晶闸管的结构以及工作基本知识
晶闸管相关知识点总结
![晶闸管相关知识点总结](https://img.taocdn.com/s3/m/3b0c543d8f9951e79b89680203d8ce2f0066659b.png)
晶闸管相关知识点总结一、晶闸管的基本结构晶闸管由四层P-N结组成,常用的结构有NPNP和PNPN两种。
NPNP结构的晶闸管由N型半导体和P型半导体交替组成,其中N1P1之间为薄的P2层,称为控制层。
PNPN结构的晶闸管则由P型半导体和N型半导体交替组成,其中P1N1之间为薄的N2层,也称为控制层。
在两种结构中,N1和P2之间或P1和N2之间的结被称为触发结,控制层P2或N2与外接的触发电压信号V_g相结,当V_g增大到一定数值时,触发结打开,晶闸管导通,电流通过。
晶闸管的最大阳极与阴极电压称为额定阳极电压U DRM,最大阳极电流称为额定阳极电流I DRM。
二、晶闸管的工作原理晶闸管的工作原理可以从触发过程和导通过程两个方面来解释:1.触发过程晶闸管的触发过程是从晶闸管关断状态转变成导通状态的过程。
在正常工作状态下,晶闸管的阳极与阴极两端之间的电压为正向电压,晶闸管是处于关断状态的。
当控制层加上一个正脉冲电压时,触发结上的电场会产生漏极扩散,从而使控制层中的电子和空穴向N1层或P1层运动。
如果控制层中的载流子浓度高于某个值,那么触发结的电阻就会下降,电流将通过触发结,使晶闸管进入导通状态。
2.导通过程当晶闸管处于导通状态时,阳极和压电传输的电流都是主要的通电要素。
此时晶闸管的特性曲线显示出电流与电压之间的非线性关系。
当电流I G增加,晶闸管的触发电压U GT几乎不变,但是阳极电流I A与触发电流I G呈线性关系。
当晶闸管的阳极电压增加,电流增大,但是增加的速度并非线性关系。
当电压继续增大时,电流稳定在一个较大的数值。
在导通状态下,晶闸管相当于一个两端电压少量扩大的二极管。
三、晶闸管的特性晶闸管的特性可以从静态特性和动态特性两个方面来讨论:1.静态特性晶闸管的静态特性包括触发特性和导通特性两个方面:触发特性是指晶闸管在不同触发电流和触发电压条件下的触发特性曲线。
当触发电流I G增加时,触发电压U GT基本不变,这种关系在实际电路中经常用来测量晶闸管的参数。
晶闸管的结构原理及应用
![晶闸管的结构原理及应用](https://img.taocdn.com/s3/m/2499a65911a6f524ccbff121dd36a32d7375c7e4.png)
晶闸管的结构原理及应用1. 晶闸管的概述晶闸管(Thyristor)是一种主要用于电能控制的半导体器件,广泛应用于电力电子技术领域。
晶闸管具有高压、大电流、能耗低、可靠性好等特点,被广泛应用于家电、工业控制、交通运输等领域。
2. 晶闸管的结构原理晶闸管的结构采用P-N-P-N四层结构,主要由控制极(G:Gate)、阳极(A:Anode)、阴极(K:Cathode)三个电极组成。
其结构和工作原理如下:•P层:阳极侧为P型半导体,控制极侧为薄的N型半导体层;•N层:阳极侧为N型半导体,控制极侧为一薄层的P型半导体层;•控制极:通过控制极加上一个触发脉冲,使得晶闸管的导通;•阳极:负责控制晶闸管的输出电流;•阴极:负责晶闸管的接地。
3. 晶闸管的工作原理晶闸管的工作原理可分为四个状态:关断(Off)、导通(On)、保持(Hold)、关断恢复(Off Recovery)。
1.关断状态:晶闸管在没有施加控制信号时处于关断状态,此时无法通过阳极和控制极之间的电流。
晶闸管的控制极与阳极之间存在电压可能会使其进入导通状态;2.导通状态:当控制极与阳极之间施加一个足够大的正向电压时,晶闸管进入导通状态。
此时,晶闸管的阳极和控制极之间的电流将开始流动;3.保持状态:在晶闸管进入导通状态后,控制极与阳极之间的电压可以降至较低水平,晶闸管仍然保持导通状态。
然而,如果该电压降至一定程度以下,则晶闸管将自动进入关断状态;4.关断恢复状态:当控制极与阳极之间的电压降至负值时,晶闸管将从导通状态恢复到关断状态。
4. 晶闸管的应用由于晶闸管具有可控性强、效率高、可靠性好等优点,被广泛应用于以下领域:•电力调节:晶闸管可用于交流电压调节,实现对电力的控制。
例如,晶闸管可以用于家庭用电中的调光灯、风扇等电器,以及电力工业中的电动机调速器、变频器等设备;•电流控制:晶闸管可用于控制电流的大小和方向。
例如,晶闸管可以用于电焊机,控制焊接电流,使焊接效果更加稳定和高效;•能量回收:晶闸管可以将电能回收并用于其他用途。
晶闸管工作原理
![晶闸管工作原理](https://img.taocdn.com/s3/m/143e29c9d5d8d15abe23482fb4daa58da0111cd7.png)
晶闸管工作原理引言概述:晶闸管是一种常用的电子器件,广泛应用于电力控制和调节领域。
本文将详细介绍晶闸管的工作原理,包括晶闸管的基本结构、工作原理和应用。
一、晶闸管的基本结构1.1 PN结的构成晶闸管由四层半导体材料构成,其中包含两个PN结。
PN结是由P型半导体和N型半导体材料的结合形成的。
P型半导体富含正电荷,N型半导体富含负电荷。
1.2 门极结构晶闸管的门极结构由控制电极和发射极组成。
控制电极通常是一个金属接触,用于控制晶闸管的导通和截止。
1.3 结构特点晶闸管的结构特点是具有双向导电性,即可以在正向和反向电压下导电。
此外,晶闸管还具有高压、大电流、高频等特点。
二、晶闸管的工作原理2.1 导通状态当晶闸管的控制电极施加正向电压时,PN结会形成一个导通通道,电流可以通过晶闸管流动。
此时,晶闸管处于导通状态。
2.2 截止状态当晶闸管的控制电极施加反向电压时,PN结会被反向偏置,导通通道被阻断,电流无法通过晶闸管。
此时,晶闸管处于截止状态。
2.3 触发条件晶闸管的导通需要满足一定的触发条件。
当控制电极施加正向电压时,需要在控制电极和发射极之间加入一个触发脉冲,以激活晶闸管的导通。
三、晶闸管的应用3.1 电力控制晶闸管可以用于电力控制领域,如交流电压调节、交流电流控制、交流电压变换等。
通过控制晶闸管的导通和截止,可以实现对电力的精确控制。
3.2 频率变换晶闸管的高频特性使其非常适适合于频率变换。
通过控制晶闸管的导通时间和截止时间,可以实现对输入信号频率的变换。
3.3 电动机控制晶闸管可以用于电动机控制,通过控制晶闸管的导通和截止,可以实现对电动机的启动、住手和调速。
四、晶闸管的优势4.1 快速开关速度晶闸管的导通和截止速度非常快,可以实现高频率的开关操作。
4.2 大电流承载能力晶闸管具有较高的电流承载能力,可以应对大功率电路的需求。
4.3 高温工作能力晶闸管具有较好的高温工作能力,能够在高温环境下稳定工作。
晶闸管的基础知识
![晶闸管的基础知识](https://img.taocdn.com/s3/m/c0c96a5fa55177232f60ddccda38376bae1fe048.png)
晶闸管的基础知识晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(Silicon Controlled Rec(ti)fier——SCR),以前被简称为可控硅。
由于其能承受的电压和(电流)容量仍然是目前(电力电子)器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。
1结构和(工作原理)晶闸管的结构:从外形看,晶闸管主要有螺栓型和平板型两种封装结构。
有阳极A、阴极K和门极G(控制端)三个连接端。
内部是PNPN四层(半导体)结构。
a) 外形b) 结构c) (电气)图形符号晶闸管的工作原理:为了更好地分析晶闸管的工作原理,我们采用双(晶体管)模型分析,具体见下图按照晶体管工作原理,可列出如下方程:式中α1和α2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1 和V2的共基极漏电流。
由上面四个等式可得晶体管的特性是:在低发射极电流下α是很小的,而当发射极电流建立起来之后,α迅速增大。
在晶体管阻断状态下,IG =0,而α1 +α2是很小的。
由上式可看出,此时流过晶闸管的漏电流只是稍大于两个晶体管漏电流之和。
如果注入触发电流使各个晶体管的发射极电流增大以致α1 +α2趋近于1的话,流过晶闸管的电流IA(阳极电流)将趋近于无穷大,从而实现器件饱和导通。
由于外电路负载的限制,IA实际上会维持有限值。
除门极触发外其他几种可能导通的情况:阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高结温较高光触发这些情况除了光触发由于可以保证(控制电路)与主电路之间的良好绝缘而应用于(高压)电力设备中之外,其它都因不易控制而难以应用于实践。
只有门极触发是最精确、迅速而可靠的控制手段。
2基本特性静态特性正常工作时的特性:当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。
当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。
第五节 晶闸管单相可控调压电路
![第五节 晶闸管单相可控调压电路](https://img.taocdn.com/s3/m/816a7c9671fe910ef12df812.png)
第五节晶闸管单相可控调压电路一、晶闸管的结构及其工作原理㈠晶闸管的结构常用的小功率晶闸管有螺旋式和塑封式两种,如图7-25(a)、(b)所示。
晶闸管内部是一个由硅半导体材料做成的管芯,由管芯引出三个极,称阳极A、阴极K和门极G(又称控制极),它的图形符号如图7-25(c),文字符号为T 。
晶闸管管芯内部结构示意图如图7-26(a)、(b)所示。
由图7-26(a)看出,去掉与三个引出线(三个极)有关的金属导体后,余下的是接在一起的P、N、P、N四层半导体。
将图进一步简化,其内部结构示意图就变成图7-26(b)的形式。
由该图看出,四层半导体有J1、、J2、和J3、三个PN结,三个电极分别由其最外层的P层,N层和中间的P层引出。
所以晶闸管是一个四层三端半导体器件。
㈡晶闸管的工作原理普通二极管是一个双层(P,N)半导体,只有一个PN结。
当二极管接电源使其P层电位高于N层时,二极管导通,称为正向接法,或叫作加正向电压;反之,称为反向接法,或叫作加反向电压。
当晶闸管上加的电压使其阳极A的电位高于阴极K的电位时,称晶闸管承受正向阳极电压,由图7-26(b)看出,该极性电压虽然使晶闸管两端的PN结J1、、J3承受正向电压,但中间的PN结J2承受反向电压,所以晶闸管不能导通,称为晶闸管的正向阻断状态,也称关断状态;当晶闸管上加的电压使其阳极A的电位低于阴极K的电位时,称晶闸管承受反向阳极电压,该极性电压使晶闸管两端的PN结J1、和J3承受反向电压,虽然中间的PN结J2、承受正向电压,晶闸管也不能导通,称为反向阻断状态,也称关断状态。
以上是晶闸管门极不加任何电压的情况,由此得出结论:晶闸管的门极不加电压时,不论晶闸管阳极和阴极间加何种极性的电压,正常情况下的晶闸管都不导通,这点与普通二极管不同,此时晶闸管具有正,反向阻断能力。
晶闸管的阳极与阴极之间加正向阳极电压,同时在门极G与阴极K之间加电压使门极的电位高于阴极时,称门极承受正向门极电压,则有门极电流流入门极,如图7-27所示。
晶闸管的结构以及工作原理
![晶闸管的结构以及工作原理](https://img.taocdn.com/s3/m/7111ad6a4a73f242336c1eb91a37f111f1850dff.png)
晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。
它的结构和工作原理可以分为几个方面进行介绍。
1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。
晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。
2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。
当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。
晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。
-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。
主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。
-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。
这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。
这种正反馈的作用会使晶闸管持续导通而不需要保持电流。
-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。
晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。
-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。
晶闸管的导通和关断是通过控制电极的电压来实现的。
当控制电压去除或降低,晶闸管将自动进入关断状态。
晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。
总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。
其工作原理是通过控制电压对其导通和关断进行控制。
晶闸管 通态电阻
![晶闸管 通态电阻](https://img.taocdn.com/s3/m/80d7d975ff4733687e21af45b307e87100f6f853.png)
晶闸管通态电阻晶闸管是一种特殊的半导体器件,具有正向导通和反向截止的特性。
在正向电压作用下,晶闸管的通态电阻非常小,可以将电流从阳极导通到阴极。
本文将从晶闸管的结构、工作原理和特点等方面,详细介绍晶闸管通态电阻的相关知识。
一、晶闸管的结构晶闸管由PNPN四层结构组成,主要包括P型区、N型区、P型区和N型区。
其中,P型区和N型区分别被称为阳极和阴极,而两个N型区之间的P型区则被称为控制电极。
晶闸管的结构类似于二极管,但其多了一个控制电极。
二、晶闸管的工作原理晶闸管的工作原理可以分为两个阶段:触发阶段和维持阶段。
1. 触发阶段:当控制电极施加一个正向电压时,P型区和N型区之间的势垒会逐渐被击穿,形成一个电子洞对。
这个电子洞对的形成将导致P型区与N型区之间的势垒消失,使得晶闸管处于可导通状态。
2. 维持阶段:一旦晶闸管被触发导通,控制电极上的电压可以被移除,晶闸管会一直保持导通状态,直到阳极电流降低到一个很小的值。
在导通状态下,晶闸管的通态电阻非常小,几乎等于零。
三、晶闸管通态电阻的特点晶闸管在导通状态下的通态电阻非常小,这是晶闸管的一个重要特点。
晶闸管的通态电阻取决于其工作电流和工作温度。
通常情况下,晶闸管的通态电阻随着工作电流的增大而减小,但随着工作温度的增加而增大。
晶闸管的通态电阻对于其在电路中的应用至关重要。
晶闸管的低通态电阻使其成为一种理想的开关元件,可广泛应用于各种电力电子设备和高频电子设备中。
在电力电子设备中,晶闸管可以用于实现电能的控制和转换,如调光、变频、整流等。
在高频电子设备中,晶闸管可以用于实现高频信号的放大和调制。
值得注意的是,晶闸管在导通状态下的通态电阻虽然很小,但在截止状态下的反向电阻非常大。
这意味着晶闸管在反向电压作用下几乎不导电,可以起到很好的隔离作用。
因此,在某些特殊的应用场合下,晶闸管也可以用作保护元件,用于防止反向电压对其他电路元件的损害。
总结起来,晶闸管的通态电阻是指在导通状态下晶闸管的电阻,其特点是非常小。
晶闸管的结构与工作原理
![晶闸管的结构与工作原理](https://img.taocdn.com/s3/m/bb7df7e681eb6294dd88d0d233d4b14e85243ef4.png)
晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。
晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。
在本文中,我们将讨论晶闸管的结构和工作原理。
一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。
2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。
3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。
在晶片上另一端同样有一块P型区,通常称为阴极。
4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。
5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。
门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。
晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。
二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。
下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。
此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。
2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。
在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。
3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。
因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。
第1章 晶闸管
![第1章 晶闸管](https://img.taocdn.com/s3/m/471ba909a216147917112845.png)
有效值与平均值之比称为波形系数Kf则: Kf=I/Id或I= KfId 。 例:设晶闸管承受的电压有效值为220V,流过的电流平 均为157A,波形系数为1.11,考虑安全裕量,求晶 闸管电压、电流定额。 i 解:UN=(2~3)1.414×220 IM =622 ~933V(取800V)
I K f Id I IT ( AV ) = (1.5 2) = (1.5 2) 1.57 1.57 1.11´ 157 0 (取 200 A) = (1.5 2) = 166 222 A 图1-11 1.57
学习重点:
晶闸管的工作原理、基本特性、主要参数以 及选择和使用中应注意的一些问题。
1.1
引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。
第1章
1.1 引言
晶闸管
1.2 晶闸管的结构与工作原理 1.3 晶闸管的基本特性 1.4 晶闸管的主要参数 1.5 晶闸管的派生器件
1.6 电力二极管(整流二极管)
本章学习内容与重点
本章内容:
介绍晶闸管的工作原理、基本特性、主要参 数以及选择和使用中应注意的一些问题。 介绍电力二极管、晶闸管派生器件的基本特 性和使用中应注意的一些问题。
仿真实验
1.2 晶闸管的结构与工作原理
晶闸管的工作原理
⊕工作原理(从其内部四层结构来 A 分析) P1 ①定性分析 J1 N1 a. UG≤0,IG=0 G J2 P2 UAK<0时,J1,J3反偏,J2正 J 3 偏,反向阻断,晶闸管不导通, N2 解释①。 K UAK>0时,J1,J3正偏,J2反 偏,晶闸管不导通,解释⑤。图1-2 晶闸管的内部结构图
晶闸管知识点总结
![晶闸管知识点总结](https://img.taocdn.com/s3/m/3b24ed71590216fc700abb68a98271fe910eafa0.png)
晶闸管知识点总结一、晶闸管的工作原理晶闸管是一种半导体器件,也称为双极型开关管。
它由四层P-N结构组成,具有三极管的放大和开关特性,可以控制大功率、高电压的直流和交流电路。
晶闸管的工作原理主要包括触发、导通和关断三个过程。
1. 触发过程:晶闸管的触发是由外部的信号电压或电流来完成的。
当外部信号电压或电流超过晶闸管的触发门电压时,会使得晶闸管的内部结构发生变化,从而使得晶闸管进入导通状态。
2. 导通过程:一旦晶闸管被触发,它就会进入导通状态,电流将通过晶闸管流向负载电路,完成电路的通断操作。
晶闸管的导通状态可以持续一段时间,直到外部信号电压或电流减小,或者达到关断条件。
3. 关断过程:当外部信号电压或电流减小,或者达到关断条件时,晶闸管会进入关断状态,电流不再通过晶闸管,从而完成电路的断开。
二、晶闸管的特性晶闸管具有许多独特的特性,使得它在电路中得到广泛应用。
1. 高电压能力:晶闸管可以承受较高的电压,通常可达数千伏。
2. 大电流能力:晶闸管能够承受较大的电流,通常可达数百安。
3. 快速开关特性:晶闸管具有快速的响应速度,可以在微秒内完成导通和关断操作。
4. 可控性强:晶闸管可以通过外部的触发信号来实现导通和关断,并且触发信号可以通过调节来实现晶闸管的控制。
5. 低损耗:晶闸管的导通和关断过程中损耗较小,效率较高。
6. 大功率应用:由于晶闸管具有较高的电压和电流能力,因此适用于大功率电路的控制。
三、晶闸管的类型和结构晶闸管主要有PNPN型、NPNP型和COM型三种结构,其中PNPN型晶闸管是最常用的一种。
1. PNPN型晶闸管:这种晶闸管由两个N型半导体区和两个P型半导体区交替排列组成。
在PNPN结构中,有一个P-N结和一个N-P结,这两个结共同构成了PNPN结构。
PNPN型晶闸管具有导通压降小,结构简单,制作容易等特点。
2. NPNP型晶闸管:这种晶闸管与PNPN型晶闸管结构相似,不同之处在于两个N型半导体区和两个P型半导体区的排列顺序相反。
晶闸管的结构与工作原理
![晶闸管的结构与工作原理](https://img.taocdn.com/s3/m/7dab98b5f80f76c66137ee06eff9aef8941e4895.png)
晶闸管的结构与工作原理晶闸管(Thyristor),又称为双极型晶体管,是一种半导体器件,具有可控的开关特性。
它广泛应用于电力电子设备、变流器、电机驱动器等领域。
本文将详细介绍晶闸管的结构和工作原理。
一、晶闸管的结构晶闸管由四个半导体层组成,分别是P型半导体(阳极)、N型半导体、P型半导体(门极)和N型半导体。
整个结构组成了一个PNPN的结构,类似于一个双极型晶体管,但晶闸管比双极型晶体管多了一个所有电流都能通过的门极。
在晶闸管结构中,阳极和门极是两个主要的电极。
阳极承受电流,而门极用于控制晶闸管的导通和关断。
在正常工作状态下,阳极上的电压高于门极,晶闸管处于关断状态。
只有当门极施加一个合适的触发脉冲时,晶闸管才能实现导通,形成通路,电流开始流动。
晶闸管还具有反并联二极管,它被连接在晶闸管的两个半导体层之间。
它的作用是提供反向偏置,以避免晶闸管在关断状态下被击穿。
同时,反并联二极管还能够保护晶闸管免受反向电压的损害。
二、晶闸管的工作原理晶闸管的工作原理可以分为三个阶段:关断状态、触发状态和导通状态。
1. 关断状态:在关断状态时,门极的控制电压低于晶闸管的临界触发电压。
此时,PNPN结构的两个PN结正向偏置,形成一个高反向电压,导致整个结构处于关断状态。
晶闸管的主要特点是具有很高的绝缘能力,能够承受很高的反向电压。
2. 触发状态:当门极施加一个合适的触发脉冲时,晶闸管就会从关断状态切换到触发状态。
触发脉冲使得PN结发生反向电流扩散,导致PN结正向偏置被打破。
一旦PN结正向偏置被打破,PNPN结构中的第一个PN结就会形成一个电流驱动器,使得整个结构逐渐变得导电。
3. 导通状态:在晶闸管进入导通状态后,发生一种被称为“自持现象”的反馈作用。
即使移除控制电压,晶闸管也会保持导通状态,直到通过它的电流下降到一个非常低的水平。
此时,晶闸管具有很低的压降和很高的电流承受能力,使其能够在高功率电子设备中广泛应用。
晶闸管工作原理
![晶闸管工作原理](https://img.taocdn.com/s3/m/5b09e74753ea551810a6f524ccbff121dd36c530.png)
晶闸管工作原理引言概述:晶闸管是一种常用的电子器件,广泛应用于电力控制和电子调节领域。
本文将详细介绍晶闸管的工作原理,包括结构组成、工作方式和特点等方面。
一、晶闸管的结构组成1.1 PN结构:晶闸管由PN结构组成,其中P层和N层分别为P型半导体和N 型半导体。
PN结构是晶闸管的基本单元,它决定了晶闸管的导通和截止。
1.2 控制极:晶闸管还包括一个控制极,通常称为G极或者门极。
控制极通过控制电流来控制晶闸管的导通和截止。
1.3 金属触发极:晶闸管还具有一个金属触发极,用于触发晶闸管的导通。
触发极通常由金属片组成,通过施加正向电压来触发晶闸管的导通。
二、晶闸管的工作方式2.1 导通状态:当晶闸管的控制极施加正向电压时,PN结的正向偏置会导致电流从P层流向N层,形成导通状态。
此时,晶闸管的电阻很小,电流可以通过。
2.2 截止状态:当晶闸管的控制极施加反向电压时,PN结的反向偏置会阻挠电流流动,晶闸管处于截止状态。
此时,晶闸管的电阻很大,电流无法通过。
2.3 触发导通:当晶闸管的触发极施加正向电压时,触发电流会通过触发极和控制极,使得晶闸管从截止状态变为导通状态。
触发导通后,即使控制极的电压变为零,晶闸管仍然保持导通状态。
三、晶闸管的特点3.1 可控性:晶闸管具有良好的可控性,可以通过控制极的电压来控制晶闸管的导通和截止。
3.2 高电压和高电流:晶闸管能够承受较高的电压和电流,适合于高功率电力控制。
3.3 快速开关速度:晶闸管的开关速度较快,能够实现高频率的开关操作。
3.4 低功耗:晶闸管在导通状态时的功耗较低,能够提高电路的效率。
四、晶闸管的应用领域4.1 电力控制:晶闸管广泛应用于电力控制领域,如交流电调光、电动机控制等。
4.2 电子调节:晶闸管也被用于电子调节领域,如变频调速、电炉温度控制等。
4.3 电子开关:由于晶闸管具有快速开关速度,它还可以用作电子开关,实现高频率的开关操作。
结论:本文详细介绍了晶闸管的工作原理,包括结构组成、工作方式和特点等方面。
晶闸管结构和工作原理
![晶闸管结构和工作原理](https://img.taocdn.com/s3/m/3323339729ea81c758f5f61fb7360b4c2e3f2abb.png)
晶闸管结构和工作原理晶闸管是一种电力电子器件,主要用于交流电的控制。
它具有可控硅的性质,可用于控制高功率电路中的电流和电压。
下面将详细介绍晶闸管的结构和工作原理。
晶闸管的结构:晶闸管主要由四个层状结构的半导体材料构成,分别为N型半导体层、P型半导体层、N型半导体层和P型半导体层。
其中,两个N型半导体层分别为阳极和阴极,两个P型半导体层分别为控制电极和控制极。
这四个层状结构组成了一个PNPN的结构,在两个P型半导体层之间形成一个N型的电流通道。
晶闸管的工作原理:晶闸管的工作原理可以分为四个阶段:关断状态、触发状态、导通状态和自关断状态。
1.关断状态:当晶闸管两端的电压低于其耐压能力时,晶闸管处于关断状态。
此时,晶闸管的正向和反向电阻非常大,几乎不导电。
2.触发状态:当控制电极施加一个正向电压时,会在控制电极和阳极之间形成一个小电流。
这个小电流被称为触发电流,它可以激活和控制晶闸管的导通。
3.导通状态:当晶闸管的控制电极施加一个足够的触发电流时,晶闸管可以从关断状态转变为导通状态。
此时,晶闸管会变为低电阻状态,导通电流流过。
4.自关断状态:当晶闸管处于导通状态时,只有当电流降至零或通过一个负电流触发时,晶闸管才能自动返回关断状态。
此时,通过断开控制电路或通过反向电流将晶闸管的控制电极电压逆向极化,晶闸管会自动关断。
晶闸管的应用:晶闸管作为一种可控硅器件,具有广泛的应用。
主要有以下几个方面:1.交流电控制:晶闸管可以用于控制交流电的电流和电压,如家电中的电炉、实验室中的变压器和电机控制等。
2.电力调节器:晶闸管可以用于电力调节器中,用于控制电能的输出和稳定电路。
3.变频器:晶闸管可以用于变频器中,将交流电转换为不同频率的电流,广泛应用于电机调速、光伏发电和风电发电等领域。
4.焊接设备:晶闸管可以用于电子焊接设备中,控制焊接电流的大小和稳定性。
5.逆变器:晶闸管可以用于逆变器中,将直流电转换为交流电,并可调节输出电压和频率,应用于太阳能发电和电动汽车等领域。
晶闸管的结构以及工作基本知识
![晶闸管的结构以及工作基本知识](https://img.taocdn.com/s3/m/c79d11c1650e52ea541898b8.png)
一、晶闸管的基本结构品闸管(SemiconductorControlled Rectifier 简称SCR)是一种四层结构(PNPN)的大功率半导体器件,它同时乂被称作可控整流器或可控硅元件。
它有三个引出电极,即阳极(A)、阴极(K)和门极(G)。
其符号表示法和器件剖面图如图1所示。
图1符号表示法和器件剖面图普通晶闸管是在'型硅片中双向扩散P型杂质(铝或硼),形成RNR结构, 然后在人的大部分区域扩散N型杂质(磷或锐)形成阴极,同时在P?上引出门极,在片区域形成欧姆接触作为阳极。
图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是山阳极电压、阳极电流和门极电流共同决定 的。
通常用伏安特性曲线来描述它们之间的关系,如图3所示。
图3晶闸管的伏安特性曲线3 1b)当晶闸管加正向电压时,人和丿3正偏,厶反偏,外加电压儿乎全部降落在丿2结上,厶结起到阻断电流的作用。
随着匕K的增大,只要匕K<匕”通过阳极电流厶都很小,因而称此区域为正向阻断状态。
当匕K增大超过匕。
以后, 阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过山负载决定的通态电流*,器件压降为IV左右,特性曲线CD段对应的状态称为导通状态。
通常将匕。
及其所对应的/眈称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是山外部电路控制,即只有当电流小到称为维持电流/ 〃的某一临界值以下,器件才能被关断。
当晶闸管处于断态(“脉< %。
)时,如果使得门极相对于阴极为正,给门极通以电流心,那么晶闸管将在较低的电压下转折导通。
转折电压/。
以及转折电流乙。
都是的函数,心越大,匕。
越小。
如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。
当晶闸管的阳极相对于阴极为负,只要匕匕。
,厶很小,且与人基本无关。
但反向电压很大时(匕匕。
),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称匕。
晶闸管的构造和工作原理
![晶闸管的构造和工作原理](https://img.taocdn.com/s3/m/fd82fcacafaad1f34693daef5ef7ba0d4a736dc2.png)
晶闸管的构造和工作原理晶闸管(Thyristor)是一种功率电子器件,由晶体管和二极管组成。
它具有三个引脚,分别是控制极(Gate),阳极(Anode)和阴极(Cathode)。
晶闸管常用于高电流、高电压和高功率的控制电路中。
本文将详细介绍晶闸管的构造和工作原理。
1.构造:晶闸管的基本结构是由PNPN四层结构的晶体管与二极管串联而成。
这四层结构分别是P型材料、N型材料、P型材料和N型材料。
这个结构可以用一个“门”、“阳”和一个“阴”桥线来形象地表示。
2.工作原理:(1)正向偏压放电:当正向电压施加在晶闸管上时,由于正偏压的存在,P1-N1结和P3-N2结都形成了电反向势垒。
只有阳极(A)与阴极(K)之间的N2芯片的电势压降可以克服势垒电位,晶闸管处于开路状态。
(2)开关行为:当一个触发脉冲施加到控制极(G)时,晶闸管的NPNP四层结的N1区电流被注入,从而降低了N1-P2结区的耐压。
晶闸管的二极管为N1结和P2结,开关电压达到断开电压时,晶闸管会开始导电。
(3)负向偏压阻断:当负偏电压施加在晶闸管上时,P3-N2结和P1-N1结都会产生电反向势垒。
这些势垒会使结区的电压无法降低到低电压状态的门极Vg,从而保持了晶闸管的封闭状态。
(4)关断行为:为了在晶闸管中实现关断行为,需要通过应用一个消除或减小持续导电的电流的方法来降低控制脉冲的电流。
一种常用的方式是直接短路晶闸管间的阳极电流。
晶闸管是一个双向导电的器件,一个触发脉冲可以打开它,而只有当阴极和阳极之间的电压掉落为零时,它才能关闭。
这使得晶闸管适用于许多应用,如照明调光、变频器、交流传动和交流电压控制等。
晶闸管有很多特点,包括电流放大、高开关速度、可靠性、耐压性好、反向电压稳定性等。
因此,晶闸管在现代电力电子器件中广泛应用。
总的来说,晶闸管是一种特殊的PNPN结构器件,具有双向导电性能。
控制极通过触发脉冲可以打开晶闸管,同时只有当阴极和阳极之间的电压为零时,晶闸管才会关闭。
晶闸管结构及工作原理_
![晶闸管结构及工作原理_](https://img.taocdn.com/s3/m/fa44024a02d8ce2f0066f5335a8102d277a26144.png)
晶闸管结构及工作原理_晶闸管的结构主要由四个区域组成:N区,P区,N+区和P+区。
其中N区和P区之间形成PN结,N+区和P+区之间形成P+N结。
在N区和P区之间加上一个外接电压,当向PN结端施加一个正向电压时,PN结处的电子和空穴被迁移到PN结的另一侧,形成一个导电通路。
这个导电通路就是晶闸管的主要通道。
晶闸管的工作原理是基于PNPN结构。
当晶闸管处于关断状态时,PN 结处有一个薄的绝缘层,没有电流通过。
一旦向PN结端施加一个正向电压,PN结附近的电子被迁移到P区,形成电子空穴对。
这些电子空穴对再漂移到PN结另一侧,继续形成更多的电子空穴对,这样就形成了一个电导通道。
当晶闸管接通时,通过PNPN结的电流增加,PN结的电场增强,进一步促进了电流的传输。
晶闸管内部的电导通道逐渐扩大,形成一个低阻通道,从而允许更大的电流通过。
晶闸管处于导通状态时,仅需一个较小的控制电流即可控制整个晶闸管的电流。
通过控制晶闸管的触发脉冲,可以实现开关功能。
当有一个触发脉冲施加在PNPN结上时,PNPN结的电流迅速增加,晶闸管从导通状态转换为关断状态。
同样地,当再次施加一个触发脉冲时,晶闸管又从关断状态转换为导通状态。
晶闸管的工作原理主要涉及到PNPN结的电流迁移和电导特性。
其关键在于控制电路和触发脉冲的施加。
正是通过对触发脉冲进行控制,以及对晶闸管的电流和电压进行有效的监控,才能实现对晶闸管的精确控制。
晶闸管的结构和工作原理的理解对于实际应用非常重要。
晶闸管可以在电力控制、变换和调制等领域中发挥重要作用,如交流电变直流电、电能调节和传输等。
通过深入了解晶闸管的特性和工作原理,可以更好地应用晶闸管,提高电力系统的效率和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、晶闸管的基本结构晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。
它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。
其符号表示法和器件剖面图如图1所示。
图1 符号表示法和器件剖面图普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。
图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。
通常用伏安特性曲线来描述它们之间的关系,如图3所示。
图3 晶闸管的伏安特性曲线当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。
随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。
当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。
通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。
当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。
转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。
如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。
当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。
但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。
三、晶闸管的静态特性晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。
如图5所示。
(一)正向工作区1、正向阻断区(0~1)区域当AK 之间加正向电压时,1J 和3J 结承受正向电压,而2J 结承受反向电压,外加电压几乎全部落在2J 结身上。
反偏2J 结起到阻断电流的作用,这时晶闸管是不导通。
2、雪崩区(1~2也称转折区)当外加电压上升接近2J 结的雪崩击穿电压2BJ V 时,反偏2J 结空间电荷区宽度扩展的同时,内电场也大大增强,从而引起倍增效应加强。
于是,通过2J 结的电流突然增大,并使得流过器件的电流也增大。
此时,通过2J 结的电流,由原来的反向电流转变为主要由1J 和3J 结注入的载流子经过基区衰减而在2J 结空间电荷区倍增了的电流,这就是电压增加,电流急剧增加的雪崩区。
因此区域发生特性曲线转折,故称转折区。
3、负载区(2~3)当外加电压大于转折电压时候,2J 结空间电荷区雪崩倍增所产生大量的电子—空穴对,受到反向电场的抽取作用,电子进入1N 区,空穴进入2P 区,由于不能很快的复合,所以造成2J 结两侧附近发生载流子积累:空穴在2P 区、电子在1N 区,补偿离化杂质电荷,使得空间电荷区变窄。
由此使得2P 区电位升高、1N 区电位下降,起了抵消外电场作用。
随着2J 结上外加电压下降,雪崩倍增效效应也随之减弱。
另一方面1J 和3J 结的正向电压却有所增强,注入增加,造成通过2J 结的电流增大,于是出现了电流增加电压减小的负阻现象。
4、低阻通态区(3~4)如上所述,倍增效应使得2J 结两侧形成电子和空穴的积累,造成2J 结反偏电压减小;同时又使得1J 和3J 结注入增强,电路增大,因而2J 结两侧继续有电荷积累,结电压不断下降。
当电压下降到雪崩倍增停止以后,结电压全部被抵销后,2J 结两侧仍有空穴和电子积累,2J 结变为正偏。
此时1J 、2J 和3J 结全部正偏,器件可以通过大电流,因为处于低阻通态区。
完全导通时,其伏安特性曲线与整流元件相似。
(二)反向工作区(0~5)器件工作在反向时候,1J 和3J 结反偏,由于重掺杂的3J 结击穿电压很低,1J 结承受了几乎全部的外加电压。
器件伏安特性就为反偏二极管的伏安特性曲线。
因此,PNPN 晶闸管存在反向阻断区,而当电压增大到1J 结击穿电压以上,由于雪崩倍增效应,电流急剧增大,此时晶闸管被击穿。
图4 晶闸管的门极电流对电流—电压特性曲线的影响四、晶闸管的特性方程一个PNPN 四层结构的两端器件,可以看成电流放大系数分别为1α和2α的211P N P 和221N P N 晶体管,其中2J 结为共用集电结,如图6所示。
当器件加正向电压时。
正偏1J 结注入空穴经过1N 区的输运,到达集电极结(2J )空穴电流为A I 1α;而正偏的3J 结注入电子,经过2P 区的输运到达2J 结的电流为K I 2α。
由于2J 结处于反向,通过2J 结的电流还包括自身的反向饱和电流CO I 。
由图6可知,通过2J 结的电流为上述三者之和,即CO K A J I I I I ++=212αα (1)假定发射效率121==γγ,根据电流连续性原理K A J I I I ==2,所以公式(1)变成:)(121αα+-=CO A I I (2) 公式说明,当正向电压小于2J 结的雪崩击穿电压B V ,倍增效应很小,注入电流也很小,所以1α和2α也很小,故有121<+αα (3)此时的CO I 也很小。
所以1J 和3J 结正偏,所以增加AK V 只能使2J 结反偏压增大,并不能使CO I 及A I 增加很多,因而器件始终处于阻断状态,流过器件的电流与CO I 同一数量级。
因此将公式(3)称为阻断条件。
当AK V 增加使得2J 结反偏压增大而发生雪崩倍增时候,假定倍增因子M M M p n ==,则CO I 、1α和2α都将增大M 倍,故(2)变成)(121αα+-=M MI I CO A (4) 此时分母变小,A I 将随AK V 的增长而迅速增加,所以当1)(21=+ααM (5)便达到雪崩稳定状态极限(BO AK V V =),电流将趋于无穷大,因此(5)式称为正向转折条件。
准确的转折点条件,是根据特性曲线下降段的起点来标志转折点。
在这点0=A AK dI dV ,022<AAK dI V d 现在利用这个特点,由特性曲线方程式(4)推导转折点条件。
因为1α和2α是电流的函数,M 是2J V 的函数,可近似用)()(2AK J V M V M =,CO I 为常数,对(4)求导AKA dV dI ,计算结果是 AKCO A A A A A A AK A AAK dV dM I I I dI d I M dI d I M dV dI dI dV )()()(11212211+++-+-==αααααα (6) 由于转折电压低于击穿电压,故AKdV dM 为一恒定值。
分母也为恒定值,由于0=AAK dI dV ,分子也必须为零,可得到 1)()(2211=+++AA A A dI d I M dI d I M αααα (7) 根据晶体管直流电压放大系数的定义,CBO E C I I I +=α (8)即可得到小信号电流放大系数EE E C dI d I dI dI ααα+==~ (9) 利用公式(9)可把公式(7)变为 1)(2~~1=+ααM (10)即在转折点,倍增因子与小信号~α之和的乘积刚好为1。
PNPN 结构只要满足上式,便具有开关特性,即可以从断态转变成通态。
由于α是随着电流E I 变化的,当A I 增大,1α和2α都随之增大。
由此可知,在电流较大时,满足(6)的M 值反而可以减小。
这说明A I 增大,AK V 相应减小,这正是图5中曲线(2~3)所示的负阻段。
α既是电流的函数名同时也是集电结电压的函数,当α一定时电流增大则相应的集电结反偏压减小。
当电流很大,会出现121>+αα (6)根据方程(2),2J 结提供一个通态电流(0<CO I )。
因此2J 结必须正偏,于是 1J 、2J 和3J 结全部正偏,器件处于导通。
这便是图5中的低压大电流段。
器件有断态变为通态,关键在于2J 结必须由反偏转为正偏。
2J 结反向专为正向的条件是2P 区、1N 区分别应有空穴和电子积累。
从图(6)可以看出,2P 区有空穴积累的条件是,1J 结注入并且被2J 收集到2P 区的空穴量A I 1α要大于同K I )1(2α-通过复合而消失的空穴量,即K A I I )1(21αα-> (7)因为K A I I =,所以得到121>+αα。
只要条件成立,2P 区的空穴积累同样,1N 区电子积累条件为K A I I )1(12αα-> (8)故121>+αα (9)可见当121>+αα条件满足时候,2P 区电位为正,1N 区电位为负。
2J 结变为正偏,器件处于导通状态,所以121>+αα称为导通条件。
五、门极触发原理如图5-7所示,断态时,晶闸管的1J 和3J 结处于轻微的正偏,2J 结处于反偏,承受几乎全部断态电压。
由于受反向2J 结所限,器件只能流过很小的漏电流。
若在门极相对于阴极加正向电压G V ,便会有一股与阳极电流同方向的门极电流G I 通过3J 结,于是通过3J 结的电流便不再受反偏2J 结限制。
只要改变加在3J 结上的电压,便可以控制3J 结的电流大小。
G I 增大时,通过3J 结的电流的电流也随着增大,由此引起2N 区向2P 区注入大量的电子。
注入2P 区的电子,一部分与空穴复合,形成门极电流的一部分,另一部分电子在2P 区通过扩散到达2J 结被收集到1N 区,由此引起通过2J 结电子电流增加,2α随之增大。
电子被收集到1N 区使得该地区电位下降,从而使得1J 结更加正偏,注入空穴电流增大,于是通过2211N P N P 结构的电流A I 也增大。
而1α和2α都是电流的函数,它将随着电流A I 增大而变大。
这样,当门极电流G I 足够大时候,就会使得通过器件的电流增大,使得121>+αα条件成立。
所以,当加门极信号时候,器件可以在较小的电压下触发导通。
G I 越大,导通时候的转折电压就越低,如图4所示。
对于三端晶闸管,如图所示7,通过2J 结的各电流分量之和仍然等于总电流A I ,即A C I I 11α= (1)A C I I 22α= (2)A G K I I I += (3)CO c c A I I I I ++=21 (4)将(1)和(3)分别代入(4)有CO K A A I I I I ++=21αα (5)当考虑倍增效应情况下,各电流分量经过2J 结空间电荷区后都要增大M 倍,因此CO K A A MI I M I M I ++=21αα (8))(1)(212ααα+-+=M I I M I G CO A (9) )(1212ααα+-+=G CO A I I I (当M=1) (10) 这就是晶闸管的特性方程,它表明晶闸管加正向电压时,阳极电流与1α和2α以及G I 和CO I 的关系。