上海交大附中2018年初中数学自主招生试卷

合集下载

2018年上海中学自主招数学试卷-含答案详解

2018年上海中学自主招数学试卷-含答案详解

2018年上海中学自主招数学试卷一、选择题(本大题共4小题,共12.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知x2+ax−12能分解成两个整数系数的一次因式的积,则整数a的个数有( )A. 0B. 2C. 4D. 62. 如图,D、E分别为△ABC的底边所在直线上的两点,BD=EC,过A作直线l,作DM//BA 交l于M,作EN//CA交l于N.设△ABM面积为S1,△ACN面积为S2,则( )A. S1>S2B. S1=S2C. S1<S2D. S1与S2的大小与过点A的直线位置有关3. 设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+ p2x+q2=0,则( )A. 甲必有实根,乙也必有实根B. 甲没有实根,乙也没有实根C. 甲、乙至少有一个有实根D. 甲、乙是否总有一个有实根不能确定4. 设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a−b的整数为( )A. 252B. 504C. 1007D. 2013二、填空题(本大题共8小题,共24.0分)5. 已知1a +1b=1a+b,则ba+ab的值等于______ .6. 有______个实数x,可以使得√120−√x为整数.7. 如图,△ABC中,AB=AC,CD=BF,BD=CE,用含∠A的式子表示∠EDF,则∠EDF=______.8. 在直角坐标系中,抛物线y=x2+mx−34m2(m>0)与x轴交于A,B两点.若A,B两点到原点的距离分别为OA,OB,且满足1OB −1OA=23,则m的值等于_______.9. 定圆A的半径为72,动圆B的半径为r,r<72且r是一个整数,动圆B保持内切于圆A且沿着圆A的圆周滚动一圈,若动圆B开始滚动时的切点与结束时的切点是同一点,则r共有______个可能的值.10. 学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有______人.11. 对于各数互不相等的正整数组(a1,a2,…a n)(n是不小于2的正整数),如果在i<j时有a i>a j,则称a i与a j是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a1,a2,a3,a4,a5,a6)的逆序数为2,则(a6,a5,a4,a3,a2,a1)的逆序数为______.12. 若n为正整数,则使得关于x的不等式1121<nx+n<1019有唯一的整数解的n的最大值为______.三、解答题(本大题共2小题,共16.0分。

上交2018年自主招生试题

上交2018年自主招生试题

2018年上海交通大学自主招生考试 1.设点0)P,已知曲线y x =≤≤上存在n 个点12,,,n A A A ,使得12,,,n PA PA PA构成公差为1(5d ∈的等差数列,求n 的最大值;2.已知△ABC 的面积为14,外接圆半径R=1111a b c++的大小3.已知等差数列{}n a ,满足2211n a a a ++≤,试求1221n n n a a a ++++++的最大值4.记6的小数部分为t,求t 6)的值 5.已知2113,12n n n a a a a +==-+,求122017111a a a +++的整数部份6.设X 为全集,A X ⊂,定义1,0,S A S Af S A ∈⎧=⎨∉⎩,对X 的真子集A 和B ,下列错误的是( )A . S SB A B A f f ⊆⇒≤ B .若B A ⋂≠φ,则S S S B S B A f f f ⋂≤≤C .忘记D . S S S B S B A f f f ⋃=≤7.在四面体中不同长度的棱长至少有______条8.在一个平面内,一条抛物线把平面最多分成2部分,两条抛物线把平面最多分成7部分,问四条抛物线把平面最多分成几部分?9.已知22(,)(53cos )(2sin )g a b a b a b =+-+-,求(,)g a b 的最小值 10.已知133a =,12n n a a n +-=,则当na n取最小值时,n =________ 11.已知动点A 在椭圆2212516x y +=上,动点B 在圆22(6)1x y -+=上,求AB 的最大值12.若100!12(*)n M M Z =∈,则当n 取最大值时,M 是否能被2,3整数13.设光线从点A (1,1)出发,经过y 轴反射到圆22(5)(7)1x y -+-=上一点P ,若光线从点A 到点P 经过的路程为R ,求R 的最小值14.正整数列1,2,3……,将其中的完全平方数和完全立方数都划去,求将剩下的数按照从小到大排列的第500个数是多少?。

上海市杨浦区2017-2018自招考题

上海市杨浦区2017-2018自招考题
学生反馈: 没有多少超纲的题,而且大把时间都是学姐给介绍附中的学习生活。除了两张卷子其余 时间没有什么“观察我们做实验”或者面试这样子的情节。所以主要看分数。物理明显简单, 数学开始容易后面难,化学难,英语正常。还有初中的学姐特别贴心担心我们冷还准备了暖 宝宝。
2018 自招情况
参与人群:到场约 600+人,80+人冲考,给冲考(基本上早点去等候冲考的人都让进了, 大多数拿到邀请函的都是兰生复旦的因为很多穿着兰生复旦校服的人都来了)家长不可进校; 有准考证的先进校园,冲考 7:50 进入校园,在另外的考场参加考试;
2018 创生科技班
34
2018 仰晖计划实验班
35
36
37
控江中学
2017 自招情况
参与人群:1500+人考试,给冲考,冲考的大概 600+人; 活动安排: 上午过去直接进去报告厅一样的地方分批进去考试;
考试内容: 语数英合卷,75 分钟,9 页;理化合卷,6 页,60 分钟,一共 111 题,都是选择;数 学和化学有多选题,选全对 5 分,部分答对 2 分,选错不给分; 语文:全是选择没有阅读,主要考知识积累; 数学:有点难度,主要考察知识点:统计,圆,函数,方程,无理数,不等式; 英语:一篇完形填空一篇阅读选择很难..基本就是两三个不会的词,词汇量大的会好做 一点; 物理:考的一般;有一题算是数学物理综合题(两个人从 a 出发,一个走了三分钟拐弯, 速度是另一个人两倍,另一个人直走,最后在 c 相遇,求 a 到 c 可能的距离); 化学:基本就是学校里的,不难;知识点分布:关于物质的类别、酸碱(这个方面比较 多),还有一些实验题;
7、以下四句不是交中的民间校训是? (每届同学都口口相传的话)(1 分)

自主招生初中试卷数学题

自主招生初中试卷数学题

1. 已知一个数x满足x²-2x+1=0,则x的值为()A. 1B. 2C. 0D. -12. 在等差数列{an}中,若a1=2,d=3,则第10项an的值为()A. 27B. 28C. 29D. 303. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 84. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积为()A. 40B. 50C. 60D. 805. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点为()A.(4,3)B.(-4,-3)C.(-3,-4)D.(-4,3)二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an=3n²-2n+1,则a4的值为______。

7. 在等差数列{an}中,若a1=1,公差d=2,则第10项an的值为______。

8. 已知直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB的长度为______。

9. 在等腰三角形ABC中,底边AB=8,腰AC=10,则该三角形的面积为______。

10. 在平面直角坐标系中,点P(-2,3)关于直线y=-x的对称点为______。

三、解答题(每题10分,共40分)11. (10分)已知数列{an}的通项公式为an=2n+1,求该数列的前10项之和。

12. (10分)已知等差数列{an}的公差d=3,若a1+a4+a7=27,求该数列的前10项之和。

13. (10分)在直角三角形ABC中,∠C=90°,AC=6,BC=8,求斜边AB的长度。

14. (10分)在等腰三角形ABC中,底边AB=10,腰AC=12,求该三角形的面积。

15. (10分)在平面直角坐标系中,点P(2,-3)关于直线y=x的对称点为Q,求点Q的坐标。

交大附中自招真题试卷卷

交大附中自招真题试卷卷

交大附中自招真题卷整理【例 1】已知甲、乙、丙三个电荷,依次排列在同素来线上,且都处于静止状态,由此可以判断()A.甲、乙、丙带同种电荷B.甲、丙带同种电荷,甲、乙带异种电荷C.甲、丙带同种电荷,甲、乙可能带同种电荷,也可能带异种电荷D.无论甲、乙、丙带何种电荷,均可能使它们同时静止【例 2】以下列图,作用在杠杆一端且向来与杠杆垂直的力F,将杠杆缓慢地由地址 A 拉至地址 B,在这个过程中,力 F 的大小()A. 变小B.不变C.变大D.先变大后变小【例 3】人们常常用充气泵为金鱼缸内的水补充氧气,以下列图为充气泵气室的工作原理图。

设大气压强为P0,气室中的气体压强为P,气体经过阀门S1、S2与空气导管相连接,以下选项中正确的选项是()A.当橡皮碗被拉伸时, P>P0, S1开通 ,S 2关闭B.当橡皮碗被拉伸时, P<P0, S1开通, S2关闭C.当橡皮碗被压缩时, P>P0, S1关闭, S2开通D.当橡皮碗被压缩时, P<P0, S1关闭, S2开通【例 4】以下列图,静止的传达带上有一木块 A 正在匀速下滑, 当传达带突然向上开动时,木块滑终究部所需的时间t 与传达带静止不动时所需时间t 0对照()A.t=t 0B.t>t 0C.t<t 0D.无法判断【例5】某旅客在火车车厢内以米/ 秒的速度行走。

当车厢静止时,他从车厢头走到车厢尾需要 20 秒。

当火车以10 米/ 秒的速度向前匀速行驶时,则他从车厢头走到车厢尾需要的时间是 ______秒,站在地面上的人看见该旅客经过的行程为______米。

【例 6】以下列图,将一块重为3N,体积为100cm3的石块,用细线系着吞没在装有水的圆柱形容器中,容器中水的深度由10cm上升到 12cm。

则石块所受浮力大小为______牛;细线松动,石块沉到容器底静止后,容器对水平川面的压强为______帕 ( 容器的重力和容器壁的厚度, g=10N/kg) 。

交大附中自招真题卷整理

交大附中自招真题卷整理

交大附中自招真题卷整理【例1】已知甲、乙、丙三个电荷,依次排列在同一直线上,且都处于静止状态,由此可以判断()A. 甲、乙、丙带同种电荷B. 甲、丙带同种电荷,甲、乙带异种电荷C. 甲、丙带同种电荷,甲、乙可能带同种电荷,也可能带异种电荷D. 无论甲、乙、丙带何种电荷,均可能使它们同时静止【例2】如图所示,作用在杠杆一端且始终与杠杆垂直的力F,将杠杆缓慢地由位置A拉至位置B,在这个过程中,力F的大小()A.变小B. 不变C. 变大D.先变大后变小【例3】人们常常用充气泵为金鱼缸内的水补充氧气,如图所示为充气泵气室的工作原理图。

设大气压强为P0,气室中的气体压强为P,气体通过阀门S1、S2与空气导管相连接,下列选项中正确的是()A. 当橡皮碗被拉伸时,P>P0,S1开通,S2关闭B. 当橡皮碗被拉伸时,P<P0,S1开通,S2关闭C. 当橡皮碗被压缩时,P>P0,S1关闭,S2开通D. 当橡皮碗被压缩时,P<P0,S1关闭,S2开通【例4】如图所示,静止的传送带上有一木块A正在匀速下滑,当传送带突然向上开动时,木块滑到底部所需的时间t与传送带静止不动时所需时间t0相比()A. t=t0B. t>t0C. t<t0D. 无法判断【例5】某旅客在火车车厢内以1.5米/秒的速度行走。

当车厢静止时,他从车厢头走到车厢尾需要20秒。

当火车以10米/秒的速度向前匀速行驶时,则他从车厢头走到车厢尾需要的时间是______秒,站在地面上的人看见该旅客通过的路程为______米。

【例6】如图所示,将一块重为3N,体积为100cm3的石块,用细线系着浸没在装有水的圆柱形容器中,容器中水的深度由10cm上升到12cm。

则石块所受浮力大小为______牛;细线松动,石块沉到容器底静止后,容器对水平地面的压强为______帕(容器的重力和容器壁的厚度,g=10N/kg)。

【例7】把一根粗糙的木棒按图所示的方式放在分开的两手的食指上。

2018上海市上海交通大学附属中学自招真题及答案

2018上海市上海交通大学附属中学自招真题及答案

3. AB∥CD , AB = 15 , CD = 10 , AD = 3 , CB = 4 ,求 SABCD __________. 【答案】 【解析】解:设 AE = x , BC∥FD , 则:: AF = AB − CD = 5 , GF =AF − AE =5 − x ,
A= D2 A= E2 FD2 − EF 2 即: 9 − x2 = 16 − (5 − x)2 ,
= 1 + 1 2 4k +
2
(k
= 1, ,50)

故 a≤ 51 , 101

1 2
<
a≤ 51 101
,故
amax
=
51 101

10. G 为重心, DE 过重心,求 S△ADE max 以及 S△ADE min ,并证明结论.
A
D
E
B
C
【答案】 【解析】假设△ABC 面积为 S1 ,△ADE 面积为 S2 , 设 AD = mAB , AE = nAC ,由于 G 为△ABC 重心,易知: 1 + 1 =3 ,
A
D
G
D
E
B
C
E
7.在直角坐标系中,正 △ABC

B(2, 0)
,C
9 2
,
0
,过点 O
作直线
OMN
, OM
=
MN
,求
M 的横坐标__________.
y A
MN
OB
Cx
17 【答案】
8 【解析】作 MH∥AC , MG ⊥ BH , 设 BH = x ,
OH = HC ⇒ 2 + x = 5 − x , 2

交大附中数学真题试卷

交大附中数学真题试卷

交大附中数学真题试卷一、选择题(每题3分,共30分)1. 下列哪个数不是实数?A. πB. √2C. -1D. i2. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。

A. 5B. 3C. 1D. 73. 根据题目所给的几何图形,以下哪个选项是正确的?A. 三角形ABC是等边三角形B. 三角形ABC是直角三角形C. 三角形ABC是等腰三角形D. 三角形ABC是等差三角形4. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 27C. 29D. 315. 以下哪个不是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 36. 已知圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π7. 以下哪个是复数的共轭?A. z = 3 + 4iB. z = 3 - 4iC. z = -3 + 4iD. z = -3 - 4i8. 根据题目所给的代数式,求x的值。

A. x = 2B. x = -2C. x = 1D. x = -19. 以下哪个是正弦函数的周期?A. 2πB. πC. 4πD. 110. 已知函数g(x) = sin(x) + cos(x),求g(π/4)的值。

A. 1B. √2C. 2D. 0二、填空题(每题4分,共20分)11. 求方程3x + 5 = 14的解。

_______12. 已知三角形ABC的三边长分别为3, 4, 5,求其周长。

_______13. 已知等比数列的首项为2,公比为3,求第5项的值。

_______14. 求函数h(x) = x^3 - 2x^2 + x - 2在x=1处的导数值。

_______15. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积。

________三、解答题(每题25分,共50分)16. 解不等式组:\[\begin{cases}x + 2 > 4 \\3x - 5 < 14\end{cases}\]17. 证明:若a, b, c是三角形ABC的三边长,且满足a^2 + b^2 = c^2,则三角形ABC是直角三角形。

2018年___自主招生数学试卷(含答案解析)

2018年___自主招生数学试卷(含答案解析)

2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。

10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。

11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。

【中考自招】2004-2018年上海四校八大中考自主招生数学试题

【中考自招】2004-2018年上海四校八大中考自主招生数学试题

15. 如图, △ ABC 中, AB BC 5 ,AC 6, 过点 A 作 AD ∥ BC , 点 P ,Q 分别是射线
AD 、 线段 BA 上的动点, 且 AP BQ , 过点 P 作 PE ∥ AC 交线段 AQ 于点 O , 联结 PQ ,
记 AP x ,△ POQ 面积为 y.
D
P
A
1 求 y 关于 x 的函数关系式,并写出 x 的取值范围;
1

2
2016 2017 1
求 90S ;
2016 2017
2 解关于 x 的方程: x2 2x 3 12 x 1 . 2
2018年上海复旦附中自招数学试题及详解
1
2
3
4
5
6
7
8
2004 年交大附中自主招生数学试题及答案
(本试卷满分 100 分,90 分钟完成)
一、单项选择题:(本大题满分 30 分)本大题共有 10 个小题,每小题给出了代号为 A 、B 、
2004-2015 年 上海初中自主招生数学
试题及答案
真题及答案解析内容涵盖 上海著名的“四大名校”和“八大金刚” 在历年自主招生中的科学素养数学试题
1
目录
2018年上海复旦附中自主招生数学试题及详解 2016复旦附中创新拔尖人才培养选拔校园日试题 2004 年交大附中自主招生数学试题及答案 2011 年华师二附自主招生数学试题及答案 2011 年上海中学自主招生数学试题及答案(部分) 2012 年复旦附中自主招生数学试题及答案 2013 年复旦附中自主招生数学试题及答案(部分) 2013 年华二附中自主招生数学试题与答案(部分) 2013 年交大附中自主招生数学试题及答案(部分) 2013 年上海中学自主招生数学试题及答案 2014 年交大附中自主招生数学试题及答案 2014 年进才中学自主招生数学试题及答案 2014 年上海中学自主招生数学试题及答案 2014 年复旦附中自主招生数学试题及答案 2014 年华师二附自主招生数学试题 2014 年华中一附自主招生数学试题 2015 年复旦附中自主招生数学试题 2015 年华师一附自主招生数学试题及答案

自招 上海自主招生数学试题

自招 上海自主招生数学试题

B. 30 A 45
C. 45 A 60
D. 60 A 90
3
8. 观察右图,根据规律,从 0
3→4
7→8
11 → …







2002 到 2004,箭头方向 1 → 2
2
2004 年交大附中自主招生数学试题及答案
(本试卷满分 100 分,90 分钟完成)
一、单项选择题:(本大题满分 30 分)本大题共有 10 个小题,每小题给出了代号为 A 、B 、
C 、 D 四个答案,其中有且只有一个答案是正确的.请把正确答案的代号写在题后的
圆括号内.每小题选对得 3 分;不选、错选或选出的代表字母超过一个(不论是否写在
2011-2015 年 上海初中自主招生数学
试题及答案
1
目录
2004 年交大附中自主招生数学试题及答案................................................................................... 3 2011 年华师二附自主招生数学试题及答案................................................................................... 7 2011 年上海中学自主招生数学试题及答案(部分)................................................................... 9 2012 年复旦附中自主招生数学试题及答案................................................................................. 11 2013 年复旦附中自主招生数学试题及答案(部分)................................................................. 13 2013 年华二附中自主招生数学试题与答案(部分)................................................................. 14 2013 年交大附中自主招生数学试题及答案(部分)................................................................. 16 2013 年上海中学自主招生数学试题及答案................................................................................. 17 2014 年交大附中自主招生数学试题及答案................................................................................. 20 2014 年进才中学自主招生数学试题及答案................................................................................. 23 2014 年上海中学自主招生数学试题及答案................................................................................. 25 2014 年复旦附中自主招生数学试题及答案................................................................................. 27 2014 年华师二附自主招生数学试题............................................................................................. 29 2014 年华中一附自主招生数学试题............................................................................................. 33 2015 年复旦附中自主招生数学试题............................................................................................. 37 2015 年华师一附自主招生数学试题及答案................................................................................. 39

2018-2020年上海四校自招数学试卷汇编版(含答案)--共9套

2018-2020年上海四校自招数学试卷汇编版(含答案)--共9套

2018-2020年上海四校自招数学试卷汇编版(含答案)--共9套目录2018交附自招数学答案2018上中自招数学2018上中自招数学答案2019复附自招数学答案2019交附自招数学2020上中、交附、七宝自招上海中学自招试题上海中学自招真题解析2018上海市上海中学自招部分真题1、因式分解:6x3-11x2+x+4=【答案】(x-1)(3x-4)(2x+1)【解析】试根法易得x=1时,上式值为0.利用长除法可得原式=(x-1)(6x2-5x-4)=(x-1)(3x-4)(2x+1)2、设a>b>0,a2+b2=4ab,则a+b=a-b【答案】3【解析】令a+b=x,a-b=y则x>y>0a2+b2=4aba2+b2-2ab=2aby2=1(x2-y2)2x2=3y2xa+b=3=3即y a-b3、若x2+x-1=0,则x3+2x2+3=【答案】4【解析】降次法x2=1-x所以原式=x(1-x)+2(1-x)+3=x-x2+2-2x+3=-x-(1-x)+5=4(,34、已知1(b -c )2=(a -b )(c -a ),且a ≠0,则b +c =4a【答案】2【解析】1(b -c )2=(a -b )(c -a )4(c -b )2=4(a -b )(c -a )⎡⎣(c -a )+(a -b )⎤⎦2=4(c -a )(a -b )⎡⎣(c -a )-(a -b )⎤⎦2=0所以c -a =a -bb +c =2a 即b +c=2a5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是【答案】49【解析】P =2⨯2=43396,、直线l :y =-3x +与x 、y 轴交于点A 、B ,△AOB 关于直线AB 对称得到△ACB ,则点C 的坐标是【答案】33)22【解析】如右图所示易得∠CAD =∠BAO =60︒过C 作CD ⊥x 轴于点D 在△ACD 中AC =1易解得AD =1,CD =3223C (,)223即7、一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠,使A、C两点重合,折痕的长是【答案】45 4【解析】如右图所示易得AC=所以OC=152=15△C△OF∽ABC所以OF=OC解得OF=45即EF=45 AB BC848、任给一个正整数n,如果n是偶数,就将它减半(即n),如果n是奇2数,则将它乘以3再加1(即3n+1),不断重复这样的运算,现在请你研究:如果对于正整数n(首项)按照上述规则实施变换(注:1可以多次出现)后的第八项为1,则n所有可能取值为【答案】128/2/16/20/3/21【解析】92+12212418 12451081632642 163 20 21 1289、正六边形ABCDEF 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积【答案】2【解析】将小六边形的相对顶点联结后易得:小正六边形的面积是大正六边形面积的13即面积为210、已知y 1=2x 2+(4-m )x +(4-m )与y =mx 在x 取任意实数时,至少有一个是正数,则m 的取值范围为【答案】m <4【解析】(1)当0<m 时,0<x ,y 2=mx >0,且x ≤0时,y 2≤0∴x ≤0时y 1>0∴y 1x =0>0故4-m >0∴m -4<04则∆<0解得-4<m <4∴0<m <4(2)当m <0时,同理解得m <0(3)当m =0时,y 1>0恒成立综上所述,m <411、已知a 、b 、c 是互不相等的实数,x 是任意实数,(x -a )2(x -b )2(x -c )2化简:++=(a -b )(a -c )(c -b )(a -b )(c -a )(c -b )【答案】1-(x -a )2(b -c )-(x -b )2(c -a )-(x -c )2(a -b )=(a -b )(b -c )(c -a )【解析】原式=(a -b )(b -c )(c -a )(a -b )(b -c )(c -a )=1212、已知实数a 、b 满足a 2+ab +b 2=1,t =ab -a 2-b 2,-⎩1则t 的取值范围是【答案】-3≤t ≤-13【解析】由a 2+b 2≥2ab ,a 2+b 2≥-2ab得⎧1-ab ≥2ab 解得-1≤ab ≤1⎨ab ≥-2ab 3t =ab -(1-ab )=2ab -1所以-3≤t ≤-1313、(1)求边长是1的正五边形的对角线长(2)求sin18︒【答案】(1)5+1(2)5-122【解析】(1)正五边形的一个内角大小为:(5-2)⨯180︒÷5=108︒所以△ABE 和△ACD 是黄金三角形在△ABE 中AE =BE 5-1其中AE =1解得BE =25+12(2)在△ACD 中过A 作AF 垂直CD 于点F易得∠FAD =18︒1所以sin18︒=FD =2=5-1AD5+122x y -1⎩14、(1)f (x )=x 3+ax 2+bx +c ,0<f (-1)=f (-2)=f (-3)<3,求c 的取值范围(2)f (x )=x 4+ax 3+bx 2+cx +d ,f (1)=10,f (2)=20,f (3)=30,求f (10)+f (-6)【答案】(1)6<c ≤9(2)8104【解析】(1)令f (-1)=f (-2)=f (-3)=k ,g (x )=f (x )=k ,0<k ≤3则g (x )=(x +1)(x +2)(x +3)所以f (x )=g (x )+k =x 3+6x 2+11x +6+k 故c =6+k ,又0<k <3所以6<c ≤9(2)f (1)=10,f (2)=20,f (3)=30令g (x )=f (x )-10x =x 4+ax 3+bx 2+(c -10)x +d则有g (1)=g (2)=g (3)=0令g (x )=0的第四个根是m 则g (x )=(x -1)(x -2)(x -3)(x -m )所以g (10)+g (-6)=9⨯8⨯7⨯(10-m )+(-7)⨯(-8)⨯(-9)(-6-m )=8064即f (10)+f (-6)=g (10)+g (-6)+40=810415、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)背景知识:平面α:Ax +By +Cz +d =0;球:(x -a )2+(y -b )2+(z -c )2=R 2;点(a ,b ,c )到平面α的距离公式:d =球心到平面的距离为d ,当d <R 时,球与平面相交,当d =R 时,球与平面相切,当d >R 时,球与平面相离;问题(1):若实数m 、n 、k 满足m +n +k =1,求m 2+n 2+k 2的最小值;问题(2):解方程++=1(x +y +z )2⎧x =1【答案】(1)1(2)⎪y =2⎨3⎪z =3【解析】(1)设点(m ,n ,k )则该点在平面x +y +z =1上而所求m 2+n 2+k 2即为该点到原点距离的平方Aa +Bb +Cc +D A 2+B 2+C 2z -212+12+12y -1z -2x y -1x ⎨⎨原点到平面x +y +z =1的距离为:d =1=33⎛3⎫21所以(m 2+n 2+k 2)= ⎪=(2)配方法min⎝3⎭3++=1(x +y +z )2x +y +z -(2+2+2z -2)=0(-1)2+(⎧x =1-1)2+(⎧x =1-1)2=0⎪y -1=1解得⎪y =2⎪⎪z =3⎪z -2=1⎩x y -1z -2则交大附中自主招生试卷2018.03第一部分 1. 已知13x x +=-,求3311000x x++. 2. 11(1)x x x tx x x x +++=++有增根,求所有可能的t 之和.3. AB ∥CD ,15AB =,10CD =,3AD =,4CB =,求ABCD S .4. 346y x x =-+,若a x b ≤≤时,其中x 的最小值为a ,最大值为b ,求a b +.5. 22(2)y x m =-+,若抛物线与x 轴交点与顶点组成正三角形,求m 的值.6. DE 为»BC的切线,正方形ABCD 边长为200,»BC 以BC 为直径的半圆,求DE 的长.7. 在直角坐标系中,正ABC ∆,(2,0)B ,9(,0)2C 过点O 作直线DMN ,OM MN =, 求M 的横坐标.8. 四圆相切⊙B 与⊙C 半径相同,⊙A 过⊙D 圆心,⊙A 的半径为9,求⊙B 的半径.9. 横纵坐标均为整数的点为整点,(12m a <<),y mx a =+(1100x ≤≤),不经过整 点,求a 可取到的最大值.10. G 为重心,DE 过重心,1ABC S ∆=,求ADE S ∆的最值,并证明结论.第二部分(科学素养)1. 已知直角三角形三边长为整数,有一条边长为85,求另两边长(写出10组).2. 阅读材料,根据凸函数的定义和性质解三道小题,其中第(3)小题为不等式证明 1212[(1)]()1()f bx b x bf x bf x ++<+-(1)14b =;(2)13b =.(注:选(1)做对得10分,选(2)做对得20分)3. 请用最优美的语言赞美仰晖班(80字左右)(17分)4. 附加题(25分) (2 points ) solve the following system of equations for 2122.2221w x y z w x y z w w x y z w x y z +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩(4 points )Compute 98∞(6 points )Solve the equation 1=.Express your answer as a reduced fraction with the numerator written in their prime factorization.The gauss function []x denotes the greatest less than or equal to xA )(3 points )Compute 2018!2015!2017!2016!+⎡⎤⎢⎥+⎣⎦B )(4points )Let real numbers 12,,,n x x x ⋅⋅⋅ be the solutions of the equation 23[]40x x --=,find the value of 22212n x x x ++⋅⋅⋅+ C )(6 points )Find all ordered triples (,,)a b c of positive real that satisfy :[]3a bc =,[]4a b c =,and []5ab c =上海中学自主招生试卷2018.031.因式分解:326114x x x -++=2.设0a b >>,224a b ab +=,则a b a b+=-3.若210x x +-=,则3223x x ++=4.已知21()()()4b c a b c a -=--,且0a ≠,则b c a +=5.一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是6.直线:l y =+x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是7.一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是8.任给一个正整数n ,如果n 是偶数,就将它减半(即2n ),如果n 是奇数,则将它乘以3加1(即31n +),不断重复这样的运算,现在请你研究:如果对正整数n (首项)按照上述规则施行变换(注:1可以多次出现)后的第八项为1,则n 所有可能取值为9.正六边形ABCDEF 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为10.已知212(4)(4)y x m x m =+-+-与2y mx =在x 取任意实数时,至少有一个是正数,则m 的取值范围为11.已知a 、b 、c 是互不相等的实数,x 是任意实数,化简:222()()()()()()()()()x a x b x c a b a c c b a b c a c b ---++=------12.已知实数a 、b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是13.(1)求边长为1的正五边形对角线长;(2)求sin18︒.14.(1)32()f x x ax bx c =+++,0(1)(2)(3)3f f f <-=-=-≤,求c 的取值范围;(2)432()f x x ax bx cx d =++++,(1)10f =,(2)20f =,(3)30f =,求(10)(6)f f +-.15.我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz d α+++=;球:2222()()()x a y b z c R -+-+-=;点(,,)a b c 到平面:0Ax By Cz d α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值;问题(21()2x y z +=++.参考答案1.(1)(34)(21)x x x --+2. 3.4 4.2 5.49 6.33(,227.4548.128、2、16、20、3、219.22cm 10.4m <11.112.133t -≤≤-13.(112+;(2)14-14.(1)69c <≤;(2)810415.(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩上海中学自主招生试题1、因式分解:326114x x x -++= .【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a b a b +=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b ab a b ab +==-.由于0a b +>,0a b ->,所以a b a b+=- 3、若210x x +-=,则3223x x ++=. 【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b c a+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+,代入()()()24b c a b c a -=--中得()24m n mn +=,()20m n ∴-=,m n ∴=, 即a b c a -=-,即2a b c =+,2b c a+∴=. 5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是. 【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=. 6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是 .【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ==.因此折痕长为454. 8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n ,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________.【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为. 【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形 ABCDEF的相似比为1:3.因为 ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________.【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <,此时函数1y 的对称轴404m x -=-<, 则对任意0x ≥总有10y >,只需考虑0x <;若04m ≤<,此时20y ≤,则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<; 若0m <,此时20y >对0x <恒成立;综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________. 【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________. 【答案】133t -≤≤-. 【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理.12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-, 133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤, ()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=;球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R>时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值;问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩. 【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.上海中学自招试题1、因式分解:326114x x x -++=.2、设0a b >>,224a b ab +=,则a b a b +=- .3、若210x x +-=,则3223x x ++=.4、已知()()()24b c a b c a -=--,且0a ≠,则b c a +=_________.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是.6、直线:l y =+与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n ,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.10、已知()()21244y x m x m =+-+-与2y mx =在x 1y ,2y 至少有一个是正数,m 的取值范围是________.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=;球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R>时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值;问题(2)()12x y z =++.2019年交大附中自招数学试卷一、填空题1、求值:cos30sin 45tan 60⋅⋅=.2、反比例函数1y x =与二次函数243y x x =-+-的图像的交点个数为.3、已知210x x --=,则3223x x -+=.4、设方程()()()()()()11111211210x x x x x x ++++++++=的两根为1x ,2x ,则()()1211x x ++=.5、直线y x k =+(0k <)上依次有,,,A B C D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k =.6、交大附中文化体行设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体育课,英才班部分学生参加篮球小组、其余学生参加排球小组。

2018年上海交大附中自主招生数学试卷(无答案)-教育文档

2018年上海交大附中自主招生数学试卷(无答案)-教育文档

交大附中自主招生试卷2019.03第一部分1. 已知13x x +=-,求3311000x x ++. 2. 11(1)x x x t x x x x +++=++有增根,求所有可能的t 之和. 3. AB ∥CD ,15AB =,10CD =,3AD =,4CB =,求ABCD S .4. 346y x x =-+,若a x b ≤≤时,其中x 的最小值为a ,最大值为b ,求a b +.5. 22(2)y x m =-+,若抛物线与x 轴交点与顶点组成正三角形,求m 的值.6. DE 为BC 的切线,正方形ABCD 边长为200,BC 以BC 为直径的半圆,求DE 的长.7. 在直角坐标系中,正ABC ∆,(2,0)B ,9(,0)2C 过点O 作直线DMN ,OM MN =, 求M 的横坐标.8. 四圆相切⊙B 与⊙C 半径相同,⊙A 过⊙D 圆心,⊙A 的半径为9,求⊙B 的半径.9. 横纵坐标均为整数的点为整点,(12m a <<),y mx a =+(1100x ≤≤),不经过整 点,求a 可取到的最大值.10. G 为重心,DE 过重心,1ABC S ∆=,求ADE S ∆的最值,并证明结论.第二部分(科学素养)1. 已知直角三角形三边长为整数,有一条边长为85,求另两边长(写出10组).2. 阅读材料,根据凸函数的定义和性质解三道小题,其中第(3)小题为不等式证明(1)14b =;(2)13b =.(注:选(1)做对得10分,选(2)做对得20分) 3. 请用最优美的语言赞美仰晖班(80字左右)(17分)4. 附加题(25分)(2 points ) solve the following system of equations for 2122.2221w x y z w x y z w w x y z w x y z +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ (4 points )Compute 98∞(6 points )Solve the equation 1=.Express your answer as a reduced fraction with the numerator written in their prime factorization.The gauss function []x denotes the greatest less than or equal to xA )(3 points )Compute 2018!2015!2017!2016!+⎡⎤⎢⎥+⎣⎦B )(4points )Let real numbers 12,,,n x x x ⋅⋅⋅ be the solutions of the equation 23[]40x x --=,find the value of 22212n x x x ++⋅⋅⋅+ C )(6 points )Find all ordered triples (,,)a b c of positive real that satisfy :[]3a bc =,[]4a b c =,and []5ab c =。

2018年上海中学自主招数学试卷及答案解析

2018年上海中学自主招数学试卷及答案解析

2018年上海中学自主招数学试卷一.填空题1.已知1a +1b =1a+b ,则b a+a b 的值等于 . 2.有 个实数x ,可以使得√120−√x 为整数.3.如图,△ABC 中,AB =AC ,CD =BF ,BD =CE ,用含∠A 的式子表示∠EDF ,则∠EDF= .4.在直角坐标系中,抛物线y =x 2+mx −34m 2(m >0)与x 轴交于A ,B 两点.若A ,B两点到原点的距离分别为OA ,OB ,且满足1OB −1OA =23,则m 的值等于 . 5.定圆A 的半径为72,动圆B 的半径为r ,r <72且r 是一个整数,动圆B 保持内切于圆A且沿着圆A 的圆周滚动一圈,若动圆B 开始滚动时的切点与结束时的切点是同一点,则r 共有 个可能的值.6.学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有 人.7.对于各数互不相等的正整数组(a 1,a 2,…a n )(n 是不小于2的正整数),如果在i <j时有a i >a j ,则称a i 与a j 是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a 1,a 2,a 3,a 4,a 5,a 6)的逆序数为2,则(a 6,a 5,a 4,a 3,a 2,a 1)的逆序数为 .8.若n 为正整数,则使得关于x 的不等式1121<n x+n <1019有唯一的整数解的n 的最大值为 .二、选择题(共4小题,每小题3分,满分12分)9.已知x 2+ax ﹣12能分解成两个整数系数的一次因式的积,则整数a 的个数有( )A .0B .2C .4D .6 10.如图,D 、E 分别为△ABC 的底边所在直线上的两点,BD =EC ,过A 作直线l ,作DM∥BA交l于M,作EN∥CA交l于N.设△ABM面积为S1,△ACN面积为S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1与S2的大小与过点A的直线位置有关11.设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+p2x+q2=0,则()A.甲必有实根,乙也必有实根B.甲没有实根,乙也没有实根C.甲、乙至少有一个有实根D.甲、乙是否总有一个有实根不能确定12.设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a﹣b的整数为()A.252B.504C.1007D.2013三.解答题13.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.14.是否存在m个不全相等的正数a1、a2、…、a m(m≥7),使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m值;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交大附中自主招生试卷
第一部分
1. 已知
13x x +=-,求3311000x x ++.
2.
11(1)
x x x t x x x x +++=++有增根,求所有可能的t 之和.
3. AB ∥CD ,15AB =,10CD =,3AD =,4CB =,求ABCD S .
4. 346y x x =-+,若a x b ≤≤时,其中x 的最小值为a ,最大值为b ,求a b +.
5. 22(2)y x m =-+,若抛物线与x 轴交点与顶点组成正三角形,求m 的值.
6. DE 为»BC
的切线,正方形ABCD 边长为200,»BC 以BC 为直径的半圆,求DE 的长.
7. 在直角坐标系中,正ABC ∆,(2,0)B ,9(,0)2C 过点O 作直线DMN ,OM MN =, 求M 的横坐标.
8. 四圆相切⊙B 与⊙C 半径相同,⊙A 过⊙D 圆心,⊙A 的半径为9,求⊙B 的半径.
9. 横纵坐标均为整数的点为整点,(
12
m a <<),y mx a =+(1100x ≤≤),不经过整
点,求a 可取到的最大值.
10. G 为重心,DE 过重心,1ABC S ∆=,求ADE S ∆的最值,并证明结论.
第二部分(科学素养)
1. 已知直角三角形三边长为整数,有一条边长为85,求另两边长(写出10组).
2. 阅读材料,根据凸函数的定义和性质解三道小题,其中第(3)小题为不等式证明 1212[(1)]()1()f bx b x bf x bf x ++<+-
(1)14
b =
;(2)13b =.(注:选(1)做对得10分,选(2)做对得20分)
3. 请用最优美的语言赞美仰晖班(80字左右)(17分)
4. 附加题(25分) (2 points ) solve the following system of equations for 2122.2221
w x y z w x y z w w x y z w x y z +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ (4 points )
Compute 98∞
(6 points )Solve the
1=.Express your answer as a reduced fraction with the numerator written in their prime factorization.
The gauss function []x denotes the greatest less than or equal to x
A )(3 points )Compute 2018!2015!2017!2016!+⎡⎤⎢⎥+⎣⎦
B )(4points )Let real numbers 12,,,n x x x ⋅⋅⋅ be the solutions of the equation
23[]40x x --=,find the value of 22212n x x x ++⋅⋅⋅+
C )(6 points )Find all ordered triples (,,)a b c of positive real that satisfy :
[]3a bc =,[]4a b c =,and []5ab c =。

相关文档
最新文档