散时间信号。在前一种情况下,自变量是连续可变的,因此信号在自变量的连续值上都有定义;而后者是仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。为了区分,我们用t 表示连续时间变量。而用n 表示离散时间变量,连续时间变量用圆括号()?把自变量括在里面,而离散时间信号则用方括号[]?来表示。 2.信号能量与功率 连续时间信号在[]21t t ,区间的能量定义为:E=dt t x t t 2 2 1 )(? 连续时间信号在[]21,t t 区间的平均功率定义为:P=dt t x t t t t 21 221)(1 ?- 离散时间信号在[]21,n n 区间的能量定义为:E=∑=2 1 2 ][n n n n x 离散时间信号在[]21,n n 区间的平均功率定义为:P=∑=+-2 1 2 12)(11n n n t x n n 在无限区间上也可以定义信号的总能量: 连续时间情况下:??+∞ ∞ --∞→? ∞==dt t x E T T T 2 2 x(t)dt )(lim 离散时间情况下:∑ ∑ +∞ -∞ =+-=∞ →? = =n N N n N n x n x E 2 2 ][][lim 在无限区间内的平均功率可定义为: ? -∞→?∞=T T T dt t x T P 2 )(21lim ∑+-=∞→? ∞+=N N n N n x N P 2 ][121lim 二.自变量的变换 1.时移变换 x(t)→x(t-0t ) 当0t >0时,信号向右平移0t ;当0t <0时,信号向左平移0t

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统课后习题答案—第1章

第1章 习题答案 1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号? 解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d ); ④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。 1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。 解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。 ① 线性 1)可加性 不失一般性,设f(t)=f 1(t)+f 2(t),则 y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)| 即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。 由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。 2)齐次性 由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数) 即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。 ② 时不变特性 由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|, 即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。 依据上述①、②两点,可判定此系统为一非线性时不变系统。 1-3 判定下列方程所表示系统的性质: )()()]([)()(3)(2)(2)()()2()()(3)(2)()()()()() (2''''''''0t f t y t y d t f t y t ty t y c t f t f t y t y t y b dx x f dt t df t y a t =+=++-+=+++=? 解:(a )① 线性 1)可加性 由 ?+=t dx x f dt t df t y 0)()()(可得?????→+=→+=??t t t y t f dx x f dt t df t y t y t f dx x f dt t df t y 01122011111)()()()()()()()()()(即即 则 ???+++=+++=+t t t dx x f x f t f t f dt d dx x f dt t df dx x f dt t df t y t y 0212102201121)]()([)]()([)()()()()()( 即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性。 2)齐次性 由)()(t y t f →即?+=t dx x f dt t df t y 0)()()(,设a 为任一常数,可得 )(])()([)()()]([)]([000t ay dx x f dt t df a dx x f a dt t df a dx x af t af dt d t t t =+=+=+??? 即)()(t ay t af →,因此,此系统亦具备齐次性。 由上述1)、2)两点,可判定此系统为一线性系统。

信号与系统期末考试知识点梳理

信号与系统知识点综合CT:连续信号 DT:离散信号 第一章信号与系统 1、功率信号与能量信号 性质:(1)能量有限信号的平均功率必为0; (2)非0功率信号的能量无限; (3)存在信号既不是能量信号也不是功率信号。 2、自变量变换 (1)时移变换 x(t)→x(t-t0),x[n]→x[n-n0] (2)时间反转变换 x(t)→x(-t),x[n]→x[-n] (3)尺度变换 x(t)→x(kt) 3、CT、DT复指数信号

周期频率CT 所有的w对应唯 一T DT 为有理数 4、单位脉冲、单位冲激、单位阶跃 (1)DT信号 关系 (2)CT信号 t=0时无定义 关系 (3)筛选性质 (a)CT信号

(b)DT信号 5、系统性质 (1)记忆系统 y[n]=y[n-1]+x[n] 无记忆系统 y(t)=2x(t) (2)可逆系统 y(t)=2x(t) 不可逆系统 y(t)=x2(t) (3)因果系统 y(t)=2x(t) 非因果系统 y(t)=x(-t) (4)稳定系统 y[n]=x[n]+x[n-1] 不稳定系统 (5)线性系统(零输入必定零输出)齐次性 ax(t)→ay(t) 可加性 x1(t)+x2(t)→y1(t)+y2(t)(6)时不变系统 x(t-t o)→y(t-t0) 第二章 1、DT卷积和,CT卷积积分

2、图解法 (1)换元;(2)反转平移;(3)相乘;(4)求和 第三章CFS DFS 1、 CFS 收敛条件:x(t)平方可积;Dirichlet条件。 存在“吉伯斯现象”。 DFS 无收敛条件 无吉伯斯现象 2、三角函数表示

信号与系统第一章答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 1-3 写出图1-3所示各波形的表达式。 1-4 写出图1-4所示各序列的闭合形式表达式。 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= 解: 1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。 (1))()1(t t f ε- (2))1()1(--t t f ε (5) )21(t f - (6))25.0(-t f (7)dt t df ) ( (8)dx x f t ?∞-)( 解:各信号波形为

信号与系统知识点整理

第一章 1、什么就是信号? 就是信息得载体,即信息得表现形式。通过信号传递与处理信息,传达某种物理现象(事件)特性得一个函数。 2、什么就是系统? 系统就是由若干相互作用与相互依赖得事物组合而成得具有特定功能得整体。 3、信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出得反应。 4、通常把信号分为五种: ?连续信号与离散信号 ?偶信号与奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5、连续信号:在所有得时刻或位置都有定义得信号。 6、离散信号:只在某些离散得时刻或位置才有定义得信号。 通常考虑自变量取等间隔得离散值得情况。 7、确定信号:任何时候都有确定值得信号 。 8、随机信号:出现之前具有不确定性得信号。 可以瞧作若干信号得集合,信号集中每一个信号 出现得可能性(概率)就是相对确定得,但何时出 现及出现得状态就是不确定得。 9、能量信号得平均功率为零,功率信号得能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10、自变量线性变换得顺序:先时间平移,后时间变换做缩放、 注意:对离散信号做自变量线性变换会产生信息得丢失! 11、系统对阶跃输入信号得响应反映了系统对突然变化得输入信号得快速响应能 力。(开关效应) 12、单位冲激信号得物理图景: 持续时间极短、幅度极大得实际信号得数学近似。 对于储能状态为零得系统,系统在单位冲激信号作 用下产生得零状态响应,可揭示系统得有关特性。 例:测试电路得瞬态响应。 13、冲激偶:即单位冲激信号得一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分得被积函数中一个因子, 其她因子在冲激偶出现处存在时间得连续导数、 14、斜升信号: 单位阶跃信号对时间得积分即为单位斜率得斜升信号。 15、系统具有六个方面得特性: 1、稳定性 2、记忆性

信号与系统重要资料概念公式定理情况总结

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n Λ= 如果满足: n i K dt t f j i dt t f t f i T T i T T j i Λ2,1)(0)()(2 1 2 12 ==≠=? ? 则称集合F 为正交函数集 如果n i K i Λ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为: n i K dt t f t f j i dt t f t f i T T i i T T j i Λ2,1)()(0)()(2 1 2 1* *==?≠=?? ? 其中)(* t f i 为 )(t f i 的复共轭。 2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数

第1章 信号与系统

第一章信号与系统 本章学习要求 (1)了解信号与系统的基本概念;信号的不同类型与特点;系统的类型与特点; (2)熟悉离散时间信号的基本表示方法; (3)掌握正弦序列周期性的定义和判断; (4)深刻理解能量信号、功率信号的定义和判断; (5)掌握信号的基本运算(变换)方法; (6)深刻理解冲激信号、阶跃信号的定义、特点及相互关系;理解冲激函数的广义函数定义;掌握冲激函数的基本性质;冲激函数的微积分; (7)熟悉系统的数学模型和描述方法 (8)了解系统的基本分析方法;掌握系统的基本特性及其判断 本章重点 (1)离散时间信号的表示; (2)离散周期序列的判断、周期的计算; (3)能量信号的定义、判断;功率信号的定义、判断; (4)信号的加法、乘法;信号的反转、平移;信号的尺度变换; (5)阶跃函数的极限定义、冲激函数的极限定义;阶跃函数与冲激函数的关系; (6)冲激函数的广义函数定义;冲激函数的导数与积分;冲激函数的性质; (7)连续系统和离散系统的数学模型;系统的表示方法; (8)线性时不变系统的基本特性;线性、时不变性的判断。 1.1 绪言 什么是信号?什么是系统?为什么把这两个概念连在一起?信号、系统能不能相互独立而存在? 一、信号的概念 1. 消息(message): 人们常常把来自外界的各种报道统称为消息。 2. 信息(information): 通常把消息中有意义的内容称为信息。 本课程中对“信息”和“消息”两词不加严格区分。 3. 信号(signal): 信号是信息的载体。通过信号传递信息。

为了有效地传播和利用信息,常常需要将信息转换成便于传输和处理的信号,由此再次说明“信号是信息的载体,信息是信号的内涵”。 信号我们并不陌生,如刚才铃声—声信号,表示该上课了;十字路口的红绿灯—光信号,指挥交通;电视机天线接受的电视信息—电信号;广告牌上的文字、图象信号等等。 二、系统的概念 信号的产生、传输和处理需要一定的物理装置,这样的物理装置常称为系统。一般而言,系统(system)是指若干相互关联的事物组合而成具有特定功能的整体。 如手机(可以用手机举例)、电视机、通信网、计算机网等都可以看成系统。它们所传送的语音、音乐、图象、文字等都可以看成信号。信号的概念与系统的概念常常紧密地联系在一起。 系统的基本作用是对输入信号进行加工和处理,将其转换为所需要的输出信号,如图1所示。 图1 从系统的角度出发,系统理论包括系统的分析与综合两个方面。简单地说,系统分析是对已知的系统做各种特性的分析;系统综合又称系统的设计或实现,它是指根据需要去设计构成满足性能要求的系统。 通常,系统分析是针对已有的系统,系统综合往往意味着做出新系统。显然,前者属于认识世界的问题,后者则是改造世界的问题,且是人们追求的最终目的。一般来说,系统分析是系统综合的基础,只有精于分析,才能善于综合。本课程主要侧重于系统分析。 三、信号与系统概念无处不在 信息科学已渗透到所有现代自然科学和社会科学领域,因此可以说信号与系统在当今社会无处不在,大致列举的应用领域如下: ?工业监控、生产调度、质量分析、资源遥感、地震预报 ?人工智能、高效农业、交通监控 ?宇宙探测、军事侦察、武器技术、安全报警、指挥系统 ?经济预测、财务统计、市场信息、股市分析 ?电子出版、新闻传媒、影视制作 ?远程教育、远程医疗、远程会议 ?虚拟仪器、虚拟手术 如对于通讯: ?古老通讯方式:烽火、旗语、信号灯 ?近代通讯方式:电报、电话、无线通讯

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

信号与系统知识点

第1章 信号与系统分析导论 北京交通大学 1、 信号的描述及分类 周期信号: ()000002sin ,sin ,2t T m k N π ωωπ=ΩΩ=当为不可约的有理数时,为周期信号 能量信号:直流信号和周期信号都是功率信号。 一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信号 也不是功率信号。 2、 系统的描述及分类 线性: 叠加性、均匀性 时不变:输出和输入产生相同的延时 因果性:输出不超前输入 稳定性:有界输入有界输出 3、 信号与系统分析概述 ※ 第2章 信号的时域分析 信号的分析就是信号的表达。 1、 基本连续信号的定义、性质、相互关系及应用 ()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=- 取样特性:00()()d ()x t t t t x t δ∞ -∞-=? 展缩特性:1 ()() (0)t t δαδαα=≠ ()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=--- 取样特性:00()'()d '()x t t t t x t δ∞ -∞-=-? 展缩特性:1'()'() (0)t t δαδααα= ≠ 2、连续信号的基本运算 翻转、平移、展缩、相加、相乘、微分、积分、卷积

3、基本离散信号 4、离散信号的基本运算 翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积 5、确定信号的时域分解 直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。 第3章 系统的时域分析 1、系统的时域描述 连续LTI 系统:线性常系数微分方程 ()()y t x t 与之间的约束关系 离散LTI 系统:线性常系数差分方程 [][]y k x k 与之间的约束关系 2、 系统响应的经典求解(一般了解) 衬托后面方法的优越 纯数学方法 全解=通解+特解 3、 系统响应的卷积方法求解 ()zi y t :零输入响应,形式取决于微分方程的特征根。 ()zs y t :零状态响应,形式取决于微分方程的特征根及外部输入()x t 。 ()h t :冲激平衡法(微分方程右边阶次低于左边阶次,则()h t 中不含有()t δ及其导数项) (一般了解) []h k :等效初始条件法(一般了解) 4、 ※卷积计算及其性质 ※图形法 ※解析法 等宽/不等宽矩形信号卷积 卷积的基本公式及其性质(交换律、结合律、分配律) ※第4章 信号的频域分析 1、连续周期信号表达为虚指数信号()0jn t e t ω-∞<<∞的线性组合 0=()jn t n n x t C e ω∞-∞= ∑% 完备性、唯一性 ()n x t C ?%(周期信号的频谱)000001 ()T t jn t n t C x t e dt T ω+-=?%

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

城市轨道交通信号与通信系统基础知识

城市轨道交通信号与通信系统基础知识 填空题 城市轨道交通信号系统通常包括两大部分,分别为联锁装置和列车自动运行控制系统。 列车自动运行控制系统ATC包括ATO(列车自动驾驶)、ATP(列车自动超速防护)、ATS(列车自动监控系统)。 信号机是由机柱、机构、托架、梯子、基础组成。(此一般指高柱信号机,若矮型信号机则无梯子。) 机构是由透镜组(聚焦的作用)、灯座(安放灯泡)、灯泡(光源)、机箱(安装诸零件)、遮檐(避免其它光线射入)、背板(增大色灯信号与周围背景的亮度)等组成。 透镜式信号机是指用信号的颜色和数目来组成的设备,并且采用光学材料的透镜组。 通过色灯的显示,提供列车运营的条件,拥有一系列显示的设备称为信号机。 信号机按高矮可分为高柱信号机与矮型信号机。 信号机按作用的不同可分为:防护信号机、阻挡信号机、出段信号机、入段信号机、调车信号机。 道岔区段设置的信号机称为防护信号机。 10、控制列车的进入与速度的设备称为信号。传送各种信息(图像、信息等)称为通信。 11、继电器是由电磁系统和接点系统组成。电磁系统是由线圈和铁芯组成,即输入系统。接点系统是由前接点和后接点组成,即输出系统。 12、转辙机的功能有:转换道岔、锁闭道岔、给出表示。 13、转辙机按用电性质,可分为直流电动转辙机和三相交流电动转辙机。 14、转辙机按道岔锁闭位置,可分为内锁闭和外锁闭。 15、转辙机按动力,可分为电动和液压。 16、50Hz微电子相敏轨道电路应用于车辆段内,其作用是接受来自轨道上列车占用的情况。 17、音频数字编码无绝缘轨道电路应用于正线上和试车线上,其作用是接受和发送各种信息。

信号与系统知识要点(互联网+)

《信号与系统》知识要点 第一章 信号与系统 1、周期信号的判断 (1)连续信号 思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果 11 22 T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。 (2)离散信号 思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ① 2π ω为整数时,周期0 2N π ω= ; ② 1 2 2N N π ω= 为有理数(不可约)时,周期1N N =; ③ 2π ω为无理数时,为非周期序列 注意:和信号周期的判断同连续信号的情况。 2、能量信号与功率信号的判断 (1)定义 连续信号 离散信号 信号能量: 2 |()| k E f k ∞ =-∞ = ∑ 信号功率: def 2 22 1lim ()d T T T P f t t T →∞- =? /2 2/2 1lim |()|N N k N P f k N →∞=-=∑ (2)判断方法 能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律 ①一般周期信号为功率信号; ②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号; ?∞∞ -=t t f E d )(2 def

③还有一些非周期信号,也是非能量信号。 例如:ε(t )是功率信号; t ε(t )为非功率非能量信号 ; 3、典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③抽样信号: sin ()t Sa t t = 欧拉公式:-cos +sin cos - sin 1cos ()21sin () 2j t j t j t j t j t j t e t j t e t j t t e e t e e j ωωωωωωωωωωωω--?=?=?? =+??? ?=-?? 4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at → 3) 信号的微分和积分 注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。正跳变对应着正冲激;负跳变对应着负冲激。 5、阶跃函数和冲激函数 (1)单位阶跃信号 00 ()10t u t t ? 0t =是()u t 的跳变点。 (2)单位冲激信号 定义: ()1 t dt δ∞-∞?=?? ? 0 () f t t 0α<0α>K α=O t () t f K ω θT ω π 2ω π 2t () t Sa 1 π π 2π 3O π-

(完整版)信号与系统复习知识点

《信号与系统》复习要点 第一章 1.信号的运算:时移、反褶、尺度变换、微分、积分等; 2.LTI 系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性; 3.阶跃型号与冲激信号及其特性。 单位冲激信号的性质: 1. )()()()(t o f t t f δδ= 2. )()()()(0 t t t f t t t f -=-δδ 3. ?∞ ∞-=)0()()(f dt t t f δ 4. ? ∞ ∞ -=-)()()(00t f dt t t t f δ 5. )()(t t -=δδ 6. dt t du t )()(=δ ?∞ -=t t u d )()(ττδ 7. ∑∞ -∞=-= n T nT t t )()(δδ ∑∞ -∞ =-=n T nT t nT f t t f )()()()(δδ 例、求下列积分 dt t t t t f ? ∞ ∞ -= )2sin() (2)(δ 例、已知信号)(t f 的波形如下图1所示,试画出下列各信号的波形 (1) )2(t f ,(2))()2(t u t f ---,(3))2()2(t u t f -- 例 已知 )3(2)(-=t t f δ求系列积分?)25(0 =-?∞ dt t f

第二章 1.响应的分解,各种响应分量的含义、可分解线性; 2.卷积及其特性(微积分特性); 3.零状态响应及卷积积分求解。 第三章 1.典型信号的傅里叶变换; 2.傅里叶变换的基本性质:对称性、尺度变换特性、平移特性、微积分特性;3.傅里叶变换卷积定理。

*)(ωj F o 为周期信号取一个单周期信号的傅立叶变换 ● 理想抽样序列: ∑∞ -∞ =-=n s T nT t t )()(δδ ● 非理想抽样序列: ∑∞ -∞ =-= n s nT t G t P )()(τ 被抽样信号的表达式: ∑∞-∞ =-=n s s nT t t f t f )()()(δ ∑∞ -∞ =-=n s s nT t G t f t f )()()(τ

信号与系统知识点总结(非官方版)上篇

信号与系统知识点总结(非官方版) 上篇 其实,俺也不知道信号与系统的知识点具体都有啥…咦?哪里飞来的板砖……不过即便如此,俺也无节操的写了这篇总结,为的是让(man)大(zu)家(mou)更(mei)有(zi)条(de)理(qiang)的(xing)复(yao)习(qiu),喂喂喂,那边的,悲伤的表情是要闹哪样啊!好吧,接下来就请和我签订契约,成为爱♂的♂战♂士吧……哎!别都走了啊!我说正题还不行么…… 第一章信号与系统 这一章说的东西都很简单,基本属于干活之前的调情部分,但是对于理解以后的事情很有帮助。 根据胖哥梁老师的意思,第一章要注意的问题不是很多(好像吧),主要问题有三个: 1、函数信号的周期问题,如何判断信号是否是周期的,计算信号的周期是多少(典型题型哦……) 2、将某个信号拆成一个奇函数和一个偶函数相加的形式 3、自变量变换的顺序问题(也很典型,而且后面要用的……)关于周期信号,首先要看的是书上例1.6(英文书P29)离散时间信号的周期只可能是整数,如果算出的周期不是整数,那这货肯定不是周期,需要再乘上一个整数,使它变成整数,这才是周期。就像题中,第二个信号的周期算出来是8/3,但周期必须是整

数,所以还要乘以3才是真正的周期。所以本题最终答案是3*8=24 这里尤其要注意的是,上一段中的两个“整数”,第一个指的是 信号本身的周期,第二个指的是需要乘的数,也就是说,对于连续时间信号,第一个红字处的“整数”可以不满足,但第二个 一定要满足,举个栗子,一个周期为3的连续信号和一个周期为3π的连续信号相加,结果的周期不是3π,因为,周期为3 的信号,它的周期乘以π才会变成3π,但是π不是整数。 第二个问题,也就是奇部和偶部,这个参照书上P14的公式就行了,没啥说的…… 第三个…自变量变换,初中的知识嘛,小case,f(x)=c(bx+a)+d,按照abcd的顺序变换就好了…… 其他的知识点……单位冲激和单位阶跃……这个可以去看例1.7(P37)。至于,那些什么采样啦,取值啦,我也不是很清楚……总 之就记到:单位冲激就是个在0处的凸起,有时候会被拽到别的地方 去,这货是人畜无害的,无论跟谁搞上,都不会对那一点的值造成什 么影响…当然,那一点之外就都是0了。 单位阶跃就是单位冲激求积分,图像就是小于0的部分都是0, 大于等于0的部分都是1。这个函数通常是用来限定取值范围的,如: x(t)u(t)=x(t) t≥0 …啥?求图?懒得画,自己翻书去…… 接下来就是那些乱七八糟的性质了,什么记忆性、可逆性、因果性、稳定性、时不变性、线性,第一章还不用太纠结这些,把这

信号与系统重要知识点

第一章 信号与系统 1. 什么是信号?(了解基本概念) 2. 信号的至少五种分类。 3. 系统的至少四种分类。 4. 信号的基本运算(平移、反转、尺度变换,再取取值区间)。可参考例题:P33 1.6(2)(4)----画图 5. 阶跃函数和冲激函数的定义、性质主要用到公式: ()()(0)f t t dt f δ∞-∞=?,()()(0)f t t dt f δ∞-∞ ''=-?,()0t dt δ∞ -∞'=?()()(0)()f t t f t δδ=, ()()(0)()(0)()f t t f t f t δδδ''=-,()1t dt δ∞-∞ =? 例如:习题P34 1.10(2) (4)(5)及课件中例题。 6. P25 图1.5-3 7. 系统的性质 P38 1.24 8. 对于动态系统,既具有分解特性、又具有零状态线性和零输入线性,则称为线性系统。 9. 在建模方面,系统的数学描述方法可分为哪两大类?输入、输出分析法又可以分成哪两种方法? 10. 如果系统在任何时刻的响应(输出信号)仅决定于该时刻的激励(输入信号),而与它过去的历史状况有关,就称其为?如果系统在任意时刻的响应不仅与该时刻的激励有关而且与它过去的历史状况有关,就称之为? 11. 周期信号与非周期信号的判断标准。如:1()sin 2cos f t t t π=+ 12. 当系统的激励是连续信号时,若响应也是连续信号,则称其为??当系统的激励是离散信号时,若其响应也是离散信号,则称其为??连续系统与离散系统常混合使用,称为?? 第二章 连续系统的时域分析 1. 系统的零状态响应与输入信号有关,而与初始状态无关;系统的零输入响应与初始状态有关,而与输入信号无关。 2. 理解什么是冲激响应,什么是阶跃响应,分别用什么符号来表示。(概念上) 3. 卷积积分的定义,会求卷积积分(尤其是特殊函数)。如: ()()()f t t f t δ*= 00()()() f t t t f t t δ*-=-等公式的的灵活使用。例:3(3)(1)?t e t t εδ-??-*+=?? 例:P81 2.17(1) 、(2) P80 2.16 4. 图示法求解卷积积分。P62 例2.3-1(课件)(此次不作为重点)5. 掌握卷积积分的性质。P66-72 6. 清楚连续系统时域分析求解的是微分方程。 第三章 离散系统的时域分析 1. 理解单位序列及其响应的概念。 2. 单位序列卷积特性。 3. 卷积和的定义及其性质。例:()()()f k k f k δ*=;00()()()f k k k f k k δ*-=- 4. 清楚离散系统时域分析求解的是差分方程。 5. 清楚P88-P90 差分方程的齐次解也称为?,特解也称为?稳定系统自由响应也称为?强迫响应也称为? 第四章 连续系统的频域分析 1. 掌握傅里叶级数展开式。P120-121 2. 掌握奇函数、偶函数、奇谐函数傅里叶系数的特点。 P202 4.10 3. 掌握周期矩形脉冲的频谱特点。P129-132(主要是掌握那几个关键点) 如:(1)周期性信号的频谱特点是离散谱,而非周期性信号的频谱特点是连续谱。 周期信号的频谱包括幅度谱和相位谱。 周期信号频谱的特点包括离散性、谐波性和收敛性。 (2)周期相同的脉冲,相邻谱线间隔相同;脉冲宽度越窄,频谱宽度越宽,频带内所含分量越多。 单个矩形脉冲的频带宽度一般与其脉冲宽度τ有关,τ越大,则频带宽度越窄。 周期性矩形脉冲信号的频谱,脉冲周期T 越长,谱线间隔越小。 信号在时域中的扩展对应于其频谱在频域中压缩。 脉冲宽度一定的周期脉冲,周期T 愈大,谱线间隔愈小,频谱愈稠密;谱线的幅度愈小。 周期相同的脉冲,相邻谱线间隔相同;脉冲宽度越窄,两零点之间的谱线数目越多,频带内所含分量越多。

相关文档
最新文档