导数研究函数的应用.c

合集下载

2024全国高考真题数学汇编:导数在研究函数中的应用

2024全国高考真题数学汇编:导数在研究函数中的应用

2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。

导数在研究函数中的应用PPT课件

导数在研究函数中的应用PPT课件
2 x
是减函数,求a的取值范围.
例4(09年宁夏/海南卷)已知函数 3 2 x f ( x) ( x 3x ax b)e . (1)若a=b=-3,求f(x)的单调区间 (2)若f(x)在(-∞,α ),(2,β )内 单调递增,在(α ,2),(β ,+∞)单调 递减,证明:β -α >6. 【解题要点】 求导后要指出定义域→由导数大于0得递 增开区间,定义域内其余区间为递减区 间→单调递增条件转化为导数非负.
考点2 导数在函数极值问题中的应用 3 x 2 例5 求函数 f ( x) 的极值 . 2 ( x 1) 例6 已知函数 f ( x) ( x ax a)e 有极小值0,求实数a的值.
2 x
例7(09年湖南卷文)已知函数 3 2 f ( x) x bx cx 的导函数的图象关于 直线x=2对称,且函数f(x)在x=t处取 得极小值g(t),求函数g(t)的定义域和 值域.
10.2
导数在研究函数中的应用
知识梳理
1 5730 p 2
t
1.导数与函数的单调性: f ′(x)≥0 Ûf(x)单调递增; f ′(x)≤0 Û f(x)单调递减, 其中f ′(x)不恒等于0.
2.函数极值的概念: 函数f(x)在点x0附近有定义,且对x0附近 的所有的点,都有 (1)f(x)>f(x0),则f(x0)为函数f(x)的 极小值; (2)f(x)<f(x0),则f(x0)为函数f(x)的 极大值.
例8(09年全国卷)已知函数 2 x 1和x 2, f x x aIn 1 有两个极值点 x 且x 1<x 2. (1)求实数a的取值范围;
1 2 In2 (2)证明 f x2 . 4
【解题要点】 由导函数的变号零点确定极值点→结合 图象确定极值类型.

导数与函数的函数有界性研究

导数与函数的函数有界性研究

导数与函数的函数有界性研究函数是数学中重要的概念,而导数则是研究函数变化率的工具。

在数学中,函数的函数有界性是一个很有意义的性质。

本文将探讨导数与函数的函数有界性的关系及其在数学中的应用。

导数是函数在某一点处的变化率,通常表示为f'(x)或dy/dx。

在函数的图像中,导数可以表示为曲线在该点上的斜率。

函数的导数提供了许多对函数行为的有用信息。

首先,我们来探讨导数和函数的函数有界性之间的关系。

对于一个函数f(x),如果其导数在定义域内处处有界,则可以推断f(x)在整个定义域内是有界的。

这是因为导数的有界性意味着函数的变化率是有限的,因此函数本身的取值也是有限的,即函数在整个定义域内不会趋于无穷大或无穷小。

另一方面,如果一个函数在定义域内处处有界,我们不能直接得出其导数在定义域内处处有界的结论。

这是因为函数的有界性只是说函数的取值在某个范围内,但并不提供关于函数变化率的详细信息。

因此,有界函数的导数可以是有界的,也可以是无界的。

在数学中,导数与函数的函数有界性有许多应用。

其中之一是在求解最值问题中的应用。

对于一个函数f(x),如果其导数在某个点处为0,则该点可能是函数的极值点(最大值或最小值)。

通过研究函数的导数,我们可以找到函数的极值点,从而得到函数的最值。

此外,导数还被广泛应用于优化问题中。

在优化问题中,我们需要找到函数在某个区间内的最大值或最小值。

通过研究函数的导数,我们可以确定函数在某些点上的斜率,从而找到函数的极值点。

导数还可以帮助我们研究函数的图像。

通过分析函数在不同区间上的导数的正负性,我们可以确定函数的增减性、凹凸性等特征。

这些特征对于绘制函数的图像和理解函数的性质非常重要。

总结起来,导数与函数的函数有界性之间存在一定的关系。

导数的有界性可以推导出函数的函数有界性,但函数的函数有界性不能直接推导出导数的有界性。

导数在数学中有广泛的应用,特别是在最值问题和优化问题中。

通过研究函数的导数,我们能够了解函数的特征,绘制函数的图像,并解决实际问题中的优化需求。

导数在研究初等函数上的应用

导数在研究初等函数上的应用

其次研 究函数 的单调性 、 极值 、 最值 、 凸凹性 、 点及 函数 作 图等 。最后 选取一 些典 型 的问题 , 拐 用导数 进行刻 画。
关键词 : 导数 ; 单调 性 ; 极值 ; 凸凹一 ; 点 l 拐 # -
引 言
f± 2 二 ! 兰 ( !

导数是数学分析课程 中最重要 的基本概念之一 ,它反映 了

( ) 出 fx在 区间 ( ,) 1求 () ab 内的所有驻点 , 导数不存在 的点 ,
并计算各点 的函数值 ;
() 2 求出端点处的函数值 fa和 “b ; () ) () 3 比较以上所有 函数值 , 中最大 的就是 函数在f,】 的 其 ab上
最大值 , 的就是函数 在【, 上的最小值。 最小 ab ]
一0一 ) 0 1 。 已越来越广泛 了,已逐渐 由解决 问题 的辅助地位上升为分析和 区 间 为 ( O,1 和 ( , ) 从 以上二例 可以看出 , 函数 fx 的单调性是 函数 的局部状 () 解决 问题 时 的必 不 可 少 的工 具 。
应先求 出 f x = , )O的点或 r x不存在的 ( () 导数是依照实际问题为背景提出的概念 。利用 函数 的导数 态 。研究函数 的单调性 , 这些点把定义域分为若干个小 区间 , 考查 f x 在各个 区间内 ,) ( 可以用来研究 函数分析性 质, 诸如单调性 、 极值点 、 凹凸性 、 函数 点, 然后根据定理判断 “x在各个小 区间内的单调性。 ) 的渐进线 、 图象等许多性质。着重 阐述运用 导数来研究中学中 的符号 , 画 . 2 常见 的因式分解 、 明恒等式 、 证 曲线 的切线 和法线方程 、 方程根 1 函数的最值 的讨论等 , 目的是可 以给中学里解决数学 问题拓展新的思路 , 可 在生产实践 中, 常会遇到一类 “ 最大 ” “ 、最小” “ 、 最省” 等问 例如厂家生产一种 圆柱形杯 子 , 就要考 虑在 一定条件下 , 杯 以使有些数学问题得 到简化 ,希望能给中学 的老师和 同学提供 题 , 子 的直径和高取多大时 , 用料最省等。这类 问题就是数学上最值 些可借鉴 的东西。下面就讨论 一下导数在初等数学 中的应用。 1 导数在研究 函数上的应用 1 函数 的单调性 . 1 问题。如何求最大值 、 小值 问题呢? 最 设 函数 y fx 在闭 区间【,] =( ) ab上连续 , 由闭区间上连续 函数

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

导数在高考中是怎么应用的?

导数在高考中是怎么应用的?

导数在⾼考中是怎么应⽤的?考纲原⽂1.导数在研究函数中的应⽤(1)了解函数单调性和导数的关系;能利⽤导数研究函数的单调性,会求函数的单调区间(其中多项式函数⼀般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会⽤导数求函数的极⼤值、极⼩值(其中多项式函数⼀般不超过三次);会求闭区间上函数的最⼤值、最⼩值(其中多项式函数⼀般不超过三次).2.⽣活中的优化问题会利⽤导数解决某些实际问题.知识点详解⼀、导数与函数的单调性⼀般地,在某个区间(a,b)内:(1)如果 f'(x)>0,函数f (x)在这个区间内单调递增;(2)如果f'(x)<0,函数f (x)在这个区间内单调递减;(3)如果f'(x)=0,函数f (x)在这个区间内是常数函数.注意:(1)利⽤导数研究函数的单调性,要在函数的定义域内讨论导数的符号;注意:(3)函数f (x)在(a,b)内单调递增(减)的充要条件是f'(x)≥0(f'(x)≤0 )在(a,b)内恒成⽴,且在(a,b)的任意⼦区间内都不恒等于0.这就是说,在区间内的个别点处有f'(x)=0 ,不影响函数f (x)在区间内的单调性.⼆、利⽤导数研究函数的极值和最值1.函数的极值⼀般地,对于函数y=f (x),(1)若在点x=a处有f ′(a)=0,且在点x=a附近的左侧f'(x)<0,右侧f'(x)>0,则称x=a为f (x)的极⼩值点,叫做函数f (x)的极⼩值.(2)若在点x=b处有f'(b)=0,且在点x=b附近的左侧f'(x)>0,右侧f'(x)<0 ,则称x=b为f (x)的极⼤值点,叫做函数f (x)的极⼤值.(3)极⼩值点与极⼤值点通称极值点,极⼩值与极⼤值通称极值.2.函数的最值函数的最值,即函数图象上最⾼点的纵坐标是最⼤值,图象上最低点的纵坐标是最⼩值,对于最值,我们有如下结论:⼀般地,如果在区间[a,b]上函数y=f(x)的图象是⼀条连续不断的曲线,那么它必有最⼤值与最⼩值.设函数f(x) 在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最⼤值与最⼩值的步骤为:(1)求f(x)在(a,b)内的极值;(2)将函数f(x)的各极值与端点处的函数值f(a),f(b)⽐较,其中最⼤的⼀个是最⼤值,最⼩的⼀个是最⼩值.3.函数的最值与极值的关系(1)极值是对某⼀点附近(即局部)⽽⾔,最值是对函数的定义区间[a,b]的整体⽽⾔;(2)在函数的定义区间[a,b]内,极⼤(⼩)值可能有多个(或者没有),但最⼤(⼩)值只有⼀个(或者没有);(3)函数f (x)的极值点不能是区间的端点,⽽最值点可以是区间的端点;(4)对于可导函数,函数的最⼤(⼩)值必在极⼤(⼩)值点或区间端点处取得.三、⽣活中的优化问题⽣活中经常遇到求利润最⼤、⽤料最省、效率最⾼等问题,这些问题通常称为优化问题.导数是求函数最值问题的有⼒⼯具.解决优化问题的基本思路是:考向分析考向⼀利⽤导数研究函数的单调性1.利⽤导数判断或证明⼀个函数在给定区间上的单调性,实质上就是判断或证明不等式 f'(x)>0(f'(x) <0)在给定区间上恒成⽴.⼀般步骤为:(1)求f ′(x);(2)确认f ′(x)在(a,b)内的符号;(3)作出结论,f'(x)>0 时为增函数,f'(x)<0时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进⾏分类讨论.注意:2.在利⽤导数求函数的单调区间时,⾸先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数f(x)的单调性求参数的取值范围的⽅法(1)可导函数在某⼀区间上单调,实际上就是在该区间上f'(x)≥0 (或f'(x)≤0 )( f'(x)在该区间的任意⼦区间内都不恒等于0)恒成⽴,然后分离参数,转化为求函数的最值问题,从⽽获得参数的取值范围;(2)可导函数在某⼀区间上存在单调区间,实际上就是f'(x)>0 (或f'(x)<0 )在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知f(x) 在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的⼦集,从⽽可求出参数的取值范围.4.利⽤导数解决函数的零点问题时,⼀般先由零点的存在性定理说明在所求区间内⾄少有⼀个零点,再利⽤导数判断在所给区间内的单调性,由此求解.考向⼆利⽤导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数f(x)极值的⽅法:①确定函数f(x)的定义域.②求导函数f'(x).③求⽅程f'(x)=0的根.④检查 f'(x)在⽅程的根的左、右两侧的符号,确定极值点.如果左正右负,那么f(x)在这个根处取得极⼤值;如果左负右正,那么 f(x) 在这个根处取得极⼩值;如果f'(x) 在这个根的左、右两侧符号不变,则fx() 在这个根处没有极值.(3)利⽤极值求参数的取值范围:确定函数的定义域,求导数f'(x),求⽅程f'(x)=0 的根的情况,得关于参数的⽅程(或不等式),进⽽确定参数的取值或范围.2.求函数f (x)在[a,b]上最值的⽅法(1)若函数f (x)在[a,b]上单调递增或递减,f (a)与f (b)⼀个为最⼤值,⼀个为最⼩值.(2)若函数f (x)在区间(a,b)内有极值,先求出函数f (x)在区间(a,b)上的极值,与f (a)、f (b)⽐较,其中最⼤的⼀个是最⼤值,最⼩的⼀个是最⼩值.(3)函数f (x)在区间(a,b)上有唯⼀⼀个极值点时,这个极值点就是最⼤(或最⼩)值点.注意:(1)若函数中含有参数时,要注意分类讨论思想的应⽤.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不⼀定是最值,函数的最值也不⼀定是极值.要注意利⽤函数的单调性及函数图象直观研究确定.3.利⽤导数解决不等式恒成⽴问题的“两种”常⽤⽅法:(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利⽤导数求该函数的极值(最值),然后构建不等式求解.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果⼀个函数在某⼀范围内导数的绝对值较⼤,那么函数在这个范围内变化得快,这时函数的图象就⽐较“陡峭”(向上或向下);反之,函数的图象就“平缓”⼀些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴的交点的横坐标为函数的极值点.考向四⽣活中的优化问题1.实际⽣活中利润最⼤,容积、⾯积最⼤,流量、速度最⼤等问题都需要利⽤导数来求解相应函数的最⼤值.若在定义域内只有⼀个极值点,且在极值点附近左增右减,则此时唯⼀的极⼤值就是最⼤值. 2.实际⽣活中⽤料最省、费⽤最低、损耗最⼩、最节省时间等问题都需要利⽤导数求解相应函数的最⼩值.⽤料最省、费⽤最低问题出现的形式多与⼏何体有关,解题时根据题意明确哪⼀项指标最省(往往要从⼏何体的⾯积、体积⼊⼿),将这⼀指标表⽰为⾃变量x的函数,利⽤导数或其他⽅法求出最值,但⼀定要注意⾃变量的取值范围.。

导数与函数的方向导数关系探讨

导数与函数的方向导数关系探讨

导数与函数的方向导数关系探讨在微积分中,导数是研究函数变化率的一个重要工具。

而函数的方向导数则是用来描述函数在给定方向上的变化率。

本文将重点探讨导数与函数的方向导数之间的关系,并深入探讨其应用。

一、导数的定义导数是描述函数变化率的一种工具,它表示函数在某一点的变化速度。

对于函数f(x),它的导数可以表示为f'(x)或者dy/dx,意味着函数在该点的斜率。

具体而言,导数可以通过极限来定义,即f'(x) = lim (h→0) (f(x+h) - f(x))/h二、函数的方向导数方向导数是描述函数在给定方向上的变化速率的一种概念。

考虑一个函数f(x, y)及其偏导数fx和fy,给定一个方向向量v = (a, b),则函数f在点(x, y)处在方向v上的方向导数可以表示为D_vf(x, y) = fx(x, y) * a + fy(x, y) * b其中,fx(x, y)和fy(x, y)分别为函数f(x, y)对x和y的偏导数。

三、导数与函数的方向导数之间的关系导数和函数的方向导数之间存在一定的相似性和联系。

特别地,对于一个可微的函数f(x, y),它在某一点(x, y)处的导数f'(x, y)可以表示为其在方向(vx, vy)上的方向导数D_vf(x, y),即D_vf(x, y) = f'(x, y) = fx(x, y) * vx + fy(x, y) * vy其中,(vx, vy)为方向向量。

这个结果表明,函数的导数可以看作是函数在方向(vx, vy)上的方向导数的特殊情况,且方向向量(vx, vy)的分量与导数的分量对应。

换句话说,导数是方向导数在特定方向上的特例。

四、导数与函数的方向导数的应用导数和函数的方向导数在数学和物理学中具有广泛的应用。

下面简要介绍几个常见的应用领域。

1. 最优化问题:导数和方向导数可以帮助寻找函数的最值点。

通过求导数和方向导数为零的点,可以找到函数的极值点,从而解决最优化问题。

高三数学一轮复习备考导数在研究函数中的应用说课稿

高三数学一轮复习备考导数在研究函数中的应用说课稿

《导数在研究函数中的应用》一轮复习说课稿尊敬的各位老师、专家,大家好!我今天说课的内容是高三的一节复习课《导数在研究函数中的应用》。

下面,我从以下几个方面来说课。

一、教学理念:新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

因此,教师的责任关键在于教学过程中创设一个“数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素养,培养自己的能力。

二、教材分析1、本节教材的地位、作用分析导数在研究函数中的应用是人教A版高中数学新教材选修2-2第一章第三节的内容。

其中函数单调性是刻画函数变化的一个最基本的性质,虽然学生已经能够使用定义判定在所给区间上函数的单调性,但在判断较为复杂的函数单调性时,使用定义法局限性较大。

而通过本节课的学习,能很好的解决这一难题,能够使学生充分体验到导数作为研究函数单调性的工具,其有效性和优越性。

另一方面,在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、利用导数解决生活中的优化问题,同时对研究不等式等问题起着重要作用。

所以,学习本节课既加深了学生对前面所学知识之间的联系,也为后继学习做好了铺垫,学好本节内容,能加深学生对函数性质的理解,进一步体会数形结合、分类讨论、函数与方程的数学思想,能在高考中起到四两拨千斤的作用。

在高考中,常将导数与向量、不等式、集合一样作为工具与其他知识相综合考查。

2、教学目标(一)知识与技能目标:(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);(2)了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). (二)过程与方法目标:(1)通过本节的复习,掌握用导数在研究函数单调性、极值和最值中的方法;(2)培养学生的观察、比较、分析、概括的能力,数形结合、转化思想、分类讨论的数学思想(三)情感态度与价值观目标:(1)在教学过程中让学生养成多动手、多观察、勤思考、善总结的习惯;(2)培养学生的探索精神,感受成功的乐趣。

高中数学选修2《导数在研究函数中的应用》课件

高中数学选修2《导数在研究函数中的应用》课件


x>1
时,
f (x)>0,
-
1 3
x
1
时,
∴ 函数在 (-∞,
f (x)<0.
- 13) 或 (1,
+∞) 上是增函数,

(
-
1 3
,
1)上是减函数.
4. 证明函数 f(x)=2x3-6x2+7 在 (0, 2) 内是减函数.
证明: f (x)=6x2-12x,
解不等式 6x2-12x<0 得 0<x<2,
函数是增函数.
例2. 判断下列函数的单调性, 并求出单调区间: (1) f(x)=x3+3x;
(2) f(x)=x2-2x-3;
(3) f(x)=sinx-x, x(0, p);
(4) f(x)=2x3+3x2-24x+1.
y
解: (3) f (x) = cosx-1,
解不等式 cosx-1>0 得
果 f(x)<0, 那么函数 y=f(x)在
这个区域内单调递减.
例1. 已知导函数 f (x) 的下列信息:
当 1<x<4 时, f (x)>0;
当 x>4, 或 x<1 时, f (x)<0;
当 x=4, 或 x=1 时, f (x)=0.
试画出函数 f(x) 图象的大致形状.
解: 在区间 (1, 4) 内, f (x)>0,
解不等式 6x2+6x-24>0 得
x
-
1 2
-
17 2
,

x
-
1 2
+

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿一、教材分析1教材的地位和作用“函数的单调性和导数”这节新知在教材是选修2—1,本节计划两个课时完成。

作为高三总复习课首先明确考纲的要求了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。

在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。

其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。

激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。

2教学内容本节课的主要教学内容是导数在研究函数中的应用(1)—函数的单调性与导数。

在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。

例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。

培养学生数形结合思想、转化思想、分类讨论的数学思想。

3教学目标(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。

(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。

2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。

(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。

4教学重点,难点教学重点:利用导数研究函数的单调性、求函数的单调区间。

探求含参数函数的单调性的问题。

二、教法分析1“ 以”, 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。

同济大学高等数学2.5导数在研究函数性态上的应用

同济大学高等数学2.5导数在研究函数性态上的应用
可能极值点x0 ,且这一点确是 f 的极大点(或极 小点),则这个极大值 f (x0 )(或极小值 f (x0 ))就是 函数 f 在区间I 上最大值(或最小值)。
进一步,如果在实际问题中根据问题的性质可 以判定可导函数 f (x) 确有最值,且一定在定义区间 内部取得,则唯一的驻点 x0 必是 f (x)的最值点。
怎样选择它的直径与高,使得所用的材料最省?
解 设圆柱体的底面直径为 d,高为h,表面积为S,则有:
S
d
h
d2
V d 2h 4
S 4V d 2,
d 0
4
d4
令S 0,解得唯一驻点 d 23 V 。
又由问题的实际意义可 知最小表面积 S一定存在,
所以唯一驻点d 23 V 就是最小点,
此时 h 4V 3 V
()
(2) f (x) 0 f (x) 在区间 I 上严格单调增加
()
(减少).
定理 2 设函数 f 在区间 I 上可导,则 f 在区间 I 上 严格单调增加(减少)充要条件是
(1) 对x I,有 f (x) 0( 0); (2) 在I的任一部分区间上f (x) 都不恒等于零.
例1 讨论下列函数的单调性,并指出单调区间:
当 x ( x , x ) 时, f (x) 0 , 则 f (x) 在点 x 取得极小值; (3)若 f (x) 在点 x 的左、右邻域内保持同号, 则 f (x) 在点 x 处无极值。
例5 求函数 f (x) (x 1) 3 x2的极值.
解:f ( x) 3 x 2 2( x 1) 5x 2
几点说明: (1)极值是指函数的值,而极值点是指自变量的值,
两者不要混淆。 (2)函数极值的概念是局部性的,它不一定是函数在

高中数学 第一章 导数及其应用 1.3.1 导数在研究函数中的应用—单调性教案5 苏教版选修2-2-

高中数学 第一章 导数及其应用 1.3.1 导数在研究函数中的应用—单调性教案5 苏教版选修2-2-

导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。

导数在函数中的应用

导数在函数中的应用

导数在函数中的应用
现代社会中,微积分在各个领域都有着广泛的应用,而其中最重要的就是导数的应用。

导数可以帮助我们研究函数的变化趋势,可以提供有关函数的关键信息,它在科学、工程、数学、物理等众多领域有着重要的作用。

首先,导数可以用来确定函数的极值,即求解函数的最大值和最小值。

函数的极值是指函数在定义域内所取得的最大值或最小值,利用导数可以轻松地求出函数的极值。

其次,导数可以用来分析函数的变化趋势,即函数图像的上升或下降速度。

函数的变化趋势是指函数在定义域内的变化状况,其中导数可以用来描述函数的变化速度,可以帮助我们更清楚地了解函数的变化趋势。

此外,导数可以用来解决最优化问题,即找出某一函数的最优解。

最优化问题是指在一定条件下,求出能够使函数取得最大值或最小值的解,用导数可以计算出函数的极值,从而可以找出函数的最优解。

最后,导数还可以用来研究函数的变化率,即求出函数在某一点的变化率。

函数的变化率是指函数在某一点的变化率,其中导数可以用来描述函数在某一点的变化率,可以帮助我们更清楚地了解函数的变化状况。

总之,导数在函数中有着重要的作用,它可以用来求解函数的极值、分析函数的变化趋势、解决最优化问题和研究函数的变化率,它在各个领域都有着重要的作用。

利用导数研究函数的变化率

利用导数研究函数的变化率

利用导数研究函数的变化率导数的定义导数是研究函数变化率的重要工具。

对于函数 $f(x)$,它在某一点 $x=a$ 的导数表示了函数在该点的变化率。

导数的定义如下:$$f'(a) = \lim_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h}$$其中,$f'(a)$ 是函数 $f(x)$ 在点 $x=a$ 的导数。

导数的意义函数的导数具有一些重要的意义。

首先,导数可以帮助我们确定函数在某一点的变化趋势。

如果导数为正,表示函数在该点上升;如果导数为负,表示函数在该点下降;如果导数为零,表示函数在该点取极值。

其次,导数还可以用来求函数的斜率,从而研究函数的曲线特征。

导数的计算对于一些常见的函数,我们可以通过通用的求导规则来计算导数。

下面是一些常见规则的示例:- 常数函数:如果 $f(x) = c$,其中 $c$ 是一个常数,那么 $f'(x) = 0$。

- 幂函数:如果 $f(x) = x^n$,其中 $n$ 是一个常数,那么 $f'(x) = n \cdot x^{n-1}$。

- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,那么 $f'(x) = a^x \cdot \ln(a)$。

- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$ 且 $a \neq 1$,那么 $f'(x) = \frac{1}{x \cdot \ln(a)}$。

使用导数研究函数的变化率导数可以用来研究函数在特定区间上的变化率。

比如,如果函数在某一区间上的导数始终为正,那么函数在该区间上是递增的;如果导数始终为负,那么函数在该区间上是递减的。

此外,通过分析函数的导数曲线,我们可以确定函数的极值点和拐点。

极值点是函数在该点取得极大值或极小值的点,拐点是函数曲线由凹向上变为凹向下或由凹向下变为凹向上的点。

三角函数的求导研究三角函数的导数与应用

三角函数的求导研究三角函数的导数与应用

三角函数的求导研究三角函数的导数与应用三角函数的求导:研究三角函数的导数与应用导数是微积分中的重要概念,它衡量了函数在某一点上的变化率。

对于三角函数来说,求导过程相对复杂,但却是非常有意义和实用的。

本文将就三角函数的求导进行深入研究,并探讨其在实际问题中的应用。

1. 正弦函数的导数正弦函数是三角函数中最基础的函数之一,它的导数可以通过基本的求导公式来推导得出。

假设函数f(x) = sin(x),我们可以应用导数的定义,即求极限lim(h -> 0) [f(x + h) - f(x)] / h。

将f(x) = sin(x)代入公式中,我们可以得到:lim(h -> 0) [sin(x + h) - sin(x)] / h我们需要根据极限的性质和三角函数的加法公式来简化上式。

根据三角函数的加法公式,我们可以得到:lim(h -> 0) [2cos((x + h + x) / 2)sin((x + h - x) / 2)] / h进一步简化可得:lim(h -> 0) [2cos((2x + h) / 2)sin(h / 2)] / h利用极限的性质,我们可以将上式进一步变换为:2cos(x)lim(h -> 0) sin(h / 2) / h根据极限定义,我们可以得到:2cos(x)因此,我们得到了正弦函数的导数为2cos(x)。

2. 余弦函数的导数同样地,我们可以推导出余弦函数的导数。

假设函数f(x) = cos(x),应用导数的定义,我们可以得到:lim(h -> 0) [cos(x + h) - cos(x)] / h根据三角函数的加法公式,我们得到:lim(h -> 0) [-2sin((x + h + x) / 2)sin((x + h - x) / 2)] / h进一步简化,可得:lim(h -> 0) [-2sin((2x + h) / 2)sin(h / 2)] / h利用极限的性质,我们可以得到:-2sin(x)lim(h -> 0) sin(h / 2) / h根据极限的定义,我们可以得到:-2sin(x)因此,我们得到了余弦函数的导数为-2sin(x)。

导数在研究函数中的应用教学设计

导数在研究函数中的应用教学设计

导数在研究函数中的应用教学设计一、教学目标1.理解导数的定义以及导数的几何意义。

2.理解导数的运算规则。

3.掌握常见函数的导数计算方法。

4.能够应用导数分析函数的变化规律和局部特性。

二、教学内容1.导数的定义和几何意义。

2.导数的运算规则。

3.常见函数的导数计算方法。

4.导数在函数分析中的应用。

三、教学过程1.导入与导入(5分钟)教师可以提出一个问题,如一辆汽车在其中一时刻的速度如何计算?引导学生思考,在不同时间点的速度是否一样?为什么?通过讨论,引出导数的定义。

2.导数的定义和几何意义(20分钟)教师通过示意图和实例,介绍导数的定义:若函数 f(x) 在点 x0 处的导数存在,记作 f'(x0) 或 dy/dx ,x=x0,定义为函数 f(x) 在该点处的切线的斜率。

然后,通过几何意义的解释,引导学生理解导数表示函数在其中一点局部的变化率和斜率的关系。

3.导数的运算规则(30分钟)教师通过示例引导学生研究导数的运算规则,让学生自己发现和总结。

例如,一次幂函数的导数等于原函数的系数,常数倍规则,和差规则等。

然后,对这些规则进行总结和讲解,使学生深刻理解导数的运算规则。

4.常见函数的导数计算方法(30分钟)教师以常见函数为例,引导学生计算其导数。

例如,常数函数、幂函数、指数函数、对数函数、三角函数等。

需要强调一些特殊函数的导数计算方法,例如乘积、商、复合函数的导数计算方法。

5.导数在函数分析中的应用(30分钟)教师通过实际问题的分析,让学生应用导数来分析函数的变化规律和局部特性。

例如,求函数的极值点、拐点,讨论函数的增减性、凸凹性等。

通过具体例题引导学生掌握应用导数解决实际问题的方法。

6.练习与巩固(15分钟)教师提供一些练习题,让学生巩固所学知识。

练习题包括导函数的计算和实际问题的应用。

教师可以设置不同难度的题目,逐渐提高学生的解题能力。

四、教学评价1.在课堂实践中,教师可以通过学生的回答问题、作业完成情况以及小组讨论的情况来评价学生对导数的理解和应用水平。

《导数在研究函数中的应用》复习课

《导数在研究函数中的应用》复习课

《导数在研究函数中的应用》复习课江苏扬州大学附属中学(225000)李令军[摘要]导数是高中数学和高等数学联系的纽带,导数的出现丰富了函数问题.高考对导数的考查主要是运用导数研究函数性质,运用导数解决含参数的问题,涉及的数学思想有数形结合、分类讨论、函数思想和化归思想.研究导数在函数中的应用题,能让学生进一步理解导数和函数的关系.[关键词]导数;函数;应用;复习课[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2018)17-0014-01本节课是高二《导数在研究函数中的应用》复习课第二课时,复习课之前,已经做了些针对性练习,应用大数据对学生出现的问题进行了分析,下面就复述本节课.一、问题展示问题1:导数帮助我们研究了函数中的哪些问题?问题2:如何用导数解决这些问题?解决这些问题时需要注意什么细节?二、课前预习1.已知函数f(x)=x3-ax2+1在(0,2)内单调递减,实数a的取值范围是().学生甲:此题是运用单调性求解参数范围,原函数递减,则它的导函数应该小于或等于0.教师:这位同学在求解参数范围时未使用分离参数的方法,请分析一下你的解题思路.学生乙:我采用的方法是先求出函数的单调区间,a≤0时,函数在[0,+∞)上单调递增,不符合题意,所以a>0,又因为函数在(0,2)上单调递减,所以导函数在(0,2)必然是负值.教师:主动求出单调区间,让(0,2)成为减区间的子区间,方法很好.2.过点(2,m)可作函数f(x)=x3-3x2图像的三条切线,则实数m的取值范围是().教师:函数的切线是由割线逼近而得,每一条切线都是由一个切点得到,过点(2,m)可作三条切线,就是函数图像上存在三个切点,设切点坐标(x0,x30-3x20),切线斜率为f′(x0)=3x20-6x0,切线方程为y-(x30-3x20)=(3x20-6x0)(x-x0),因为切线过点(2,m),代入得m-(x30-3x20)=(3x20-6x0)(2-x0),分离参数得m=(x30-3x30)+(3x20-6x0)(2-x0),实数m的范围就是转化为方程有解,转化为直线y=m与右式函数图像有三个交点,即m的范围是右式函数的极小值到极大值.三、问题探究【例题】已知函数f()x=12x2-a ln x.(1)求f()x的单调区间;(2)当a>0时,求函数f()x在区间[]1,2上的最小值;(3)已知g(x)=23x3,在(2)的条件下,若对任意的x1∈[1,2],均存在x2∈[0,3],使得不等式f(x1)>g(x2)恒成立,求实数a的取值范围.分析:f′(x)=x-ax=x2-ax,当a≤0,f′(x)>0,f(x)的单调增区间为(0,+∞),无单调减区间;当a>0时,f(x)的单调增区间为(a,+∞),单调减区间为(0,a).教师:这位同学解题思想正确,函数f(x)单调增区间为(a,+∞),单调减区间为(0,a),就需要讨论a与区间[1,2]的关系,讨论三种情形,a在区间左侧、区间中间和区间右侧,但是这位同学未能将a的具体范围化简好,也没有将f(x)的最小值进行合并,f(x)min=ìíîïïïïïïïï12,0<a<1a2-a ln a,1≤a≤42-a ln2,a>4对任意的x1∈[1,2],均存在x2∈[0,3],使得不等式f(x1)>g(x2)恒成立.此题是根据恒成立问题与存在性问题求解参数,左式“任意”,需要研究左式最小值,最小值都比右式大,那么左式的所有值都比右式大.右式“存在”,若研究右式最大值比左式小,那么右式的所有值都比左式小,不符合题意.当0<a<1时,左式最小值为12,满足题意,当1≤a≤4时,f(x)的最小值为a2-a ln a,a2-a ln a>0,化简得1≤a<e,当a>4时,f(x)的最小值为2-a ln2>0,此不等式不成立.综上所述,a的取值范围是0<a<e.此问也可以考虑成左式f()x=12x2-a ln x>0恒成立问题,不需要讨论左式的最小值,转变成分离参数问题,a<x22ln x,在x∈(1,2]恒成立,只需要求解右式的最小值.(责任编辑黄桂坚)数学·教学研究Copyright©博看网 . All Rights Reserved.。

导数在研究函数中的应用 精品教案

导数在研究函数中的应用 精品教案

《导数在研究函数中的应用》【教材分析】导数及其应用内容分为三部分:1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数。

在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法。

【考纲解读】1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极值,会求闭区间上函数的最值。

3.会利用导数解决某些实际问题。

【教学目标】1.能熟练应用导数的几何意义求解切线方程2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学重点】理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学难点】原函数和导函数的图像“互译”,解决一些恒成立问题【学 法】本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。

在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。

【教 法】数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。

【授课类型】复习课【教学过程】一、要点梳理温馨提醒:若函数y =f (x )在(a ,b )内单调递增,则f ′(x )≥0,而f ′(x )>0是y =f (x )1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下的关系: 如果__________,那么函数y =f (x )在这个区间单调递增;如果____________,那么函数y =f (x )在这个区间单调递减; f ′(x )>0 f ′(x )<0在(a ,b )内单调递增的充分不必要条件.2.函数的极值与导数函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧___f ′(x )<0_______,右侧__ f ′(x )>0_____,则点a 叫做函数y =f (x )的__极小值点___,f (a )叫函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧__ f ′(x )>0_____,右侧___f ′(x )<0_______,则点b 叫做函数y =f (x )的极大值点,f (b )叫函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.温馨提醒:导数为0的点不一定是极值点,只有在该点两侧导数的符号相反,即函数在该点两侧的单调性相反时,该 点 才是函数的极值点,另一方面,极值点处的导数 也不一定 为0,还要考察函数在该点处的导数是否存在.3.函数的最值与导数假设函数y =f(x)在闭区间[a ,b]上的图象是一条_连续不间断的曲线,则该函数在[a ,b]上一定能够取得最大值与最小值.若函数在(a ,b)内是可导 的,该函数的 最 值必在极值点或区间端点处取得.温馨提醒:最值与极值的区别与联系:(1)“极值”是个局部概念,是一些较邻近的点之间的函数值 大小的比较,具有相对性;“最值”是个整体概念,是整个 定 义域上的最大值和最小值,具有绝对性.(2)最值和极值都不一定存在,若存在,函数在其定义域上 的最值是唯一的,而极值不一定唯一.二、课前热身1.(2012·高考陕西卷)设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点2.(2012·高考辽宁卷)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1]C .[1,+∞)D .(0,+∞)3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( )A .11或18B .11C .18D .17或184.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 5.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________. 答案:1.D; 2.B; 3.C; 4.-173 5.3 三、例题讲解考点一:利用导数研究函数的单调性例1、已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,x ∈R ,其中t ∈R.(1)当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当t >0时,求f (x )的单调区间.【解】(1)当t =1时,f (x )=4x 3+3x 2-6x ,f (0)=0,f ′(x )=12x 2+6x -6,f ′(0)=-6.所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-6x .(2)f ′(x )=12x 2+6tx -6t 2.令f ′(x )=0,解得x =-t 或x =t 2. 方法感悟:(1)导数法证明函数f (x )在(a ,b )内的单调性的步骤:①求f ′(x );②确认f ′(x )在(a ,b )内的符号;③作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.(2)导数法求函数单调区间的一般步骤:①确定函数f (x )的定义域;②求导数f ′(x );③在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;④根据(3)的结果确定函数f (x )的单调区间.考点二:由函数的单调性求参数的取值范围因为t >0,则-t <t 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递增区间是(-∞,-t ),⎝⎛⎭⎫t 2,+∞;f (x )的单调递减区间是⎝⎛⎭⎫-t ,t 2.例2、(2014·安徽合肥市质量检测)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数,求实数a 的取值范围.【解】(1)设f (x )图象上任一点的坐标为P (x ,y ),点P 关于点A(0,1)的对称点P ′(-x ,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x. (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,方法感悟:函数单调性确定参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.考点三:利用导数研究函数的极值(最值)例3、(2013·高考福建卷)已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.【解】函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0), 因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A(1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. 又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 对任意的x ∈[1,2]恒成立. 注意到函数r (x )=3x +1x 在[1,2]上单调递增, 故r (x )min =r (1)=4. 于是2a ≤4,a ≤2.即实数a 的取值范围是(-∞,2].(2)由f′(x)=1-ax=x-ax,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.方法感悟:(1)求函数f(x)极值的步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.(2)求函数f(x)在[a,b]上的最大值和最小值的步骤:①求函数在(a,b)内的极值;②求函数在区间端点的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【课堂小结】1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数【布置作业】练习册60练 p19【板书设计】课题一、要点梳理三、例题讲解二、课前热身四、课堂小结【教学反思】以题目引导教学,让学生先有所思,思有所获,获有所感。

导数在研究函数中的应用函数图形的凹向与拐点 说课稿 教案 教学设计

导数在研究函数中的应用函数图形的凹向与拐点   说课稿  教案 教学设计

函数图形的凹向与拐点教学目的与要求1.掌握函数的凹凸性及其判别方法,拐点及其求法;2.能利用导数描绘函数图形. 教学重点与难点凹凸性与拐点,用凹凸性证明不等式 (一)、复习1.函数极值的概念和必要条件,极值存在的第一、第二充分条件;2.函数的最大值和最小值方法.作函数的图形时,仅知道函数的单调性和极值还不能全面反映函数图形的特征.同是在区间],[b a 上单调增加的函数,其图形的弯曲方向也可能不同;如图3—6中ACB 与ADB 同是上升曲线,但弯曲方向不同,前者是凸的,后者是凹的.本节将用导数研究曲线的凸凹及拐点,从而比较准确地作出函数的图形 (二)、新课一、函数的凸凹及其片判别法 如图3—6可以看出,曲线ACB 是向上弯曲的,其上每一点的切线都位于曲线的上方;曲线ADB 是向下弯曲的,其上每一点的切线都位于曲线下方,从而我们有如下定义.定义1 如果在某区间内,曲线)(x f y =上每一点处的切线都位于曲线的上方,则称曲线)(x f y =在此区间内是凸的;如果在某区间内,曲线)(x f y =上每一点处的切线都位于曲线的下方,则称曲线)(x f y =在此区间内是凹的.从图3—6还可以进一步看出,当曲线)(x f y =凸时,其切线斜率)(x f '是单调减少的,因而0)(<''x f ;当曲线凹时,其切线斜率)(x f '是单调增加的,因而0)(>''x f ,这说明曲线的凸凹性可由函数)(x f 的二阶导数的符号确定.定理1 设)(x f 在],[b a 上连续,在),(b a 内具有二阶导数,则: (1) 若在),(b a 内,0)(>''x f ,则曲线)(x f y =在],[b a 上是凹的. (2) 若在),(b a 内,0)(<''x f ,则曲线)(x f y =在],[b a 上是凸的. 二、拐点及其求法定义2 曲线)(x f y =上,凸与凹的分界点称为该曲线的拐点.由拐点的定义和定理1知,使0)(=''x f 的点及)(x f ''不存在的点可能是拐点.这些点是不是拐点要用下面的定理来判定.定理2 设)(x f y =在),ˆ(0δxN 内有二阶导数,则 (1) 若)(x f ''在),(00x x δ-与),(00δ+x x 内异号,则点))(,(00x f x 为曲线)(x f y =的拐点.(2) 若)(x f ''在),(00x x δ-与),(00δ+x x 内同号,则点))(,(00x f x 不是曲线)(x f y =的拐点.例1 求函数32)2()(x x x f -=的凸凹区间及拐点.解 31323435)(--='x x x f , 334319)25(294910)(xx x x x x f +=+=''--. 令0)(=''x f 得52-=x ;而0=x 为)(x f ''不存在的点.用0,52=-=x x 将定义区间),(∞+-∞分成三个部分区间(见下表). 由表可知,曲线)(x f 的凸区间是)52,(--∞,凹区间是)0,52(-, ),0(∞+;点)254512,52(3--是拐点.例2 讨论函数211)(xx f +=的凸凹性及拐点. 解 函数)(x f 的定义域为),(∞+-∞,对函数求导得22)1(2)(x x x f +-=', 4222)1(2)1(22)1(2)(x x x x x x f +⋅+⋅⋅++-=''322)1()13(2x x +-=; 由0)(=''x f 得,31-=x ,31=x .用这两点把定义域分成三个部分区间(见下表).由下表可知,曲线)(x f 的凸区间是)31,31(-,凹区间是)31,(--∞和),31(+∞,点)43,31(-和点)43,31(是拐点.三、曲线的渐近线有些函数的定义域与值域都是有限区间,此时函数的图形局限于一定的范围之内,如圆,椭圆等.而有些函数的定义域或值域是无穷区间,此时函数的图形向无穷远处延伸,如双曲线,抛物线等.有些向无穷远延伸的曲线,呈现出越来越接近某一直线的形态,这种直线就是曲线的渐近线.定义 3 若曲线上一点沿曲线无限远离原点时,该点与某条直线的距离趋于零,则称此直线为曲线的渐近线.(一)水平渐近线若函数)(x f y =的定义域是无限区间,且有a x f x =∞→)(lim (或a x f x =+∞→)(lim ,a x f x =-∞→)(lim ),则直线a y =称为曲线)(x f y =的水平渐近线. 例3 对于曲线x x f arctan )(=,由于2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,所以直线2π=y 与2π-=y 是曲线x x f arctan )(=的水平渐近线.(二)垂直渐近线若0x 是函数)(x f y =的间断点,且∞=→)(lim 0x f x x (或∞=+→)(lim 0x f x x ,∞=-→)(lim 0x f x x ),则直线0x x =称为曲线)(x f y =的垂直渐近线.例4 求11)(-=x x f 的垂直渐近线. 解 因为+∞=-+→11lim 1x x ,所以,1=x 是曲线的一条垂直渐近线. (三)斜渐近线若曲线)(x f y =的定义域为无限区间,且有a xx f x =∞→)(lim ,b ax x f x =-∞→])([lim ,则直线b ax y +=称为曲线)(x f y =的斜渐近线.例5 求曲线xx y +=12的渐近线.解 因为∞=+-→xx x 1lim21,所以直线1-=x 是曲线的垂直渐近线,又 11lim 1lim )(lim 2=+=+==∞→∞→∞→x xxx x x x f a x x x ,1)1(lim )1(lim ])([lim 2-=+-=-+=-=∞→∞→∞→xx x x x ax x f b x x x ;所以1-=x y 为曲线的斜渐近线.四、函数作图的一般步骤前面几节讨论的函数的各种性态,可应用于函数的作图.描绘函数的图形可按下面的步骤.第一步 确定函数)(x f y =的定义域及函数的某些特性(如奇偶性,周期性等). 第二步 求出方程0)(='x f 和0)(=''x f 在函数定义域内的全部实根和)('x f ,)(x f ''不存在的点;用这些点把定义域划分成部分区间.第三步 确定在这些部分区间内)(x f '和)(x f ''的符号,并由此确定函数的升降、凸凹、极值点和拐点.第四步 确定函数图形的水平、铅直和斜渐近线以及其它变化趋势.第五步 为了把图形描得准确,有时还需要补充一些点;然后结合第三、四步中得到的结果,连结这些点作出函数)(x f y =的图形.例6 描绘函数2x ey -=的图形.解 (1)函数的定义域为),(∞+-∞,且0>y ,故图形在上半平面内. (2)2x e y -=是偶函数,图形关于y 轴对称. (3)曲线2x e y -=与y 轴的交点为)1,0(. (4)因0lim 2=-∞→x x e,故0=y是一条水平渐近线.(5)22x xe y --=',令0='y 得驻点0=x . (6)2)12(22x e x y --='',令0=''y 得2/1±=x .列表如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数在研究函数中的应用 函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间. 教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程: 一、创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.二、新课讲授 1.问题如右图(1),它表示跳水运动中高度h 随时间t 变化的函数高台跳水运动员2() 4.9 6.510h t t t =-++的图像,右图(2)表示的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如右图,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.“左下右上”式的,在0x x =处,'0()0f x >,切线是这时,函数()f x 在0x 附近单调递增;“左上右下”式的,在1x x =处,'0()0f x <,切线是这时,函数()f x 在1x 附近单调递减. 结论: 函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明: )(x f 在某区间内为常数,当且仅当0)('=x f 在该区间内“恒有”之时.否则可能只是“驻点”(曲线在该点处的切线与x 轴平行). 3.求解函数()y f x =单调区间的步骤 (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 三、典例分析例1 已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >或1x <时,'()0f x <; 当4x =或1x =时,'()0f x =. 试画出函数()y f x =图像的大致形状. 在此区间内单调递增;解: 当14x <<时,'()0f x >,可知()y f x =当4x >或1x <时,'()0f x <,可知()y f x =在此区间内单调递减; 当4x =或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如上图所示.例2 判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+ (2)2()23f x x x =-- (3)()sin (0,)f x x x x π=-∈ (4)32()23241f x x x x =+-+ 解: (1)因为3()3f x x x =+,所以'22()333(1)0f x x x =+=+>因此3()3f x x x =+在R 上单调递增,如下图左所示.(2)因为2()23f x x x =--,所以()'()2221f x x x =-=-当'()0f x >即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图象如上图右所示.(3)因为()sin (0,)f x x x x π=-∈,所以'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如下图左所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >即 时,函数2()23f x x x =-- ; 当'()0f x <即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图象如下图右所示.注: (3)、(4)生练.例3 如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析: 以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解: ()()()()()()()()1,2,3,4B A D C →→→→思考: 例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.例4 求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明: 因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <所以函数3223121y x x x =+-+在区间()2,1-内是减函数.说明: 证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'fx ;(2)判断()'f x 在(),a b 内的符号;(3)做出结论:()'0f x >为增函数,()'0f x <为减函数.例5 已知函数232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数, 求实数a 的取值范围. 解: '2()422f x ax x =+-因为()f x 在区间[]1,1-上是增函数 所以'()0f x ≥对[]1,1x ∈-恒成立即220x ax --≤对[]1,1x ∈-恒成立解之得11a -≤≤所以实数a 的取值范围为[]1,1-.说明: 已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.类型题1: 设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在),0(+∞上是单调函数. 解: a x x x f -+=1)('2,其中0>a当),0(+∞∈x 时,)1,0(12∈+x x要使函数)(x f 在),0(+∞上是单调函数 则必然要求0)('<x f ,由此可知1≥a .类型题2: 函数kxe x y 2=在)1,0(上单调递增,求实数k 的取值范围.例6 已知函数xx y 1+=,试讨论出此函数的单调区间. 解: 22)1)(1(1'x x x xy -+=-=- 令0)1)(1(2>-+x x x ,解得1>x 或1-<x∴xx y 1+=的单调增区间是)1,(--∞和),1(+∞ 令0)1)(1(2<-+x x x 解得01<<-x 或10<<x ∴xx y 1+=的单调减区间是)0,1(-和)1,0(例7 当0>x 时,证明不等式x x x x<+<+)1ln(1成立. 证明: 作函数)1ln(1)(x xxx f +-+=, 当0>x 时,0)1()('2<+-=x xx f 知)(x f 单调递减, 当0=x 时,0)(=x f 知)(x f 在0>x 时,0)(<x f ;作x x x g -+=)1ln()(,当0>x 时,01)('<+-=xxx g 知)(x g 单调递减, 当0=x 时,0)(=x g 知)(x g 在0>x 时,0)(<x g .综上x x xx <+<+)1ln(1类型题1: 对于任意的实数x ,证明: 1+≥x e x.类型题2: 当0>x 时,证明不等式2211x x e x++>.四、课堂练习1.求下列函数的单调区间(1)762)(23+-=x x x f (2)x xx f 21)(+=(3)x x f sin )(=,]2,0[π∈x (4)x x y ln =2.课本练习 五、回顾总结1.函数的单调性与导数的关系2.求解函数()y f x =单调区间3.证明可导函数()f x 在(),a b 内的单调性 六、布置作业§3.3.2 函数的极值与导数(2课时)教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤. 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一、创设情景观察下左图,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大t a =附近函数()h t 的图像,如下右图,可以看出0)('=a h ,在t a =附近,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<),这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=.对于一般的函数()y f x =,是否也有这样的性质呢?附: 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的.从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号.二、新课讲授 1.问题从跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像及高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.2.函数的单调性与导数的关系导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增;在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.结论: 函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明: )(x f 在某区间内为常数,当且仅当0)('=x f 在该区间内“恒有”之时.否则可能只是“驻点”(曲线在该点处的切线与x 轴平行).3.函数的极值与导数一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有点,都有)()(0x f x f <,就说)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值,0x 是极大值点.一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有点,都有)()(0x f x f >,就说)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值,0x 是极小值点.注: (1)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小.(2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f .(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.4.判别)(0x f 是极大、极小值的方法若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.5.求可导函数)(x f 的极值的步骤 (1)确定函数的定义区间,求导数)('x f(2)求方程0)('=x f 的根(导函数等于0的点未必是极值点)(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查)('x f 在方程根左右的值的符号,如果左正右负,那么)(x f 在这个根处取得极大值;如果左负右正,那么)(x f 在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么)(x f 在这个根处无极值. 如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点. 三、典例分析例1 求()31443f x x x =-+的极值.解: 因为()31443f x x x =-+,所以()'24(2)(2)f x x x x =-=-+()'0,2,2f x x x ===-下面分两种情况讨论:(1)当()'f x 0>即2x >或2x <-时 (2)当()'f x 0<即22x -<<时 当x 变化时,()'fx ,f x 的变化情况如下表:因此,当2x =-时,()f x 有极大值并且极大值为(2)3f -=; 当2x =时,()f x 有极小值并且极小值为4(2)3f =-.函数()31443f x x x =-+的图像如图所示.例2 求1)1(32+-=x y 的极值.解: 2222)1()1(6)1(6'-+=-=x x x x x y 令0'=y 解得1,0,1321==-=x x x当x 变化时,y y ,'的变化情况如下表:∴当0=x 时,有极小值且极小值例3 求x x y ln 2=的极值.解: 略例4 求函数322)2(x x y -=的极值. 解: 记)(x f y =的定义域为R ,且3)2(3)1(4)('x x x x f --=可知1=x 时,0)('=x f ;而0=x 和2=x 时,)('x f 不存在 由2,1,0===x x x 三点将定义域分成四个区间,列表:例5 已知函数bx ax x x f 23)(23+-=在1=x 处有极小值1-,试确定b a ,的值,并求出)(x f 的单调取间. 解: 略 类型题:1.已知函数223)(a bx ax x x f +++=在1=x 处有极值10,求b a ,的值.2.函数b x ax x f ++=)(有极小值2,求b a ,应满足的条件. 3.已知c bx ax x f +-=35)(在1±=x 处有极值,且极大值为4,极小值为0,试确定c b a ,,的值.四、巩固练习 求下列函数的极值(1)672+-=x x y (2)x x y 273-= (1)解: 72'-=x y令0'=y 解得27=x 当x 变化时,y y ,'的变化情况如下表:∴当27=x 时,y 有极小值,且4-=极小值y (2)解: )3)(3(3273'2-+=-=x x x y令0'=y 解得3,321=-=x x 当x 变化时,y y ,'的变化情况如下表:∴当3-=x 时,有极大值且极大值当3=x 时,y 有极小值且54-=极小值y五、教学反思函数的极大、极小值的定义以及判别方法.求可导函数)(x f 的极值的三个步骤.还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号.函数的不可导点可能是极值点.六、布置作业§1.3.3 函数的最大(小)值与导数(2课时)教学目标:1.使学生理解函数的最大值和最小值的概念;2.掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件;3.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点:利用导数求函数的最大值和最小值的方法. 教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程: 一、创设情景我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果0x 是函数()y f x =的极大(小)值点,那么在点0x 附近找不到比)(0x f 更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果0x 是函数的最大(小)值,那么)(0x f 不小(大)于函数()y f x =在相应区间上的所有函数值.二、新课讲授象.图中观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图[]b a ,上的)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在最大值是)(b f ,最小值是3()f x .1.结论连续不断一般地,在闭区间[]b a ,上函数()y f x =的图像是一条的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.说明: (1)如果在某一区间上函数()y f x =的图像是一条连续不断的曲线,则称函数()y f x =在这个区间上连续.(可以不给学生讲)(2)给定函数的区间必须是闭区间,在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值. (3)在闭区间上的每一点必须连续,即函数图像没有间断.(4)函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)2.“最值”与“极值”的区别和联系(1)最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的,而极值不唯一.(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. (4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值. 3.利用导数求函数的最值步骤由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值. 三、典例分析例1 求()31443f x x x =-+在[]0,3的最大值与最小值. 解: 由上节课例1可知,在[]0,3上当2x =时,()f x 有极小值,并且极小值为4(2)3f =- 又由于()04f =,()31f =因此,函数()31443f x x x =-+在[]0,3的最大值是4,最小值是43-. 上述结论可以从函数()31443f x x x =-+在[]0,3上的图象得到直观验证.例2 求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值.解: 先求导数,得x x y 443/-=令0'=y 即0443=-x x 解得1,0,1321==-=x x x导数/y 的正负以及)2(-f ,)2(f 如下表从上表知,当2±=x 时,函数有最大值13,当1±=x 时,函数有最小值4.例3 已知23()log x ax bf x x++=,),0(+∞∈x .是否存在实数b a ,,使)(x f 同时满足下列两个条件:(1))(x f )在)1,0(上是减函数,在),1[+∞上是增函数;(2))(x f 的最小值是1.若存在,求出b a ,,若不存在,说明理由. 解: 设xbax x x g ++=2)(∵)(x f 在)1,0(上是减函数,在),1[+∞上是增函数 ∴)(x g 在)1,0(上是减函数,在),1[+∞上是增函数. ∴⎩⎨⎧==3)1(0)1('g g ∴⎩⎨⎧=++=-3101b a b 解得⎩⎨⎧==11b a经检验,1==b a 时,)(x f 满足题设的两个条件.例4 已知y x ,为正实数,且满足关系式04222=+-y x x ,求y x ⋅的最大值.分析: 题中有两个变量,属于条件最值问题,将y x ⋅表示为某一变量的函数,再利用导求函数的最大值. 解: 由2224x x y -=,∵0>y ∴2221x x y -=,2221x x x y x -=⋅由⎩⎨⎧≥->0202x x x ,解得20≤<x设)20(221)(2≤<-=x x x x x f , 当20<<x 时,222)23()('xx x x x f --=令0)('=x f ,得23=x 或0=x (舍去)当x 在)2,0(内变化时,y y ,'有如下变化情况:由上表可知,当23=x 时,)(x f 最大值为833,亦即y x ⋅的最大值为833.例5 设)1,32(∈a ,b ax x x f +-=2323)(,]1,1[-∈x 的最大值为1,最小值为26-,求常数b a ,的值. 分析: 闭区间上连续,开区间上可导的函数的最大值、最小值问题的解法应该先出极大值、极小值,然后再与端点处的函数值进行比较,分类讨论确定b a ,的值. 解: )(333)('2a x x ax x x f -=-= 令0)('=x f ,解得01=x ,a x =2当x 变化时,)(),('x f x f 的变化情况如下表:由表可知,最大值应为)0(f 或)1(f 又b f =)0(,b b b a f =+⨯-<+-=32231231)1( 故当0=x 时,)(x f 有最大值b由已知1=b ,此时123)(23+-=ax x x f 由表可知,最小值应为)1(-f 或)(a f若a x =时,)(x f 有最小值,则3211)(26a a f -==-从而1623>+=a ,1>a ,与已知条件矛盾 若1-=x 时,)(x f 有最小值,则a f 23)1(26-=-=-得)1,32(36∈=a . 此时0961211)(3>-=-=a a f 故当36=a 时,)(x f 的最小值为26)1(-=-f . 综上所述,1,36==b a . 点拨: 列出表格,由表格观察分析,进行分类讨论,是解决本题的关键,最后的检验不可少,因为满足条件的b a ,可能是不存在的.四、课堂练习1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值 2.函数)(x f y =在区间],[b a 上的最大值是M ,最小值是m , 若m M =,则)('x f ( ) A.等于0B.大于0C.小于0D.3.函数234213141x x x y ++=,在]1,1[-上的最小值为( ) A.0B.2-C.1-D.12134.求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值. 5.课本练习 五、回顾总结1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;2.函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件;3.闭区间[]b a ,上的连续函数一定有最值,开区间),(b a 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.4.利用导数求函数的最值方法.六、布置作业。

相关文档
最新文档