高中数学必修3_基本算法语句1
(推荐)高一数学必修三第一单元知识点及练习题
高一数学必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下: 1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
人教A版高中数学必修3《一章 算法初步 1.2.1 输入语句、输出语句和赋值语句 》示范课课件_21
2、写出下列语句描述的算法的输出结果
(1) a=5
(2) a=1
b=3
b=2
c=(a+b)/2
c=a+b
d=c*c
b=a+c-b
print“d=”; d print a,b,c
d=16
1, 2, 3
小结
这节课我们主要学习了输入语句、输出语句和 赋值语句的主要功能、一般格式和相关说明,请 同学们用心掌握。
输入语句 输出语句 赋值语句 条件语句 循环语句
这节课我们先学习输入、输出、赋值语句
输入语句与程序框图中的输 入框对应,用来输入信息.
输出语句与程序框图中的输 出框对应,用来输出信息.
赋值语句与程序框图中的赋 值框对应,用来给变量赋值.
例1 :用描点法作函数 y=x3+3x2-24x+30的图象时,需
a b c.
3
程序框图
s 3
,输出y
.
程序:
开始 INPUT “Maths,Chinese,English=”;a,b,
输入a,b,c
y
a
b 3
c
输出y
结束
INPUT “Maths=”;a INPUT “Chinese=”;b
INPUT “English=”;c
y= (a+b+c)/3
PRINT “The average=”;y END
作业:课本24页练习1.2.3.4
BASIC语言中的常用运算符号
运算符
*
/ ^ >= <= <> \
高中数学必修三课后习题答案
高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
2017-2018学年高中数学必修三人教B版练习:1-2基本算法语句1-2-3 含解析 精品
第一章 1.21.2.3A 级 基础巩固一、选择题1.在循环语句的一般形式中有“while A ”,其中A 是导学号 95064202( C ) A .循环变量 B .循环体 C .开始循环的条件D .终止条件[解析] 根据while 循环语句可知当满足A 时,开始循环,所以A 是开始循环的条件,故选C .2.关于下面一段程序,其中正确的说法是导学号 95064203( C ) k =10;while k ==0k =k +1;endA .语句中的循环体共执行了10次B .循环体是无限循环的C .语句中的循环体一次也不执行D .语句中的循环体只执行了一次[解析] 由于k =10,则k =0不成立,则不执行循环体. 3.下列程序运行后输出的结果为导学号 95064204( C ) i =1;while i<5 i =i +2;endprint (%io (2),i ); A .1 B .3 C .5D .7[解析] 该程序的执行过程是 i =1,i =1<5是 i =1+2=3 i =3<5是 i =3+2=5 i =5<5否 输出i 的值为5.4.阅读下面的程序,该程序执行的循环次数是导学号95064205(D)A.30次B.31次C.29次D.32次[解析]循环变量i的初值为-5,终值是150,步长是5,因此当i=-5,0,5,10,…,150时,执行循环体,共有32次.二、填空题5.在求1+2+3+…+50的值时,在Scilab中的文本编辑中写出的程序如下:则横线上应填写的语句是__S=S+i__.导学号95064206[解析]横线上的内容是循环体,即对变量S进行累加,所以S=S+i.6.对于下面一个程序:导学号95064207M=5;N=0;while N<15N=N+M;M=M-1;endprint(%io(2),M);运行后输出的结果为__0__.[解析]执行过程如下:M=5,N=0;当N=0<15时N=0+5=5M=5-1=4;当N=5<15时N=5+4=9M=4-1=3;当N=9<15时N=9+3=12M=3-1=2;当N=12<15时N=12+2=14M=2-1=1;当N=14<15时N=14+1=15M=1-1=0;当N=15时不小于15,终止循环.最后输出M的值为0.三、解答题7.高一(3)班共有54名同学参加了数学竞赛,现在已知这54名同学的竞赛分数.请设计程序.要求计算竞赛成绩优秀的同学的平均分并输出(规定90分以上(不含90分)为优秀).导学号95064208[解析]程序如下:8.设计一个程序,输出落在圆x2+y2=100内且在第一象限的所有整数点的坐标,并画出程序框图.导学号95064209[解析]由题意知1≤x<10,1≤y<10.故设计算法时可先确定x,让y由1至10逐一验证条件,然后再改变x的值,直至验完.程序框图如下:程序如下:r =10x =1while x<r y =1;while y<rif x^2+y^2<r^2;print (%io (2),y ,x ); endy =y +1;endx =x +1;endB 级 素养提升一、选择题1.下面程序的作用是导学号 95064210( B )i =1;sum =0;for i =1∶1∶10sum =sum +i ;endprint (%io (2),sum );A .求1+3+…+9+11B .求1+2+3+…+10C .求1×3×5×…×11D .求1×2×3×4×…×10[解析] i 的初值为1,sum 的初值为0,步长为1.程序的处理过程为:第1轮的结果为:sum =0+1=1,i =1+1=2;第2轮的结果为sum =1+2,i =2+1=3;第3轮的结果为:sum =1+2+3,i =3+1=4;…;第10轮(最后一轮)的结果为:sum =1+2+3+4+5+6+7+8+9+10,i =10+1=11.i =11>10,跳出循环.故选B .2.以下程序运行后的输出结果为导学号 95064211( A )A .21B .13C .17D .25[解析] 执行第一次后,i =3,S =9; 执行第二次后,i =5,S =13;执行第三次后,i=7,S=17;执行第四次后,i=9,S=21.二、填空题3.下面是一个用于计算11×2+12×3+13×4+…+120×21的程序,试填上适当的语句.导学号95064212[解析]累加求和需用赋值语句“s=s+1/(i*(i+1))”.4.如果以下的程序运行的结果为240,那么在程序中while后面的“表达式”应为i>__14__.导学号95064213[解析]该程序使用了while循环语句,当表达式为真时,执行循环体;当表达式为假时,退出循环.由于输出的结果为240=16×15,所以执行了两次循环,因此表达式应为i>14.三、解答题5.标有1、2、3、4、5、6六个号码球,有一个最重的,写出模拟挑出最重球的程序.导学号95064214[解析]程序如下:i =1;while i<=6a (i )=input (“输入小球质量”); i =i +1;end i =1;max =a (i );while i <=6 if max <a (i );max =a (i );endi =i +1;endprint (%io (2),max )C 级 能力拔高1.根据以下给出的程序,画出其相应的程序框图,并指明该算法的功能.导学号 95064215n =1;S =1;while S<5 000 S =S*n ;n =n +1;endn =n -1;print (%io (2),n );[解析] 该算法的程序框图如图所示:该算法的功能是求使1×2×…×n <5 000的最大正整数.2.设计求满足1+3+5+…+n >2 014的最小自然数n 的程序. 导学号 95064216 [解析] 程序框图如图所示:程序为:S=0;i=1;while S<=2 014S=S+i;i=i+2;endprint(%io(2),i-2);。
高中数学必修(3)第一章算法初步(知识点汇总)
算法初步与程序框图1、算法的概念:算法通常指按照一定的规则解决某一类问题的明确和有限的步骤。
2、程序框图:用程序框、流程线及文字说明来表示算法的图形叫做程序框图或流程图。
(1)用框图表示算法步骤的一些常用的图形符号图形符号名称功能终端框(起止框)表示一个算法的起始和结束,是任何算法程序框图不可缺少的输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框(执行框)赋值、计算.算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内判断框判断某一条件是否成立,成立时出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框,表示算法进行的前进方向以及先后顺序连接点如果一个流程图需要分开来画,要在断开处画上连接点,并标出连接的号码(2)程序框图的结构形式①顺序结构;②条件结构;③循环结构;(3)基本算法语句①输入语句;②输出语句;③赋值语句;④条件语句;⑤循环语句;3、程序框图举例:开始11(1)(2)4、辗转相除法:5、更相减损术:6、秦九韶算法:7、二分法:8、进位制:9、流程图和结构图框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系,框图可分为流程图和结构图,流程图与结构图直观形象、简洁、明了,在日常生活中应用广泛.一、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”.程序框图是流程图的一种.流程图可以直观、明确地表示动态过程从开始到结束的全部步骤.它是由图形符号和文字说明构成的图示.流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图的一个基本单元,基本单元之间用流程线联系.基本单元中的内容要根据需要而确定.可以在基本单元中具体说明,也可以为基本单元设置若干子单元.10、流程图的种类(1)算法流程图①算法流程图在必修课程中已经学过,它是一种特殊的流程图,主要适用于计算机程序的编写.②在算法流程图内允许有闭合回路.(2)工艺流程图①工艺流程图是常见的一种流程图,又称统筹图,在日常生活、生产实践等各方面经常用到工艺流程图.②用来描述具有先后顺序的时间特征的动态过程.③工艺流程图的构成由矩形框、流程线和名称(代号)构成.④工艺流程图可以有一个或多个“起点”,一个或多个“终点”,对于同一个矩形框可以有多个流出点和流入点.⑤在工艺流程图中不允许出现几道工序首尾相连接的圈图或循环回路.20、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达; 再次,分析各步骤之间的关系;最后,画出流程图表示整个流程.二、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图.10、结构图的种类常用的结构图一般包括知识结构图、组织结构图、建筑结构图、布局结构图及分类结构图.20、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系.(2)将系统的主体要素及其之间的关系表示出来.(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象.(4)逐步细化各层要素,直到将整个系统表示出来为止.三、结构图与流程图的区别:流程图和结构图不同.流程图是表示一系列活动相互作用、相互制约的顺序的框图.结构图是表示一个系统中各部分之间的组成结构的框图.流程图描述动态过程,结构图刻画系统结构.流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系.四、考点详解考点一:流程图类型一:算法流程图例1、写出方程0ax b += (,a b 为常数)的根的流程图.分析:因为,a b 是实数,要解方程需先判断a 是否为0,当0a ≠时,方程根为b x a =-;当0a =时,需再次判断b 是否为0,若0b =,则方程根为全体实数,若0b ≠,则方程无解,因此可以用算法中的条件结构来实现,相应程序语句是条件语句.解:根据以上的算法分析可得出算法流程图:点评:算法流程图是学习算法语言的必备工具,在使用时必须用其标准的图形符号.变式练习1:某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7类型二: 工序流程图例2、某工厂装配一辆轿车的工序、工序所花的时间及各工序的先后关系如下表所示:开始输入,a b0a ≠? b x a=- 0b ≠? 输出方程无解 输出方程根是全体实数输出原方程根为x 结束否 否是是注:紧前工序,即与该工序相衔接的前一工序.(1)画出装配该轿车的工序流程图;(2)装配一辆轿车的最短时间是多少小时?分析:要画工序流程图,首先要弄清整项工程应划分为多少道工序,这当然应该由上到下,先粗略后精细,其次是仔细考虑各道工序的先后顺序及相互联系、制约的程度,最后考虑哪些工序可以平行进行,哪些工序可以交叉进行.一旦上述问题都考虑清楚了,一个合理的工序流程图就成竹在胸了,依据其去组织生产,指挥施工,就能收到统筹兼顾的功效.解:(1)工序流程图如下图所示:(2)装配一辆轿车的最短时间是1154125340+++++=(小时).点评: 有关工序流程图应先理清工序大体分几个阶段,再对每一阶段细分,每一步应注意先后顺序,这是十分关键的,否则会产生错误.在画工序流程图时,不能出现几道工序首尾相接的圈图或循环回路.变式练习2:某成品的组装工序图如下,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )A. 11小时B. 13小时C. 15小时D. 17小时考点二: 结构图类型一: 知识结构图例3、设计一个结构图,表示《数学{5}》第二章“数列”的知识结构图. 分析:画知识结构图的过程与方法:首先,要对所画结构图从头到尾抓住主要脉络进行分解;然后将每一步分解进行归纳与提炼,形成一个个知识点,并将其逐一地写在矩形框内;最后,按其内在的逻辑顺序将它们排列起来并且用线段相连,这样就画成了知识结构图.解:本章的知识结构图如下:点评:要熟悉知识结构,注意实际问题的逻辑顺序和概念上的从属关系,这个结构图从整体上反映了数列的结构,从左向右反映的是要素之间的从属关系.在画结构图时,应根据具体需要确定复杂程度,简洁的结构图有时能更好地反映主体要素之间的关系和系统的整体特点.另外在画结构图时还应注意美观、明了. 变式练习3:下图是《集合》的知识结构图,如果要加入“子集”,则应该放在( )A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位类型二: 组织结构图例4、下面为某集团的组织结构图,请据下图分析财务部和人力资源部的隶属关系.分析: 根据组织结构图,分析好各部门之间的从属关系,最后作答.解:由组织结构图可分析得:财务部直属总裁管理;而总裁又由董事长管理,董事长服从于董事会管理.人力资源部由董事长助理直接管理,董事长助理服从董事长管理,董事长又服从于董事会管理,董事会是最高管理部门.点评:有关组织结构图一般都呈“树”形结构.这种图直观,容易理解,被应用于很多领域中.在组织结构图中,可采用从上到下或从左到右的顺序绘制图,注意各单元要素之间的关系,并对整个组织结构图进行浏览处理,注重美观、简洁、明了.变式练习4:某公司做人事调整:设总经理一个,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A 管理生产部、安全部和质量部,经理B 管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗。
高二数学教学教案人教版上册必修《基本算法语句》
高二数学教学教案人教版上册必修《基本算法语句》种子牢记着雨滴献身的叮嘱,增强了冒尖的勇气。
下面是XX小编为您推荐高二数学教学教案人教版上册必修《基本算法语句》。
一、本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣. 数学建模也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到算法思想转化思想,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考): 1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计二、教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时三、教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤. (3)结合教材实例总结用代入消元法解二元一次方程组的步骤. (4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+② 2,得5x=1.③第二步,解③,得x= .第三步,②-① 2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④ 第三步,解④得y= .⑤第四步,把⑤代入③,得x=2 -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1 0,可以写出类似的求解步骤:第一步,① b2-② b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,② a1-① a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏. 不重是指不是可有可无的,甚至无用的步骤,不漏是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的第一步直到最后一步之间做到环环相扣,分工明确,前一步是后一步的前提,后一步是前一步的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2 6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出判断35是否为质数的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n 2)是否为质数的算法.分析:对于任意的整数n( n 2),若用i表示2 (n-1)中的任意整数,则判断n是否为质数的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断 r=0 是否成立.若是,则n不是质数,结束算法;否则,将i 的值增加1,仍用i表示.第五步,判断 i (n-1)是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用二分法求方程x2-2=0 (x 0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x 0)的解就是函数f(x)的零点.二分法的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f (a) f(b) 0)一分为二,得到[a,m]和[m,b].根据 f(a) f(m) 0 是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b] 足够小,则[a,b]内的数可以作为方程的近似解.[来源:学科网Z X X K]解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a) f(b) 0.第三步,取区间中点m= .第四步,若f(a) f(m) 0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为数学机械化 .数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算 =b2-4ac的值.第三步,判断 0是否成立.若 0成立,输出方程有实根;否则输出方程无实根,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t 3,那么y=0.22;否则判断t Z 是否成立,若成立执行 y=0.2+0.1 (t-3);否则执行y=0.2+0.1 ([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.。
高中数学C3必修③基础题型归类
INPUT tIF t<= 4 THEN c=0.2 ELESc=0.2+0.1(t -3) END IF PRINT c END高中新课标数学必修③模块 基础题型归类1、算法框图与语句:要求:理解算法基本思想,掌握算法三种逻辑结构与五种基本语句(输入、输出、赋值、条件、循环). 例1. (1)若输入8时,则右边程序执行后输出的结果是 .(2)右图给出一个算法的程序框图,该程序框图的功能是 .(3)对任意正整数n ,设计一个求S=111123n++++的程序框图,并编写出程序.练1 (1)右边程序为一个求20个数的平均数的程序,在横线上应填充的语句为 .(2)右图输出的是的结果是 .(3)编写程序,计算12+22+32+……+1002 2、经典算法案例:要求:掌握进位制转化、辗转相除法与更相减损术求最大公约数、秦九韶算法.例2. (1)将二进制数10101(2)化为十进制数为 ,再化为八进制数为 .(2)用辗转相除法求80和36的最大公约数,并用更相减损术检验所得结果.(3)已知一个4次多项式43()6354g x x x x =-++, 试用秦九韶算法求这个多项式在x=2的值.练2 (1)下列各数中最小的数是( ). A. (9)85 B. (6)210 C. (4)1000 D. (2)111111 (2)1001101(2)= (10),318(10)= (5)3、抽样方法与频率分布:要求:掌握简单随机抽样、系统抽样、分层抽样. 能运用频率分布直方图.例3. (1)某校1000名学生中,O 型血有400人,A 型血有250人,B 型血有250人,AB 型血有100人,为了研究血型与血弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O 型血,A 型血,B 型血,AB 型血的人要分别抽取人数为 .S=0 i=1 DO INPUT x S=S+x i=i+1LOOP UNTIL _____a=S/20 PRINT a END(2) 200辆汽车通过某一段公路时的时速频率分布直方图如图所示,则时速在[)50,60的汽车大约有____________辆练3 (1)某单位有技工18人、技术员12人、工程师6人,需要从这些人中抽取一个容量为n 的样本;如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果容量增加一个,则在采用系统抽样时,需要在总体中剔除1个个体,则样本容量n为 . (2)某公司生产三种型号的轿车, 产量分别为1200辆,6000辆和2000辆, 为检验该公司的产品质量, 现用分层抽样的方法抽取46辆进行检验, 这三种型号的轿车依次应抽取 辆.4、样本数字特征:要求:掌握样本中心位置特征数(平均数、中位数、众数)与离散程度特征数(标准差、方差)的计算. 例4. 给出下列四种说法:① 3,3,4,4,5,5,5的众数是5; ② 3,3,4,4,5,5,5的中位数是4.5;③ 频率分布直方图中每一个小长方形的面积等于该组的频率; ④ 频率分布表中各小组的频数之和等于1其中说法正确的序号依次是 .练4甲乙两种棉花苗中各抽10株, 测得它们的株高分别如下(单位:cm)甲: 25,41,40,37,22,14,19,39,21,42 乙: 27,16,44,27,44,16,40,40,16,40(1)估计两种棉花苗总体的长势:哪种长的高一些? (2)哪种棉花的苗长得整齐一些?5、概率基本性质:要求:掌握概率基本性质0()1P A ≤≤等,能运用互斥事件的概率加法公式()()()P A B P A P B =+,对立事件的概率减法公式()1()P A P A =-.例5. 一枚五分硬币连掷三次,事件A 为“三次反面向上”,事件B 为“恰有一次正面向上”,事件C 为“至少二次正面向上”. 写出一个事件A 、B 、C 的概率(),(),()P A P B P C 之间的正确关系式是 .练5 甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成和棋的概率为 ;乙获胜的概率为 .6、古典概型与几何概型要求:掌握两种概率模型的特征,能运用概率模型解决实际问题.例6. (1)玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿. (i )从中取1个球, 求取得红或白的概率. (ii )若从中取2个球,求至少一个红球的概率.(2)甲乙两人相约某天在某地点见面,甲计划在上午8:30至9:30之间到达,乙计划在上午9:00至10:00之间到达. (i )求甲比乙提前到达的概率; (ii )如果其中一人先到达后最多等候另一人15分钟,然后离去. 求两人能够会面的概率.练6 (1)某人一次掷出两枚骰子,点数和为5的概率是 .(2)将一个各个面上均涂有颜色的正方体锯成64个同样大小的正方体,从这些小正方体中任取一个,其中恰有两面涂色的概率是 .(3)从一副扑克牌(没有大小王)的52张牌中任取2张,求: (i )2张是不同花色牌的概率; (iii )至少有一张是红心的概率.(4)在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(i )两件都是次品的概率;(ii )2件中恰好有一件是合格品的概率;(iii )至多有一件是合格品的概率(5)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标(,)m n ,则点P 在圆2225x y +=外的概率是 .(6)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高一数学必修3知识点总结及典型例题解析(公式)新选.
新课标必修3概率部分知识点总结◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。
人教A版高中数学必修3《 1.2 基本算法语句 1.2.1 输入语句、输出语句和赋值语句》_1
第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想.教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.二、讲授新课:1. 教学三种语句的格式及功能:①出示例1:编写程序,计算一个学生数学、语文、英语(分析算法→框图表示→教师给出程序,学生试说说对各语句的理解.)②对照例1的程序,学习三种语句的格式与功能.2. 教学例题:例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值例3:给一个变量重复赋值. A=10,A=A+15,PRINT A,END;例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P24 1、2题 2. 作业:P24 3、4题.。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
高中数学必修3第一章算法初步课
赋值、计算.
思考3:已知函数 y=x3+3x2-24x+30, 求自变量x对应的函数值的算法步骤 如何设计? 第一步,输入一个自变量x的值. 第二步,计算y=x3+3x2-24x+30. 第三步,输出y.
开始
输入x y=x3+3x2-24x+30
思考4:该算法是什么逻辑结构? 其程序框图如何?
输出y 结束
程序:
INPUT a,b,c
(1)
y=(a+b+c)/3 PRINT y END
(2)
INPUT “Chinese,Maths,English=”;a,b,c y=(a+b+c)/3 PRINT “The average=”;y END
INPUT a INPUT b
(3)
INPUT c PRINT “The average=”;(a+b+c)/3 END INPUT “Chinese=”;a INPUT “Maths=”;b INPUT “English=”;c PRINT “The average=”;(a+b+c)/3 END
PRINT END A ,B
例3、写出计算一个学生语文、数学、英语 三门课的平均成绩的算法、程序框图和程序. 算法分析:
第一步,输入该学生数学、 语文、英语三门课的成绩. a + b+ c 第二步,计算 y = 3 第三步,输出y. 程序框图:
开始
输入a,b,c
a + b+ c y= 3
输出y 结束
1.2 基本算法语句
第一课时 输入语句、输出语句和赋值语句
思考1:在算法的程序框图中,输入框与输 出框是两个必要的程序框,我们用什么图 形表示这个程序框?其功能作用如何?
高中数学第一章算法初步123循环语句课件新人教B版必修3
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
程序与程序框图的对译
根据以下给出的程序,画出其相应的程序框图,并指明 该算法的功能.
n=1; S=1; while S<5000
S=S*n; n=n+1; end n=n-1; print(%io(2),n);
循环语句的概念及一般格式 (1)循环语句用来实现算法中的__循__环__结__构__. (2)循环语句主要有两种类型:__f_o_r_循__环___和__w_h_i_le__循__环__.
(3)for 循环的一般格式为
for 循环变量=初值:步长:终值 循环体;
end
(4)while 循环的一般格式为
解:该算法的程序框图如图所示.
1.循环语句主要有两种形式,即 for 语句与 while 语句,for 语句主要适用于预知循环次数的循环结构;而循环次数不确定 时,则要用 while 循环语句. 2.理解 for 循环的关键是理解计算机如何执行程序语句中第三 步“s=s+i”,这个执行过程实际上是每次循环赋给 s 的值都 比上一步增加一个“步长”,如此循环直至结束.而 while 循 环则是每次执行循环体之前,都要判断表达式是否为真,这样 重复执行,直至表达式为假时跳过循环体部分而结束循环.
复习课件
高中数学第一章算法初步1.2.3循环语句课件新人教B版必修3
2021/4/17
高中数学第一章算法初步123循环语句课件新人教B版必初步
1.了解程序框图转化为程序语句的过程. 2.理解循环 语句的概念及作用. 3.掌握循环语句的格式及程序框图的画法、程序的编写.
用 while 语句编写程序的一般过程 (1)对变量进行初始赋值; (2)确定执行循环体的条件; (3)确定循环体; (4)输出结果.
人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图
UNTIL型
WHILE型
i=1 s=0 DO s=s+i i=i+1 LOOP UNTIL i>100 PRINT s END 执行循环体直到满 足条件时跳出循环 (不满足条件时执行 循环体)
i=1 s=0 WHLIE i<=100 s=s+i i=i+1 WEND PRINT s END 当满足条件时,执行 循环体(直到不满 足条件时跳出循环)
3 . 则输出的 n 的值为________
第十四章 算法初步
第二节 基本算法语句
一.各种程序设计语言中都包含下列基本的算法语句: 输入语句 输出语句 赋值语句 条件语句 循环语句
二.基本算法语句 (一)输入语句 INPUT “提示内容”;变量
INPUT “ 提 示 内 容 1 , 提 示 内 容 2 , 提 示 内 容 3,…”;变量1,变量2,变量3,…
基础自测
1.(2009年汉沽模拟)已知变量a,b已被赋值,要交换a、b的
值,采用的算法是( D A.a=b,b=a C.a=c,b=a,c=a B.a=c,b=a,c=b D.c=a,a=b,b=c C
基础自测
2. 下边的程序语句输出的结果S为(A )
A.17
B.19
C.21
D.23
990 3. 下列程序执行后输出的结果是_________ i=1 WHILE i<8 S=2i+3 i=i+2 WEND PRINT S END i=11, S=1, DO s=s*i s=1 LOOP UNTIL i<9 PR图的两部分
开始
输入n i=2 求n除以i的余数r i=i+1 i≥n或r=0?
是
高中数学必修3 1.3.1算法案例(辗转相除法)(z)
思考1:从上面的两个例子可以 看出计算的规律是什么? S1:用大数除以小数
S2:除数变成被除数,余数变成除 显然37是148和37的最大 数 S3:重复S1,直到余数为0 公约数,也就是8251和 6105的最大公约数
练习1:利用辗转相除法求两数4081与 20723的最大公约数. (53) 20723=4081×5+318;
程序框图
顺序结构
基本结构
条件结构
循环结构
算 法 基本语句
变量与赋值
语 句 适 用 结 构 IF-THEN语句 WHILE语句 UNTIL语句
条件语句 循环语句Fra bibliotek1.3
算法案例
我们这节课就利用基本的算法程序来 解决一些实际问题,进一步体会算法的 程序思想。
案例1.辗转相除法与更相减损术
在初中,我们已经学过求最大公约数的知 识,你能求出18与30的最大公约数吗?
辗转相除法是一个反复执行直到余数等于0停止 的步骤,这实际上是一个循环结构。m = n × q + r
用程序框图表示出右边的过程 8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333
r=m MOD n
m=n
n=r r=0? 否
1813=333×5+148
2
3
18 9 3
互质
30 15 5
所以,18和30的最大公约数是:2×3=6 但是,当我们处理较大数(如:8251 与6105)的最大公因数时,如果利用这种 方法可能计算量比较大,步骤比较多。下 面我们介绍一种古老而有效的算法——辗 转相除法
辗转相除法
人教B版高中数学必修三课件第一章1.21.2.3循环语句
[通一类]
2.写出求满足1+2+3+…+n>2011的最小自然数n的
程序.
解:程序为:
S=0; n=1; While S<=2011; S=S+n; n=n+1; end n=n-1; print(%io(2),n)
[研一题] [例3] 写出求12-22+32-42+…+992-1002的值的程
名称 格式
for循环 for循环变量=:初值 :步长 终值
循环体
end
while循环
while 表达式 循环体 end
名称
for循环
while循环
适合
循环次数
用于预先知道的情形
条件
用于预先不知道次循数环的情 形
作用 用来控制有规律的或重者复在运程算序中需要对某些语句进行 重复的执行
[小问题·大思维] 1.在“for语句”中,步长代表什么?它可以为零吗?
S=0 i=1 while i<=100 S=S+i i=i+1 end M=-S print(%io(2),M)
[悟一法] (1)for语句和while语句的区别可总结为:for语句“先执行,后 判断”,while语句“先判断,后执行”. (2)理解for循环的关系是理解计算机如何执行循环体,例如“S =S+1”这个执行过程实际上是每次循环直至结束.而while 循环则是在每次执行循环体之前,都要判断表达式是否为 真.这样重复执行,一直到表达式为假时,就跳过循环体部 分,结束循环. (3)在Scilab界面内可直接输入程序,for(while)循环语句可以 写在同一行,但在循环条件后面要用“,”号分开,也可以分 行写,但要记住加end.
序.
[自主解答] 法一:程序如下:
M=0; N=0; for i=1:2:99 M=M+i^2; end for i=2:2:100 N=N-i^2; end S=M+N; print%io2,S
苏教版高中高二数学必修3《基本算法语句》教案及教学反思
苏教版高中高二数学必修3《基本算法语句》教案及教学反思一、教案设计1.1 教学目标•掌握循环语句的使用方法•掌握条件语句的使用方法•学会使用算法设计解决问题•加深对于计算机基本概念和基本算法的理解1.2 教学重点•循环语句•条件语句•算法设计1.3 教学难点•如何将实际问题转化为计算机可处理的问题•如何编写复杂的算法1.4 教学内容1.循环语句•执行次数确定的循环:“for”语句•执行次数不确定的循环:“while”语句•“while”语句与“for”语句的比较2.条件语句•“if”语句•“if-else”语句•“if-else”嵌套语句•“switch”语句3.算法设计•算法的概念及基本特点•模拟算法•贪心算法•分治算法•动态规划算法•回溯算法1.5 教学过程1.导入:教师先介绍循环语句、条件语句以及算法设计的概念,以“小陈去超市买东西”为例子来引入说解决问题也会用到类似的算法。
2.准备:为了让学生更好的理解,先列举一些常见的算法问题,如不借助任何辅助内存,如何在一列数中找到最大的数?3.实操:让学生分别用for、while来编写求1-100和的程序,并比较for和while的区别。
4.拓展:让学生设计一个命令行界面的计算器,介绍if/else、switch等条件语句的使用方法。
5.总结:在学生练习完这些算法后,教师就应该让学生自行思考算法问题的设计方法,并通过优化算法提高执行效率。
二、教学反思教学效果本节课的教学效果还不错,学生们都能够掌握循环语句和条件语句的使用方法,并在练习中逐渐掌握了算法设计的基本方法和思路。
此外,让学生自主思考算法问题的设计方法也起到了良好的效果,学生们的创造力以及掌握算法的能力都得到了提高。
教学难点本节课的教学难点是如何将实际问题转化为计算机可处理的问题,以及如何编写复杂的算法。
初步策略是通过实际问题的演示,让更多的学生理解为什么要使用算法。
学生反馈通过调查问卷和讨论,学生们发现这节课解释了许多过去难以理解的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当型循环结构
练习:编写一个程序计算1+1/2+1/3+1/4+…+1/99 i=1 s=0 while i<=99 s=s+1/i i=i+1 wend print s end
i=1 s=0 do s=s+1/i i=i+1 loop until i>99 print s end
基本算法语句
六、循环语句
WHILE 语句 1、一般格式:
WHILE条件 循环体 WEND
2、说明:先判断,再执行。 循环体 条件P
不满足 满足
开始
程序:
i 1
sum 0
i i 1
sum
i 100 ?
否
sum sum i
是
输出sum
结束
i=1 SUM=0 WHILE i<=100 SUM=SUM+I i=i+1 WEND PRINT SUM END
⑥无计算功能,用户由键盘输入的数据必须是常量,输入 多个数据时用“,”分隔,且个数要与变量的个数相同。
基本算法语句
二、输出语句
1、一般格式:
PRINT “提示内容”;表达式
2、说明:①作用是实现算法的输出结果功能,计算。 ②“提示内容”提示用户输出什么样的信息。 ③表达式是指程序要输出的数据。 ④输出语句可以输出常量、变量或表达式的值 及字符。 ⑤一个语句可以输出多个表达式,不同的表达式 之间可用“,”分隔。 ⑥有计算功能,能直接输出计算公式的值。
until 语句 1、一般格式:
Do 循环体 Loop until 条件
2、说明:先执行,再判断。 循环体
不满足
条件P
满足
开始
程序: i=1 SUM=0 DO SUM=SUM+i i=i+1 LOOP UNTIL i>100 PRINT SUM END
i 1
sum 0
sum sum i
例题2 已知一个学生数学、语文、英语三科的成绩分别为100, 85,90,则可用赋值语句编写程序:
a=100 b=85 c=90 PRINT “The average=”;(a+b+c)/3 END
INPUT “Maths=”;a INPUT “Chinese=”;b INPUT “Englsih=”;c PRINT “The average=”;(a+b+c)/3 END
例1用 描 点 法 作 函 数 x 3 3 x 2 24 x 20 y 的图像时,需要求出自 量和函数的一组 变 对 应 值 , 编 写 程 序 , 分 计 算 当 5, 4 , 别 x 3,2,1,0,1,2,3,4,5时 的 函 数 值 。 程序:
INPUT “x=”;x y=x^3+3*x^2-24*x+30 PRINT x PRINT y END 输入语句 赋值语句 输出语句 输出语句
基本算法语句
四、练习
5、根据下列程序,画出程序框图
input x,y print x/2,3*y x=x+1 y=y-1 print x,y end
输入一个x的值,要求输出它的绝对值。画出框图 开始 输入x x>=0?
Y N
输出x
输出-x
结束
基本算法语句
五、条件语句
一般格式:
IF 条件 THEN 语句 END IF 满足条件 是 语句 1 否
输出a,b,c 结束
INPUT “a,b,c=”;a,b,c IF b>a THEN t=a a=b b=t END IF IF c>a THEN t=a a=c c=t END IF IF c>b THEN t=b b=c c=t END IF PRINT a,b,c END
基本算法语句
六、循环语句
④赋值号左右不能对换。 ⑤不能用赋值号进行代数式的演算。 ⑥一个语句只能给一个变量赋值; ⑦将一个变量的值赋给另一个变量,前一个变量 的值保持不变;可先后给一个变量赋多个不同的 值,但变量的取值总是最近被赋予的值。
P=(2+3+4)/2
数学符号与程序符号的对比 数学符号 × ÷
ab
≤ ≥ ≠ |x|
①
N
开始 输入a,bபைடு நூலகம்c
输出p
Y
b p 2a
q 2a
△≥0? Y
原方程无实 数根
b2 4ac
x1 p q x2 p q
△=0? N
①
输出x1,x2
结束
基本算法语句
五、条件语句
例1、编写程序,输入一个x的值,要求输出它的绝对值。
input x if x>=0 then print x else print -x end if end
基本算法语句
一、输入语句
1、一般格式:
INPUT “提示内容”;变量
2、说明:①作用为对程序中的变量赋值。
②“提示内容”提示用户输入什么样的信息。
输入a,b,c
③变量是指程序在运行时其值是可以变化的量。
INPUT a,b,c
④输入语句要求输入的值只能是具体的常数。
⑤提示内容与变量之间用“;”隔开,变量与变量 之间用“,”隔开。 “提示内容”和它后面的“;”可以省略
i i 1
sum
i 100 ?
是
否
输出sum
结束
1.2基本算法语句
输入语句 输出语句 赋值语句 条件语句 循环语句
1.2.1输入语句 输出语句 赋值语句
1、计算机语言是一种计算机能理解的 特殊语言,如BASIC,FORTRAN, C++,FOXBASE等,它们都是用一些 特定意义的符号和语言描述的。自然 语言必须转换成计算机语言才能为计 算机接受,并实施算法。 2、考虑到通用性和普及性,本节采用 BASIC语言中的关键词来编写伪代码。 伪代码是介于自然语言和计算机语言 之间的文字和符号,是表达算法的简 单而实用的好方法。
x 且\或
程序符号 * / a^b <= >= <> ABS(x) SQR(x) AND\OR
基本算法语句
练习
1、判断下列赋值语句是否正确 (1) 4=m (2) x+y=10 (3) A=B=2 (4) N=2*N √ ×
×
×
2、写出下列语句描述的算法的输出结果
(1) a=5 b=3 c=(a+b)/2 d=c*c print d d= 16 (2) a=1 b=2 c=a+b b=a+c-b print a,b,c a=1,b=2,c=3 (3) a=10 b=20 c=30 a=b b=c c=a print a,b,c a=20,b=30,c=20
N不是质数 PRINT “n is not a prime number.”
基本算法语句
三、赋值语句
1、一般格式:
变量=表达式
2、说明:①作用是将表达式所代表的值赋给变量,计算。
②赋值语句中的“=”称为赋值号。
p 2 3 4 2
③赋值语句右边必须是一个数据、常量和算式, 左边必须是变量,不能为表达式。
说明:“条件”表示判断的条件,“语句”表示满足条件时执行 的操作内容;条件不满足时,结束程序,END IF表示条件语 句的结束。
基本算法语句
五、条件语句
1、一般格式:
IF 条件 THEN 语句 1 ELSE 语句 2 END IF 满足条件 是 语句 1 否 语句 2
2、说明:在条件语句的一般格式中,“条件”表示判断的条件; “语句 1”表示满足条件时执行的操作内容;“语句 2”表示不满足 条件时执行的操作的内容;END IF表示条件语句的结束。
基本算法语句
五、条件语句
例2、编写程序,输入一个x的值,如果它是正数,则输出它, 否则不输出。
input x if x>0 then print x end if end
开始 输入a,b,c b>a? N Y t=a a=c c=t c>b? N c>a? N Y Y
程序:
t=a a=b
b=t
t=b b=c c=t