贴片铝电解电容器常见缺陷的规避方法

合集下载

如何预防片式阻容元器件漏电和电击穿的发生

如何预防片式阻容元器件漏电和电击穿的发生
焊料量过大,则在弯曲或其他应力条件下存在很大的断裂机率。
烙铁头形状 如何使用烙铁
≤ ø3mm直径烙铁头。过 程中需要防止烙铁直接 接触元件,尤其对陶瓷 体的接触。 应使用ø0.5mm或更细的
焊条进行焊接。
MLCC使用注意事项
板分割工艺
应使用夹具或某种设备(圆刀分切机、刨刀式分切机 等)进行印刷电路板裁切,以避免在电路板上出现机 械应力。 对单侧贴装手工分板注意着力点如下:
波峰焊设备的制造商和用户现在能更好地掌控产生热冲击 的源头,大部分的波峰焊机器具有足够的预热控制且已经把裂 纹源头最小化(除大规格尺寸外,如1812(4525)以上,或是 厚型产品,厚度大于1.25mm)。
MLCC失效模式
失效机理二:弯曲裂纹
产品断裂的另一主要原因是产品应用时受到了弯 曲应力的作用,使得产品形成微裂纹并随时间或二次 应力扩以下动作都可能产生板弯曲从面导致电容 裂纹:
• 应力移动 • 贴装其他元件 • 将带引线的元件插在电路板上 • 安装/拆下插座 • 拧紧螺钉
MLCC使用注意事项
建议认真阅读MLCC供应商提 供的《MLCC使用注意事项》
Thank You !
一.MLCC失效模式 二.使用注意事项
MLCC失效模式
MLCC产品电性能优良,具有容量体积 比值大,适合SMT自动化工艺等优点,广 泛应用于各种电子产品中。
但因陶瓷材料本身较脆,且其电极和 瓷介质交替的内部结构,在使用时常因使 用时作业不当,容易导致产品漏电、无容 值、短路甚至烧毁等问题。
我司经过长期对该类问题的分析,确认 导致以上不良的失效模式为产品裂纹。
根据以上机械强度对比图可看出:
X7R小容值产品机械强度较差,而 COG材质均很优异。但COG材质 因其介电常数极低,仅能制备容值 较低的产品,且因材料较贵而不适 宜替代同规格X7R产品。

浅析电解铝整流柜常见事故及预防措施

浅析电解铝整流柜常见事故及预防措施

浅析电解铝整流柜常见事故及预防措施预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制浅析整流柜爆炸事故原因及预防措施摘要:近年来随着国内市场需求的增长,我国的铝电解工业得到了迅猛的发展。

电解铝产能的不断增加必然要求设备容量的不断扩大,虽然各种设备的装备技术水平有所提高,但仍然存在由于系统扩容带来的许多技术问题和设备隐患。

尤其在整流供电设备方面,已经出现了许多设备事故,给各个企业带来了不同程度的经济损失,造成这一局面的因素很多,但设备因素是导致事故发生的主要原因,尤其是在近几年投入使用的高电压、大电流机组,发生此类事故的频率相对较高。

基于此点,本文针对电解铝整流供电系统事故发生的原因进行分析,提出对整流柜进行优化改造,消除整流设备中存在的设计缺陷;并增加弧光保护装臵、逆电流保护装臵等后备保护,达到增强整流供电系统抗事故能力的目的,在生产实践中取得了良好效果。

关键字:电解铝;整流柜;预防措施随着我国铝电解产业技术的发展,目前国内铝企业已基本实现大型预焙化,而且槽型越来越大,用电负荷呈几何级增长,给电解铝供电系统安全运行带来了巨大压力。

特别是近两年来,全国高电压、大电流整流器发生爆炸事故的频率相对较高。

今年1月和3月,我厂200KA整流系统某整流柜B柜连续两次发生整流元件大面积爆炸损坏事故。

由于整流供电系统的保护动作及时、可靠,虽然没有造成事故扩大对电解生产有什么影响,但整流柜的元件大面积损坏事故仍引起了本单位、生产厂家的高度重视,怎样尽快查找事故原因,采取相应的预防措施,在同行业中杜绝类似事故的发生,是摆在同行业面前的一项重要工作。

对此,我们进行深入的原因分析,现将所总结了一些经验进行总结。

1、造成电解铝整流系统事故的原因分析1.1 造成整流柜爆炸的原因(1)我厂的大型铝电解槽系列采用4个机组,每个整流机组由一台变压器,2 个整流柜组成,每套机组都能实现单柜稳流控制。

《铝电解电容器的失效情况及预防措施》

《铝电解电容器的失效情况及预防措施》

《铝电解电容器的失效情况及预防措施》发表时间:2019-07-08T10:03:58.527Z 来源:《电力设备》2019年第5期作者:张楠[导读] 摘要:铝电解电容器是一种性能优越但可靠性存在不足的重要电容器,相关领域的工作人员应发挥其长而力避其短,在全面而细致地了解其常见失效模式及机理的基础上明确预防措施。

(南通海立电子有限公司226361)摘要:铝电解电容器是一种性能优越但可靠性存在不足的重要电容器,相关领域的工作人员应发挥其长而力避其短,在全面而细致地了解其常见失效模式及机理的基础上明确预防措施。

本文对此进行了系统性和概要性总结,冀对相关领域工作者有所助益。

关键词:铝电解电容器;失效模式;失效机理;预防措施作为应用最广泛的分立元件之一,铝电解电容器在电源滤波、信号耦合及去耦、杂波旁路,以及谐振选频等电力电子线路中发挥着重要作用。

与其种类别的电容器相比,铝电解电容器虽有着鲜明优势,但其寿命相对较短,可靠性方面存在一定不足,因而了解其常见的失效模式及机理进而明确预防措施是有着重要意义的。

本文拟对此作一系统性和概要性总结,冀对相关领域工作者有所助益。

一、铝电解电容器的失效情况概述1、铝电解电容器失效的判断与表现在实际工程应用中,铝电解电容器失效至完全不能再用通常被称为寿命终结,其使用寿命被定义为“电容器在规定条件下规定性能的工作时间”。

规定条件主要指的上限工作温度和额定电压(额定直流电压或直流电压叠加纹波电压之和)。

规定性能主要指电容量相对变化率|AC/C|、损耗因子(主要表现为损耗角正切值tgδ的变化)与漏电流(主要表现为等效串联电阻EST的变化)等参数在技术规范规定内的性能指标。

通常情况下,液态铝电解电容器失效的具体判断标准如下表所示:当然,从外观异常表现上亦可直接判断铝电解电容器是否失效,最典型的如铝壳或防爆口开裂、电解液泄露等。

需要指出的是,以上讨论主要针对最为重要和典型的液态铝电解电容器。

贴片电容常见的故障解决

贴片电容常见的故障解决

贴片电容常见的故障解决前言在电子元器件中,贴片电容是使用最为广泛的一种电子元器件之一。

它的安装方便,体积小巧,使用寿命较长,因此被广泛应用于电子制造业中。

不过在使用过程中还是难免会出现一些故障,下面就给大家介绍一下贴片电容常见的故障及解决方法。

故障一:电容存在误差原因分析贴片电容在制造过程中存在一定的误差,造成电容实际值与额定值之间存在差别。

这种误差通常是由于制造工艺、材料选择和环境等因素导致的。

解决方法如果需要使用精度较高的电容,则需要选用质量更好的电容或者增大尺寸。

另外,在使用过程中需要根据实际情况进行调整,例如采用电容并联或串联的方式调整电容值。

故障二:电容出现欠压或超压原因分析电容出现欠压或超压主要是由于电路设计不合理或过电压等因素导致的。

欠压时电容无法正常工作,超压则会损坏电容。

解决方法针对欠压情况,需要重新设计电路以匹配电容,或者更换适当额定电压的电容。

对于超压情况,则需要增加电路保护措施,例如增加过压保护电路,以保护电容不因过压导致损坏。

故障三:电容出现温度特性偏移原因分析贴片电容在使用过程中会因为温度变化而出现不同程度的电容值偏移,产生温度特性偏移的原因主要是电容材料的特性。

解决方法对于需要在不同温度环境下使用的电容,需选择具有更好温度特性的电容或通过电路设计的方法在不同温度环境下调整电容的值,以达到预期的性能。

故障四:电容电极被烧毁原因分析电容电极被烧毁通常是由于电容长时间大电流工作而导致的电极过热或电解液失效。

解决方法选择合适的额定电压和电容值以匹配电路,适当降低电容工作电流以避免电极过热现象的出现,同时选择质量更好的电容材料以延长电容寿命。

总结贴片电容在电路中起到了至关重要的作用,在使用过程中存在一定的故障风险。

了解和解决这些故障对于保障电路的正常运行具有十分重要的意义。

以上四种常见故障及解决方法是难免的,各位在使用过程中遇到其他故障还需根据具体情况进行分析和解决。

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案一、电容使用注意事项1. 选择合适的电容类型:根据电路需求选择合适的电容类型,常见的有陶瓷电容、铝电解电容、钽电解电容等。

不同类型的电容具有不同的特性和适合范围,选择合适的电容可以提高电路性能和稳定性。

2. 正确安装电容:在安装电容时,应注意极性。

铝电解电容和钽电解电容有正负极之分,安装时必须将正极与正极相连,负极与负极相连,否则会导致电容损坏或者短路。

3. 避免过电压和过电流:电容具有一定的电压和电流容量,超过其额定值会导致电容失效。

因此,在使用电容时,应确保电压和电流不超过其额定值,避免过电压和过电流的情况发生。

4. 防止温度过高:电容在工作过程中会发热,如果温度过高,会影响电容的性能和寿命。

因此,应确保电容周围的散热条件良好,避免过高的温度。

5. 避免机械应力:电容是一种脆弱的元件,容易受到机械应力的影响而损坏。

在安装和使用电容时,应避免施加过大的机械应力,以免导致电容破裂或者损坏。

6. 防止静电损坏:静电会对电容造成损坏,因此在处理和安装电容时,应采取防静电措施,如使用静电手套或者静电垫等。

7. 注意存储条件:电容在存储过程中也需要注意,应避免存放在潮湿、高温或者有腐蚀性气体的环境中,以免影响电容的性能和寿命。

二、电容失效解决方案1. 电容短路:如果电容发生短路,可能会导致电路故障或者设备损坏。

解决方法是首先检查电容的安装是否正确,确保极性正确连接。

如果安装正确,但电容仍然短路,可能是电容本身损坏,需要更换新的电容。

2. 电容漏电:电容漏电会导致电路性能下降或者设备故障。

解决方法是首先检查电容的安装是否正确,确保极性正确连接。

如果安装正确,但电容仍然漏电,可能是电容老化或者损坏,需要更换新的电容。

3. 电容容量减小:电容容量减小会导致电路性能下降。

解决方法是首先检查电容的安装是否正确,确保极性正确连接。

如果安装正确,但电容容量仍然减小,可能是电容老化或者损坏,需要更换新的电容。

贴片工艺常见问题及解决措施

贴片工艺常见问题及解决措施

起步70 快速发展80 稳定发展90应用:芯片级封装(CSP)器件的焊球贴装芯片级封装(CSP)已成为面阵列封装设计的主要方式,利用其小巧的面积和格栅阵列技术能够做出更小、更快、更便宜的元器件,用于存储器、电信及多媒体等多种应用中。

但CSP技术的出现却给后端工艺带来了新的难题,制造商们必须要仔细考虑工艺流程的参数,才能使做出的产品在成品率和可靠性等方面满足应用的要求。

目前市面上的CSP器件类型数以百计,其中Tessera公司设计的μBGA已逐渐成为市场主流之一,已有多家集成电路制造商和组装厂商获得该项设计的使用许可。

μBGA封装结构设计灵活,可避免裸硅片与印制电路板(PWB)间因热膨胀不匹配而带来可靠性问题,其小巧、轻便、薄型封装设计非常适用于便携式产品和其它空间狭小的应用中。

然而使这类设计取得成功的因素对制造来说却是一种挑战。

CSP技术的出现给后端工艺带来了新的难题,同时由于终端产品市场固有的成本驱动特性,它还增加了制造商在产量和产能上的压力,这些难题与压力促进了高速高成品率自动化焊球贴装工艺需求的增长。

组装工艺1999年意大利一家独立的半导体存储器装配和测试机构EEMS在自己的工厂着手开始组装CSP,装配的产品采用Tessera的μBGA封装,组装时对焊球贴装工艺各方面进行了重点考察,包括焊盘形状、基板载带、焊球贴放、助焊剂涂敷以及裸片的运送等。

为了解决生产难题,EEMS委托美国Robotic Vision Systems 公司的Vanguard事业部安装了一条完整的焊球贴装线,其中包括V Ai 6300自动焊球贴放系统、回流焊炉、回流焊后的清洗机和材料运送设备(图1)。

图1(1)独特的焊盘形状EEMS的μBGA焊盘形状给焊球贴装带来了很多难题,它的焊盘在基板载带表面下方凹入0.069mm(图2),这样在用标准感光剂丝网进行焊锡助焊剂印刷时,很难控制助焊剂的用量和避免助焊剂桥接。

凹入的焊盘再加上焊盘直径特别小(0.33mm),使得对焊球贴放的准确度要求远远高于标准应用。

有关铝电解电容器老练过程出现击穿的原因及对策探究

有关铝电解电容器老练过程出现击穿的原因及对策探究

图1 图2 
铝电解电容器在击穿之后,很多的因素都无法再还原,以致铝电解电容器的击穿的原因分析相当困难,但很多铝电解电容器厂家以及化成箔制造方,都在积极努力的想方设法从各种环节上做好控制、匹配,减少铝电解电容器击穿的发生。

当铝电解电容器击穿发生时,也需要铝电解电容器厂家以及化成箔制造方深入客观的分析,以便找出真正的击穿的原因。

参考文献
[1] 张良莹,姚熹.电介质物理[M].西安:西安交通大学出版社205.
[2] 王新龙,朱绪飞,宋晔,等.含磷化合物对电解液形成曲线的影响[J].电子元件与材料,2001,(5):9-11.
科学与信息化2020年3月中。

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案一、电容使用注意事项电容是一种常见的电子元件,广泛应用于各种电路中。

为了确保电容的正常工作和延长其使用寿命,以下是一些电容使用的注意事项:1. 选择合适的电容类型:根据电路的要求和工作环境,选择适合的电容类型。

常见的电容类型包括陶瓷电容、铝电解电容、钽电容等,每种电容类型都有其特点和适合范围。

2. 注意电容的额定电压:在选择电容时,要确保其额定电压大于电路中的最大工作电压,以防止电容过压而损坏。

3. 正确安装电容:在安装电容时,要注意其极性。

铝电解电容和钽电容具有极性,需要正确连接正负极。

陶瓷电容没有极性,可以任意连接。

4. 避免过高的温度:电容对温度敏感,过高的温度会影响电容的性能和寿命。

因此,在使用电容时,要避免过高的温度环境,尽量控制在电容的额定温度范围内。

5. 防止过电流:过大的电流会导致电容过热,甚至损坏。

因此,在电路设计中,要合理选择电容的额定电流,并采取适当的电流限制措施,以保护电容。

6. 防止电容短路:电容在使用过程中可能发生短路,导致电路故障甚至火灾。

为了防止电容短路,可以在电路中添加保险丝或者过流保护电路,及时切断电流。

7. 避免机械损坏:电容是一种脆弱的元件,容易受到机械冲击和振动的影响而损坏。

在安装和使用过程中,要注意避免机械损坏,可以采取固定电容的措施。

二、电容失效解决方案尽管电容在正常使用条件下具有较长的寿命,但仍然可能发生失效。

以下是一些常见的电容失效原因和解决方案:1. 电容老化:电容老化是电容失效的主要原因之一。

当电容老化时,其容量会逐渐下降,导致电路性能下降。

解决方案是定期检查电容的容量,并在必要时更换老化的电容。

2. 电容短路:电容短路是指电容两极之间浮现低阻抗路径,导致电流绕过电容。

当发生电容短路时,电容将无法正常工作。

解决方案是检查电容是否短路,并更换短路的电容。

3. 电容漏电:电容漏电是指电容两极之间存在较大的泄漏电流,导致电容无法保持充电状态。

铝电解电容器失效模式与管控措施

铝电解电容器失效模式与管控措施
Fe3+等金属离子含量过高
电解纸或铝箔的Fe3+等含量过高
铝箔要求同上;电解纸:铁离子个数≤5个/1800cm2,
铁总量<20mg/Kg
其它
对250WV以上的产品每只进行高电压剔除,250WV:300V 315WV:450V 350WV:480V 400WV:510V
450WV:520V
铝电解电容器的通常失效模式与管控措施
引条腐蚀
芯子端面CL-超标
水份超标
外部人为带入
空气、电解液,电解纸
对乳胶手套每班检测一次;对出现异常的批次返85℃10小时,并
且漏电流检测标准由0.003VC降为0.0025CV以确保不良产品不流
入客户,视返工情况决定最终处理方案
同上
铝箔腐蚀
铝箔CL-或Fe3+超标
水份超标
铝箔本身
空气、电解液,电解纸
关系,在保证可靠性的基础上使产品的ESR值尽可能小
氧化膜质量较差
铝箔本身
采用无机酸体系化成的铝箔
3
短路击穿
铝箔切割时产生的铝屑、毛刺
铝箔折弯过低或刀片磨损过大
严格刀具管理(新刀10000m,再生刀8000m),增加吸尘装置;铝箔
折弯大于110回
工作电解液耐压不足
提高电解液的耐毛刺能力
开发新的工作电解液并不断改进,特别是高压方面要求在520V高电压下不击穿
要求铝箔中CL-<0.5 ppm、
芯子发热
铝箔到达电压过低
铝箔本身
采用标准电压的铝箔并且对每一卷铝箔都检测到达电压,对有特殊要求的适当提高铝箔的到达电压
电容的ESR值过大
铝箔不良或电解液电导率过低或电解纸密度过高
采用无机酸体系化成的铝箔;充分考虑电解液与电解纸之间的配套

铝电解电容过压损坏

铝电解电容过压损坏

铝电解电容过压损坏
铝电解电容过压损坏的原因可以归纳为以下几点:
1.阳极铝箔的表面处理工艺问题。

若阳极铝箔的表面氧化处理不完整,会导致铝箔表面存在一层附着力差的氧化膜,从而在施加电压时产生大量气体,使铝电解电容过压损坏。

2.电解质内部的水分。

若电解质内部存在水分,在施加过电压时,水分会与铝产生反应生成氢气,导致电容产生大量气体,最终过压损坏。

3.铝电解电容额定电压不足。

如果额定电压不足,铝电解电容在长时间使用后,会逐渐失去特性,造成介质击穿损坏。

为了防止铝电解电容过压损坏,可以采取以下措施:
1.在使用前,对铝电解电容进行严格的电压测试,确保其能承受预期的电压。

2.确保电解质内部没有水分或其他杂质。

3.确保铝电解电容的额定电压符合要求。

4.考虑增加安全装置,如安全阀等,以防止过压时铝电解电容损坏。

贴片电容破裂、失效的主要原因和对策

贴片电容破裂、失效的主要原因和对策

贴片电容破裂、失效的主要原因和对策主要包括三点:1、产生破裂、短路等问题的主要原因不是由于贴片电容的本身,更多的在这个电容的整个安装、焊接等工艺方面的因素造成的。

2、破裂、失效是在使用贴片电容中遇到的最常见、最主要的问题。

3、A VX针对这个普遍的状况提出了解决方法和相应的产品,命名为:FlexiTerm,并阐述了该产品的主要好处和特性。

需要强调的是:1、虽然,在文章上看到了这个产品的介绍,但目前,我们还没有在市场上发现这颗料在有大规模的销售。

2、当我们在线路排版时注意到这个问题,并且在整个使用贴片电容的生产过程中加强工艺控制,那相应的破裂、失效的情况会有很好的改善。

一、破裂的原因分析及对策电容的巨大普及性与可选择性技术的比较,首先是他们出色的可靠性记录和低成本。

但是在某一特定环境下由于元器件的陶瓷部分破裂会发生一些问题。

当元器件焊接到电路板后,这些失效通常由机械破坏产生;当电路板误操作或在极其苛刻的环境条件下组装,也会导致失效。

破裂问题正如贴片电容在元器件数量方面占的统治地位,多层陶瓷电容(MLCC)因为其高可靠性及低成本被普遍应用于电路设计。

即使因为陶瓷材料的特性,MLCC 本身很有可能在组装的过程中因为操作不当或是在特殊的环境下出现破裂。

因为这个原因,破裂成为贴装到电路板上的MLCC的最普遍的失效模式。

弯曲附有元件的印刷电路板,最普遍的一个结果就是导致MLCC 元件的破裂。

这种弯曲是在组装生产和恶劣的操作条件下机械导致的外力造成的。

最坏的情形,一个低阻值的电阻破裂失效会导致极高的温度,当其直接连接到电源线并有充足电流通过时电路板的直接区域将会造成毁灭性的破坏。

点击查看详细分析二、贴片电容破裂、短路现象案例分析不良原因分析:此裂纹在电容器的生产制造过程中不会产生,与电容器在使用过程中受到机械应力或热应力的作用有关,所以在未了解贵公司生产工艺情况下,初步分析可能有以下几方面原因:1、电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;2、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹。

电解铝整流柜事故原因及预防措施

电解铝整流柜事故原因及预防措施

电解铝整流柜事故原因及预防措施经济的发展必然会导致需求的增长,我国的铝电解工业得到迅猛的发展。

电解铝产能的不断增加必然要求设备容量的不断扩大,虽然各种设备的装备技术水平有所提高,然而,由于系统扩展,仍然存在许多技术问题和设备隐患。

尤其在整流供电设备方面,已经出现了许多设备事故,给各个企业带来了不同程度的经济损失,造成这一局面的因素很多,但设备因素是导致事故发生的主要原因,尤其是在近几年投入使用的高电压、大电流机组,发生此类事故的频率相对较高。

由于整流供电系统的保护动作及时、可靠,虽然没有造成事故扩大对电解生产有什么影响,然而,整流柜部件的大规模损坏事故仍然引起了一些单位、制造商和省有色行业的高度重视,怎样尽快查找事故原因,采取相应的预防措施,在同行业中杜绝类似事故的发生,是摆在同行业面前的一项重要工作。

结合事故情况均是在正常运行过程中,出现整流元件损坏事故跳闸信号,同时整流机组进线开关跳闸。

事故现场则是整流元件大面积损坏,有明显的电弧闪烁痕迹和短路现象。

整流元件磁套环出现不同程度的炸裂,在直流母线出口,正负极有明显的短路现象,换向吸收保护电容器的接线也有不同程度的断开。

事故原因分析由于整流供电系统的系列电压、电流不断增大,使整流柜的设计容量、短路容量也在不断增加,系统对元件的性能提出了更高的要求,设备厂家根据系列电流、电压进行简单累加,远不能满足大电流系统对设备的要求。

当元件发生电压击穿或热击穿时,由于系统容量大,如果元件的I2t小于快熔的I2t,元件极容易发生伸缩环爆裂现象,所产生的弧光导致整流柜整体短路,引起爆炸事故。

在目前工程建设中,普遍的采取招标方法来降低工程造价,但招标价格过低,因此,整流柜在制造过程中的材料选择等级降低。

直观体现在元件一致性差、均流差、配套器材质量低劣(如水管、电容、绝缘材料等)。

整流柜绝缘材料密度不够,容易形成吸水微孔,在整流柜停电状态下,由于柜体内部温度急剧下降,空气中的水蒸汽部分液化,被吸入到吸水微孔中,当整流柜送电后,柜内温度又逐步升高,绝缘材料中的水又会蒸发,降低整流柜的整体绝缘水平。

贴片电容失效原因和解决办法

贴片电容失效原因和解决办法

贴片电容失效原因和解决办法
贴片电容(多层片式陶瓷电容器)是目前用量比较大的常用元件,生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。

在使用过程中我们也经常会遇到各种各样的问题,带给我们不小的影响,本文主要针对的是贴片电容失效的情形,分析其产生的原因以及对此应对的办法,希望能够帮助到大家能够更加快速有效的解决这类的问题。

贴片陶瓷电容最主要的失效模式断裂
贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素.
陶瓷贴片电容器的断裂陶瓷贴片电容器受到机械力后断裂的示意如下图:
陶瓷贴片电容器机械断裂后,断裂处的电极绝缘间距将低于击穿电压,会导致两个或多个电极之间的电弧放电而彻底损坏陶瓷贴片电容器,机械断裂后由于电极间放电的陶瓷贴片电容器剖面显微结构如下图:
上图是机械断裂后由于电极间放电的陶瓷贴片电容器剖面显微结构对于陶瓷贴片电容器机械断裂的防止方法主要有:尽可能的减少电路板的弯曲、减小陶瓷贴片电容器在电路板上的应力、减小陶瓷贴片电容器与电路板的热膨胀系数的差异而引起的机械应力.
如何减小陶瓷贴片电容器在电路板上的应力将在下面另有行进叙述,这里不再赘述.减小陶瓷贴片电容器与电路板的热膨胀系数的差异而引起的机械应力可以通过选择封装尺寸小的电容器来减缓,如铝基电路板应尽可能用1810以下的封装,如果电容量不够可以采用多只并联的方法或采用叠片的方法解决.也可以采用带有引脚的封装形式的陶瓷电容器解决,新晨阳电子。

电容器常见故障的预防措施

电容器常见故障的预防措施

电容器运行中常见故障电容器运行中发生的缺陷多为渗漏油、鼓肚,其次为熔丝熔断、爆裂以致发生爆炸事故等。

1、渗漏油电力电容器如果渗漏油,则水分、潮气将进入其内部,使绝缘电阻降低。

漏油导致油面下降,使引线或元件的上端露出油面,导致极对外壳放电或击穿元件。

渗漏油的部位多为箱壁焊缝、套管根部法兰和帽盖处。

2、鼓肚正常运行时,由于电容器的温升和环境温度的变化,外壳随着温度变化会发生膨胀和收缩。

但对外壳明显鼓肚、塑性变形的电容器应停止使用。

这是因为内部发生局部放电,绝缘油分解产生大量气体,内部压力增大所致。

3、爆炸电容器发生爆炸,主要是内部能量超过了外壳的耐受力。

极间绝缘介质击穿时,产生电弧及热效应,使介质分解产生气体,导致箱内压力增大,最终引起爆炸。

爆炸时能量来自电力系统和与其并联的电力电容器的放电电流。

在小电流故障长时间作用下,其输入电容器的能量足以造成外壳破裂。

4、熔丝熔断对熔丝熔断的电力电容器应进行外观检查,看是否存在鼓肚、过热、开裂或元件熔断状况。

外观无明显故障特征时,一般应进行试验,测量电力电容器容量及摇测对地绝缘电阻。

不过,此前亦发生由于熔丝质量不好、热容量不够或接触不良而发生熔丝熔断的情况,更换熔丝后即恢复正常。

单台大容量电力电容器因熔丝接线端子接触不良发热,造成熔丝熔断的故障比较多。

对单台小容量电力电容器,运行中发现熔丝熔断,断路器不跳闸可继续运行,直到切除的电力电容器过多造成电流不平衡超过允许值时,再进行停电测试和处理。

电容器常见故障的预防措施1、加强巡视、检查、维护并联电容器应定期停电检查,每个季度至少1次,主要检查电容器壳体、瓷套管、安装支架等部位是否有积尘等污物存在,并进行认真地清扫。

检查时应特别注意各联接点的联接是否牢固,是否松动;壳体是否鼓肚、渗(漏)油等。

若发现有以上现象出现,必须将电容器退出运行,妥善处理。

2、控制运行温度在正常环境下,一般要求并联电容器外壳最热点的温度不得大于60℃,否则,须查明原因,进行处理。

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案一、电容使用注意事项1. 选择适当的电容类型和参数在选择电容之前,需要根据电路的需求来确定适当的电容类型和参数。

常见的电容类型包括陶瓷电容、铝电解电容和钽电解电容等。

不同的电容类型具有不同的特性和应用范围,因此需要根据具体的电路设计来选择合适的电容。

2. 注意电容的额定电压和电流在使用电容时,需要注意其额定电压和电流。

超过电容的额定电压或电流可能导致电容失效或损坏。

因此,需要确保电容的工作电压和电流不超过其额定值。

3. 避免电容短路电容在使用过程中可能出现短路现象,这会导致电路故障或电容损坏。

为了避免电容短路,可以采取以下措施:- 在电容两端加入合适的保险丝或保护电路,以防止电容短路时造成过大的电流流过电容。

- 在安装电容时,确保电容的引线之间没有短路或接触到其他导体。

4. 注意电容的极性某些类型的电容具有极性,如铝电解电容和钽电解电容。

在使用这些电容时,需要注意其正负极性,否则可能会导致电容损坏或电路故障。

在安装电容时,应确保正极与正极相连,负极与负极相连。

5. 避免过热和过电压过热和过电压是电容失效的常见原因之一。

为了避免过热和过电压,可以采取以下措施:- 在电容两端加入合适的散热器,以提高电容的散热能力。

- 使用合适的电压稳压器或过压保护装置,以防止电容过电压。

二、电容失效解决方案1. 电容短路当电容发生短路时,可能会导致电路故障或电容损坏。

解决电容短路问题的常见方法包括:- 检查电容引线之间是否存在短路或接触到其他导体,如果存在短路,需要修复或更换电容。

- 检查电容两端的保险丝或保护电路是否正常工作,如果保险丝熔断或保护电路触发,需要修复或更换保险丝或保护电路。

2. 电容损坏电容可能因为过热、过电压或其他原因而损坏。

解决电容损坏问题的方法包括:- 检查电容是否超过了其额定电压或电流,如果超过,需要更换电容并确保新电容符合电路需求。

- 检查电容是否过热,如果过热,可以在电容两端加入散热器或提高散热条件。

贴片电容常见的故障解决

贴片电容常见的故障解决

贴片电容常见的故障解决贴片电容是现代电路中常见的元器件,由于尺寸小、成本低、容量大等优点,被广泛应用于各种电子产品中。

然而,贴片电容也会出现故障,影响电路的正常工作。

本文将讨论贴片电容常见的故障原因和解决方案。

常见的故障原因1. 机械损伤由于贴片电容尺寸小、脆性强,移动、搬运等过程中容易发生机械损伤,造成短路或开路。

在检查时,应注意查找电容表面是否有刮擦或划痕迹象,特别是触电点是否有变形或残留物卡住。

2. 过压或过流贴片电容的额定电压和电流都是有限的,当超过额定值时,电容会受到损坏,导致故障。

此时,我们应该查看电路的工作电压和电容额定值,确保不会超出范围,否则需要更换电容或者使用合适的电容器件。

3. 焊接问题焊接不良或未焊接的引脚是贴片电容故障的常见原因之一。

检查焊接是否牢固,并用万用表检查引脚连接是否稳定。

同时,还应该注意焊接温度和时间,以免对电容产生不良影响。

4. 电容老化长时间使用后,贴片电容会逐渐老化,导致电容值偏低,阻抗增加,从而影响电路性能。

因此,在设计电路时应注意选用有较长寿命的电容,并在电路使用一定时间后进行检测和更换。

解决方案1. 更换贴片电容当贴片电容不能正常工作时,最常见的解决方案是更换贴片电容。

在更换时,要注意选用与原电容相同规格和参数的电容,以确保替换后电路正常工作。

2. 检查电路参数贴片电容故障也可能是因为电路参数不匹配导致的。

因此,在检查电容之前,应该先检查电路参数是否正确,如工作电压、电流、频率等,确保不过载或失配。

3. 检查焊接焊接不良和未焊接的引脚会导致贴片电容故障。

因此,应该检查焊接质量,确保焊点牢固,引脚连接可靠。

在重新焊接时应该选择合适的焊接方法和参数,以确保焊接质量。

4. 检查电容老化长时间使用后,贴片电容会逐渐老化,导致电容值偏低,阻抗增加。

在电容老化检测中,可以使用电容测试仪检测电容参数及其变化。

如果发现电容老化,应采取相应措施进行更换。

结论贴片电容是电子元器件中常见的部件之一,但也容易出现故障。

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案

电容使用注意事项与失效解决方案一、电容使用注意事项电容是电子元器件中常见的一种,用于储存和释放电荷。

在使用电容时,需要注意以下几个方面:1. 选用合适的电容类型:根据具体的应用需求选择合适的电容类型,常见的有陶瓷电容、铝电解电容、钽电容等。

不同类型的电容具有不同的特性和适合范围,需根据具体情况进行选择。

2. 电容额定电压:电容具有额定电压,超过额定电压会导致电容损坏。

在使用电容时,应确保工作电压不超过电容的额定电压,以避免电容破裂或者漏电。

3. 电容极性:铝电解电容和钽电容具有极性,需要正确连接正负极。

在安装时,应注意极性标识,并确保正确连接,否则会导致电容无法正常工作或者损坏。

4. 温度限制:电容的工作温度范围是有限的,超过工作温度范围会导致电容性能下降甚至失效。

在使用电容时,应确保工作温度不超过电容的额定温度范围。

5. 避免过电流冲击:过大的电流冲击会对电容造成伤害。

在使用电容时,应合理设计电路,避免过大的电流通过电容。

6. 防止静电放电:静电放电会对电容造成损坏。

在安装和使用电容时,应注意防止静电的产生和放电,避免对电容产生不良影响。

7. 避免震动和机械应力:电容对机械应力和震动敏感,应避免在机械应力和震动较大的环境中使用电容,以防止电容损坏。

二、电容失效解决方案电容在使用过程中可能会浮现各种故障和失效,以下是一些常见的失效情况及解决方案:1. 电容短路:电容短路会导致电路异常和电容过热。

如果发现电容短路,应即将住手使用,并更换新的电容。

2. 电容漏电:电容漏电会导致电路性能下降。

如果发现电容漏电,应检查连接是否正确,并确保工作电压不超过电容额定电压。

如果问题仍然存在,应更换新的电容。

3. 电容容值下降:电容容值下降会导致电路性能下降。

如果发现电容容值下降,应检查连接是否正确,并确保工作温度不超过电容额定温度范围。

如果问题仍然存在,应更换新的电容。

4. 电容老化:电容老化会导致电容性能下降或者失效。

技术小贴士:铝电解电容器常见缺陷的规避方法

技术小贴士:铝电解电容器常见缺陷的规避方法

技术小贴士:铝电解电容器常见缺陷的规避方法
因其低成本的特点,铝电解电容器一直都是电源的常用选择。

但是,它们寿命有限,且易受高温和低温极端条件的影响。

铝电解电容器在浸透电解液的纸片两面放置金属薄片。

这种电解液会在电容器寿命期间蒸发,从而改变其电气属性。

如果电容器失效,其会出现剧烈的反应:电容器中形成压力,迫使它释放出易燃、腐蚀性气体。

电解质蒸发的速度与电容器温度密切相关。

工作温度每下降10 摄氏度,电
容器寿命延长一倍。

电容器额定寿命通常为在其最大额定温度下得出的结果。

典型的额定寿命为105 摄氏度下1000 小时。

选择这些电容器用于图1 所示LED 灯泡等长寿命应用时(LED 的寿命为25000 小时),电容器的寿命便成了问题。

要想达到25000 小时寿命,这种电容器要求工作温度不超过65 摄氏度。

这种工作温度特别具有挑战性,因为在这种应用中,环境温度会超出125 摄氏度。

市场上有一些高额定温度的电容器,但是在大多数情况下,铝电解电容器都将成为LED 灯泡寿命的瓶颈组件。

图1 这种105℃电容器可能不会达到其声称的23 年寿命
这种寿命温度依赖度实际影响了您降低电容器额定电压的方法。

您首先想到的可能是增加电容器额定电压来最小化电介质失效的机率。

但是,这样做会使电容器的等效串联电阻(ESR) 更高。

由于电容器一般会具有高纹波电流应力,因此这种高电阻会带来额外的内部功耗,并且增加电容器温度。

故障率随温度升高而增加。

实际上,铝电解电容器通常只使用其额定电压的80%左右。

图2 低温下ESR 性能急剧下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贴片铝电解电容器常见缺陷的规避方法
贴片铝电解电容器因其低成本的特点,一直都是电源的常用选择。

但是,她们的寿命有限,且易受高温和低温极端条件的影响,铝电解电容器在浸透电解液的纸片两面放置金属薄片,这种电解液会在电容器寿命期间蒸发,从而改变其电气属性,如果电容器失效,其会出现剧烈的反应,电容器中形成压力,迫使它释放出易燃,腐蚀性气体。

新晨阳电子
电解质蒸发的速度与电容器温度密切相关,工作温度每下降10摄氏度,电容器寿命延长一倍,电容器额定寿命通常为在其大额定温度下得出的结果,典型的额定寿命为105摄氏度下1000小时,选择这些电容器LED灯泡等长寿命应用时(LED的寿命为258000小时),电容器的寿命便成了问题,要想达到25000小时寿命,这种电容器要求
工作温度不超过65摄氏度,这种工作温度特别具有挑战性,因为在这种应用中,环境温度会超出125摄氏度,市场上有一些高额定温度的电容器,但是在大多数情况下,铝电解电容器都成为LED灯泡寿命的瓶颈组件。

这种寿命温度依赖度实际影响了您降低电容器额定电压的方法,您首先想到的可能是增加铝电解电容器额定电压来最小化电介质失效的机率,但是,这样做会使电容器的等效串联电阻(ESR)更高,由于电容器一般会具有高纹波电流应力,因此这种高电阻会带来额外的内部功耗,并且增加铝电解电容器温度,故障率随温度升高而增加,实际上,铝电解电容器通常只使用其额定电压的80%左右。

相关文档
最新文档