高数-数学极限总结
高数部分知识点总结
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高数_数学极限总结
高数_数学极限总结
数学极限旨在研究一个变量值接近但未达到一个特定数值时整个表达式的行为。
在极
限理论中,经常被称为“触及极限”(tending to limit)。
极限有两种类型:极限和无穷大。
极限是指表达式越来越接近某个特定的数值的状态,而无穷大则表示表达式几乎接近于一个特定的无限大的数值。
求极限的各种方法:
原函数法:根据变量趋向特定值时函数展开时形成的多项式推导其极限值。
变量迭代法:针对变量求值,当自变量变化时,函数值变化相同。
导数法:根据定义对变量取导数,把导数置零,得到方程和变量取值。
分母重置法:当表达式中存在分式且分母可变,则把它变为分母的重置形式,来求极限。
泰勒公式法:利用泰勒公式求函数展开式的极限。
洛必达斯平方和定理法:用变量求和,然后把求和结果代入平方和定理,求解方程,
进而求极限的值。
三角函数法:利用三角函数的展开式,求三角函数的极限值。
极限也可以作为形函数理论的有用工具,比如求最大值和最小值、极限点、局部极小
点和全局极小点。
极限还可以用于分析函数不可导性、曲线不可娶群及曲线是否对称等问题。
极限在数学中运用广泛,它常常可以把复杂的问题变得容易理解;它也可以解决无法
用解析的方法解决的问题。
极限的概念也可以帮助我们更清晰的理解经典数学中的很多概念,比如微分、积分等。
大一高数极限知识点总结
大一高数极限知识点总结一、定义和性质高等数学中,极限是一种重要的概念,被广泛应用于微积分和数学分析。
理解和熟练掌握极限的定义和性质对于学习高等数学至关重要。
1. 无穷小量和无穷大量在研究极限时,无穷小量和无穷大量是两个常用的概念。
2. 极限的定义设函数 f(x) 在点 x0 的某个去心邻域内有定义,如果对于任意给定的正数ε,都存在正数δ,使得当 x 由点 x0 接近时,不等式 0 < |x-x0| < δ 总是成立,那么就称函数 f(x) 在点 x0 处极限存在,记为lim┬(x→x0)〖f(x)=A〗。
3. 极限的性质极限具有一系列重要的性质,包括唯一性、四则运算性质、和函数复合性质等。
二、极限的计算方法掌握极限的计算方法是学好高等数学的关键之一。
1. 用直接代入法计算极限当函数在极限点附近有定义时,可以通过直接将极限点代入函数来计算极限。
2. 用夹逼准则计算极限如果一个函数在某个点的附近被两个函数夹住,并且这两个函数的极限都为 A,那么待求函数的极限也是 A。
3. 分段函数的极限计算对于分段函数,我们可以分别计算每一段的极限,然后综合起来得到整个函数的极限。
三、常见的极限在高等数学中,有一些常见的极限形式是我们必须掌握的。
1. 无穷大与无穷小当 x 趋向于正无穷或负无穷时,函数 f(x) 的极限可能为无穷大或无穷小。
2. 0/0 型极限当直接代入法计算极限时,如果得到的结果是 0/0 型,那么我们通常要进一步进行简化或者换一种计算方法来求解。
3. ∞/∞ 型极限当直接代入法计算极限时,如果得到的结果是∞/∞ 型,那么我们通常需要进行一些数学变换或者化简来求解。
四、高阶极限除了一阶极限外,高阶极限也是高等数学中的重要内容。
1. 一阶无穷小与高阶无穷小一阶无穷小是指函数 f(x) 在某一点处的极限等于 0,而高阶无穷小是指函数 f(x) 在该点的极限为 0,且比一阶无穷小更快地趋近于 0。
高等数学极限总结
摘要高等数学教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的.然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘.本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路.希望以此文能对学习者有所帮助.关键词高等数学极限技巧高等数学极限运算技巧高等数学的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节.是“初等数学”向“高等数学”的起步阶段.一,极限的概念从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势这种变化趋势是具有唯一性,那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性.通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限从数学式子上来讲,逼近是指函数的变化,表示为.这个问题不再赘述,大家可以参考教科书上的介绍.二,极限的运算技巧我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决.现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性.我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了其实不是讨巧,是有规律可循的今天我写的内容希望可以对大家的学习有帮助我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法.这基本上时可以直接套用的.1,连续函数的极限这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量.2,不定型我相信所有学习者都很清楚不定型的重要性,确实.那么下面详细说明一些注意点以及技巧.第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的.等价代换的公式主要有六个:需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在.此外等价无穷小代换的使用,可以变通一些其他形式,比如:等等.特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换.当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小.这需要变通的看问题.在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小.比较常见的采用洛必答法则的是无穷小乘无穷大的情况.特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行.第二,在含有∞的极限式中,一般可分为下面几种情况:1,“∞/∞ ”形式如果是幂函数形式的包含幂函数四则运算形式,可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数.比如:,这道题中,可以看到提出最高次x注意不是其他项都是“0”,原来的x都是常数1了.当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在是无穷大,如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项.比如上面的例子,可以直接写1/2.如果不是纯幂函数形式,无法用提高次项的方法提高次项是优先使用的方法,使用洛必达也是一种很好的方法.需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察.但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题.2,“∞-∞ ”形式“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上.比如:这道题是转换形式之后是“∞/∞ ”的形式,提高次项解.3“”形式这也是需要转换的一种基本形式.因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的.转换之后的形式也是“∞/∞ ”或“0/0 ”的形式.第三,“”这种形式的解决思路主要有两种.第一种是极限公式,这种形式也是比较直观的.比如:这道题的基本接替思路是,检验形式是“”,然后选用公式,再凑出公式的形式,最后直接套用公式.第二种是取对数消指数.简单来说,“ ”形式指数的存在是我们解题的主要困难.那么我们直接消掉指数就可以采用其他方法来解决了.比如上面那道题用取对数消指数的方法来解,是这样的:可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙.三,极限运算思维的培养极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法.掌握一定的技巧可以使学习事半功倍.而极限思维的培养则是对做题起到指导性的意义.如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结.。
高等数学极限的公式总结
高等数学极限的公式总结在高等数学中,极限的公式是非常重要的概念,这些公式能够帮助我们理解函数的极限,并进行极限的运算。
以下是一些常见的高等数学极限的公式总结:1. 极限的四则运算性质:lim(a+b) = lim a + lim blim(a-b) = lim a - lim blim(ab) = lim a lim b (假设lim a 和 lim b都存在)lim(a/b) = lim a / lim b (假设lim b 不等于0)2. 极限的常数性质:lim a = a (当a是一个常数)3. 极限的单调性:lim(f(x0+delta x) - f(x0)) / delta x = f'(x0) (当delta x -> 0)4. 连续函数的性质:如果f(x)在x0处连续,那么lim f(x) = f(x0) 当 x -> x05. 无穷小量与无穷大量:当x -> 0时,x是无穷小量,1/x是无穷大量。
6. 洛必达法则:如果lim (f'(x)/g'(x))存在,那么lim (f(x)/g(x)) = lim (f'(x)/g'(x)) (当x->a时)。
7. 泰勒公式:对于任何n阶可导函数f(x),存在一个多项式Pn(x),使得对于所有-∞ < x < ∞,有f(x) = Pn(x) + o(x^n),其中o(x^n)是高阶无穷小。
8. 夹逼准则:如果存在一个区间或闭区间[a, b],满足f(a) <= g(a), f(b) >= g(b),并且lim f(x) = lim g(x),则lim g(x)存在,并且lim g(x) = lim f(x)。
9. 无穷大与无穷小的关系:lim x -> ∞ f(x) = lim x -> ∞ f(x) (如果存在的话)lim x -> ∞ f(x) = 0 (如果lim x -> ∞ f(x)存在的话)10. 极限的唯一性:对于任意给定的正数ε,总存在一个正数δ,使得当x - x0 < δ时,有f(x) - A < ε。
高数极限知识点总结大一学生
高数极限知识点总结大一学生高数极限知识点总结在大一学生学习高等数学的过程中,极限是一个重要的概念和知识点。
理解和掌握极限的概念对于后续学习微积分等相关内容非常重要。
本文将对大一学生需要掌握的高数极限知识点进行总结和概述。
一、极限的定义极限是数学中的重要概念,指的是当一个变量趋近于某个值时,函数在这个值附近的表现。
对于一般函数,极限的定义如下:设函数f(x)在点x0的某个去心邻域内有定义,如果存在常数L,对于任意给定的ε(ε>0),都存在一个对应的δ(δ>0),使得当0 < |x-x0| < δ时,有|f(x)-L| < ε成立,那么就称函数f(x)在x0处的极限为L。
二、极限的性质1. 唯一性:若函数f(x)在点x0处存在极限,则该极限唯一。
2. 局部有界性:若函数f(x)在点x0处存在极限,则必然存在着它的一个去心邻域,使得函数f(x)在该邻域内有界。
3. 局部保号性:若函数f(x)在点x0处存在极限且极限为L>0(或L<0),那么存在一个去心邻域,使得函数f(x)在该邻域内保持符号不变。
三、求解极限的方法1. 函数极限性质:函数的基本运算,包括四则运算、乘方运算、复合运算等。
2. 两个重要极限:〖lim〗_(x→∞) ((1+1/x)^x)=e 〖lim〗_(x→0) ((sinx)/x)=13. 无穷小量和无穷大量的关系:对于函数f(x),当x趋近于某个值x0时,若f(x)的极限为0,则称f(x)是x→x0时的无穷小量。
四、常见的极限1. 基本初等函数极限:常数函数极限、幂函数极限、指数函数极限、对数函数极限、三角函数极限等。
2. 不定式极限:0/0型极限、∞/∞型极限、0*∞型极限、1^∞型极限等。
3. 复合函数极限:由若干个函数的运算和复合而成的函数的极限。
4. 变量替换法:常用的变量替换有有理函数的分子分母分别用t替换,指数函数与对数函数互为反函数等。
大一数学极限高数知识点
大一数学极限高数知识点一、数列极限在大一数学中,数列极限是其中一个重要的知识点。
数列是按照一定规律排列的一串数值,它的极限表示了数列随着项数的增加而趋近的一个值。
数列极限的定义如下:对于一个数列{an},如果存在一个实数L,对于任意给定的正数ε,都存在正整数N,当n>N时,有|an-L|<ε成立,那么L就是这个数列的极限。
二、函数极限除了数列极限,函数极限也是大一数学中的重要内容。
函数的极限表示了当自变量趋近于某个值时,函数的输出趋近于一个特定的值。
函数极限的定义如下:对于函数f(x),如果存在一个实数L,对于任意给定的正数ε,都存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,那么L就是这个函数在点a处的极限。
三、导数与极限的关系在高等数学中,导数与极限是密切相关的。
导数是函数在某一点处的变化率,而极限则描述了函数在某一点的趋近情况。
导数与极限的关系可以通过极限定义的导数公式来表示。
极限定义的导数公式如下:对于函数f(x),如果在点a处的导数存在,那么导数等于极限lim(x→a) [f(x)-f(a)]/(x-a)。
四、极限运算法则在大一数学中,极限运算法则是用于计算复杂函数极限的重要工具。
它包括了函数极限的四则运算法则和复合函数的极限法则。
函数极限的四则运算法则如下:1. 两个函数极限的和等于极限的和,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
2. 两个函数极限的差等于极限的差,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
3. 两个函数极限的积等于极限的积,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
4. 两个函数极限的商等于极限的商,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
高数数学极限总结资料
高数数学极限总结资料一、定义:极限(limit)是高等数学中一个重要的概念,不管在何时何地,几乎所有的数学定理和实际应用中,都离不开极限的概念,极限的概念的出现,使得很多以前被认为无解的数学问题,得以有效解决。
二、速率极限:速率极限(Rate of Change Limit)是讨论函数变化率(rate of change)时使用的概念。
它指的是一个函数当它处于极限状态时,其变化率(rate of change)会几乎接近于零。
可以说,函数的某个点处的变化率越接近零,则函数处于越接近极限的状态。
速率极限是解决常微分方程的关键,可帮助理解函数的变化率是如何随着自变量的变化而变化的。
三、双边极限:双边极限是在一个定义域中植入一个“小数字”,使得函数趋近某个可观察值。
双边极限定义了曲线就在“极限值”上,即曲线非常接近这一“极限值”。
双边极限可以用来判断函数是否连续,可以用来判断两个函数是否相等、是否存在封闭集等。
双边极限也是解决无穷积分问题的关键。
四、无穷大极限:无穷大极限(infinity limit)是当函数在某一方向上的取值不断增加时,函数的值会几乎趋近于正无穷大或负无穷大,也可以把无穷大极限看做是一个函数在相应方向上的“极限值”。
无穷大极限的发现,使得很多以前无法解决的极大(或极小)量问题得以解决,是极限理论及应用取得巨大成就的基础。
五、极限定理:极限定理(Limit Theorem)是数学分析中,极限理论的更深层次的一个定义。
它是指当一个数序中的每一项都趋近于某个数时,其和也会趋近于这个数。
极限定理的宗旨是使数位的总和趋近于一数值,从而使所有数都趋近于此数值。
在微积分中,极限定理对许多定理,如泰勒公式、极大值定理等初步思想,均有重要作用。
大一高数知识点总结极限
大一高数知识点总结极限大一高数知识点总结极限极限是高等数学中非常重要的概念,它是数学分析的基础,也是其他数学学科的重要工具。
在大一的高等数学课程中,学生们会接触到很多与极限相关的知识点。
本文将就大一高数中与极限相关的知识点进行总结和归纳,帮助读者更好地理解和应用这些概念。
一、函数极限及其性质在高等数学中,我们常常要探讨函数在某个点处的“趋近”行为。
这种趋近的行为就是函数的极限。
函数极限的定义是:当自变量趋近于某个值时,函数的值也会趋近于一个确定的值,那么这个确定的值就是函数的极限。
具体来说,我们用以下符号表示函数极限:lim(x→a) f(x) = L其中,“lim”表示极限,“(x→a)”表示自变量x趋近于a,“f(x)”表示函数f(x),“L”表示极限值。
在探讨函数极限的性质时,我们会遇到以下重要概念和定理:1. 唯一性定理:如果函数在某点存在极限,那么它的极限值是唯一的。
2. 夹逼定理:如果一个函数在某点的左、右两侧有两个函数夹住,并且这两个函数的极限相等,那么该函数在该点处的极限存在,并且等于这个相等的极限值。
3. 无穷小量:如果函数在某点的极限是0,那么该函数在该点处是无穷小量。
4. 无穷大量:如果函数在某点的极限不存在或为无穷大,那么该函数在该点处是无穷大量。
二、常见函数的极限计算在大一的高等数学学习中,我们经常需要计算一些常见函数在某点处的极限。
以下是一些常见函数的极限计算方法:1. 多项式函数:多项式函数在任何有限点处的极限存在,且极限值等于该点处的函数值。
2. 指数函数:指数函数e^x在任何有限点处的极限都存在,并且极限值等于该点处的函数值。
3. 对数函数:对数函数log(x)在x趋近于正无穷时的极限为正无穷,在x趋近于0时的极限为负无穷。
4. 三角函数:三角函数sin(x)和cos(x)在任何有限点处的极限存在,且极限值等于该点处的函数值。
三、无穷极限和级数除了常见函数的极限计算外,大一高数还会涉及无穷极限和级数的讨论。
知识点总结高数一
知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。
数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。
函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。
极限的性质包括唯一性、有界性、局部性、夹逼性等。
2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。
3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。
无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。
在极限运算中,无穷小和无穷大的性质十分重要。
4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。
连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。
二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。
求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。
2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。
3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。
微分公式包括基本微分公式、换元法、分部积分法等。
4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。
三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。
期末高数常用结论总结
期末高数常用结论总结1. 极限:极限是高等数学中最基本的概念之一。
极限可以用来描述函数在某点附近的性质。
常用结论有:- 函数极限的基本性质:唯一性、局部有界性、保号性等。
- 极限的四则运算法则:和、差、积、商等。
- 夹逼定理:如果有两个函数和一个数,满足在某点附近,一个函数小于等于这个数,另一个函数大于等于这个数,并且这两个函数的极限都为这个数,那么这两个函数的极限都为这个数。
2. 导数与微分:导数是描述函数变化率的概念,微分是导数的一个应用。
常用结论有:- 导数的四则运算法则:和、差、积、商等。
- 高阶导数的定义和性质:例如,二阶导数的性质、洛必达法则等。
- 高阶微分的定义和性质:例如,微分的和差中值定理等。
3. 积分与定积分:积分是某个函数的反函数,定积分是对一个函数在一个区间上的积分。
常用结论有:- 积分的基本性质:线性性、可积性等。
- 定积分的性质:例如,区间可加性、保号性等。
- 牛顿—莱布尼兹公式:如果函数 f(x) 在闭区间 [a, b] 上连续并可微,则有∫[a,b] f'(x)dx = f(b) - f(a)。
4. 微分方程:微分方程是描述自然界现象的一种数学模型。
常用结论有:- 一阶线性微分方程的求解方法:分离变量法、齐次法、定积分法等。
- 二阶常系数线性齐次微分方程的求解方法:特征方程法、常数变易法、欧拉方程等。
- 非齐次线性微分方程的求解方法:待定系数法、常数变易法等。
5. 级数:级数是数项级数的部分和无限求和。
常用结论有:- 级数的基本性质:和的唯一性、和的有界性等。
- 等比级数的求和公式:如果 |q| < 1,那么等比级数∑(n从0到∞)(a*q^n) 的和为 a / (1-q)。
- 幂级数的求和公式:如果幂级数的收敛半径 R > 0,则幂级数在收敛范围内可以逐项求和。
以上只是高等数学中的一部分常用结论,还有很多其他重要的结论无法一一列举。
这些常用结论在解题和应用中起到了非常重要的作用,帮助我们理解和掌握高等数学的知识。
高等数学第一章函数与极限的总结
f
(x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
思考题
设x 0 ,函数值 f ( 1 ) x 1 x2 , x
求函数 y f ( x) ( x 0)的解析表达式.
y M
y M
y=f(x)
o
x
有界 X
x0
o
X
x 无界
-M
-M
数列的有界性:
定义: 对数列 xn, 若存在正数 M , 使得一切正 整数n, 恒有 xn M 成立, 则称数列 xn有界,
否则, 称为无界.
补充内容: 1.单调递增且有上界数列必有极限。 2.单调递减且有下界数列必有极限。
2.函数的单调性:
解 16 x 2 0, x 1 0, x 1 1,
x 4
x
1
x 2
1 x 2及2 x 4,
即(1,2) (2,4).
例
设f
(
x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2
解
f
(x)
1 2
0 x1 1 x2
数l, 使得对于任一x D, ( x l ) D.且 f ( x l) f ( x)
恒成立. 则称f ( x)为周 期函数, l称为f ( x)的周期.
(通常说周期函数的周期是指其最小正周期).
3l 2
l 2
高数常用极限公式大全
高数常用极限公式大全极限公式:1、e^x-1~x (x→0)2、e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)扩展资料:高等数学极限中有“两个重要极限”的说法,指的是:sinX/x →1(x→0 ),与(1+1/x)^x→e^x(x→∞)。
另外,关于等价无穷小,有:sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x(x→0),1-cosx ~ x^2/2(x→0)。
你是说求极限的方法吧?求极限没有固定的方法,必须是具体问题具体分析,没有哪个方法是通用的,大学里用到的方法如下:1、四则运算法则(包括有理化、约分等简单运算);2、两个重要极限(第二个重要极限是重点);3、夹逼准则,单调有界准则;4、等价无穷小代换(重点);5、利用导数定义;6、洛必达法则(重点);7、泰勒公式(考研数学1需要,其它考试不需要这个方法);8、定积分定义(考研);9、利用收敛级数(考研)每个方法中可能都会有相应的公式,全总结就太多了,你自己去看吧。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
等价无穷小代换罗必塔法则泰勒展开转化成定积分转化成求导夹逼定理。
高数常用极限结论
高数常用极限结论高等数学中的极限是一种重要的数学概念,它在微积分、数列、级数以及微分方程等数学领域中都有广泛的应用。
本文将介绍一些高数常用的极限结论,包括极限的定义、常用的极限计算方法以及一些重要的极限定理。
我们来看一下极限的定义。
设函数f(x)在点x=a的某个去心邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得只要0<|x-a|<δ,就有|f(x)-A|<ε成立,其中A为常数,那么我们就说当x趋于a时,函数f(x)的极限为A,记作lim(x→a)f(x)=A。
这个定义可以直观地理解为:当x无限接近a时,f(x)无限接近A。
接下来,我们来介绍一些常用的极限计算方法。
首先是函数极限。
对于一些常见的函数,我们可以通过直接代入或者运用一些基本的极限公式来计算它们的极限。
例如,当x趋于0时,sin(x)/x的极限是1;当x趋于无穷大时,e^x/x的极限也是无穷大。
此外,我们还可以运用洛必达法则来计算一些不定型的极限。
洛必达法则告诉我们,当计算一个形如f(x)/g(x)的极限时,如果f(x)和g(x)在x=a处的极限均存在且g(x)不为0,那么这个极限等于f'(a)/g'(a),其中f'(a)和g'(a)分别表示f(x)和g(x)在x=a处的导数。
除了函数极限,数列极限也是高等数学中的重要内容之一。
对于一个数列{a_n},如果存在常数A,使得对于任意给定的正数ε,总存在正整数N,使得当n>N时,有|a_n-A|<ε成立,那么我们就说这个数列的极限为A,记作lim(n→∞)a_n=A。
对于一些常见的数列,我们可以通过观察其通项公式或者运用夹逼定理来计算它们的极限。
例如,当n趋于无穷大时,(1+1/n)^n的极限是e;当n趋于无穷大时,(n^k)/(a^n)的极限是0,其中k为常数,a为大于1的正数。
还有一些重要的极限定理在高等数学中被广泛应用。
关于高数数学极限总结归纳
【说明】分子分母有理化求极限,是通过有理化去除无理式
【解】
例5.求极限
【解】
【注】本题除使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
(5)应用两个重要极限求极限
【说明】两个重要极限是 和
例6.求极限
【说明】用第二个重要极限时主要搞清楚步骤:先凑出1,在凑 ,最后凑指数部分。
例8.求极限
【解】
(7)用洛必达法则求极限
例9.求极限
【说明】 和 型的极限,可通过洛必达法则来求。
【解】
【注】有许多变动上限的积分表示的极限,常用洛必达法则求解。
例10.设函数 连续,且 ,求极限
【解】由于 ,于是
(8)用对数恒等式求 极限
例1ห้องสมุดไป่ตู้.求极限
【解】
【注】对于 形势的未定式 ,也可用公式
因为
例12.求极限
【解1】原式=
【解2】原式= [4]
四.参考文献
[1]极限理论 函数极限函数极限/727083fr=aladdin[3]同济大数学系 《高等数学 第七版 上册》北京 高等教育出版社 1987年
[4]来自QQ空间 由大学生笔记墙整理
函数极限具有唯一性、局部有限性、局部保号性[2]
3.存在准则
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。
准则Ⅰ.如果数列 , 及 满足以下条件:
(1)从某项起,即 ,当 时,有 ;
(2) ; ,
那么数列 的极限存在,且
准则Ⅰ'如果(1)当 (或 )时,
例1.
【解】
(2)约零因子求极限
例2.求极限
【说明】x→1表明x与1无限接近,但 。所以x-1这一零因子可以约去。
高数数学极限总结
高数数学极限总结.doc高等数学极限总结引言极限是高等数学中的核心概念之一,它描述了函数在某一点附近的行为,是微积分学的基础。
本文档旨在总结高等数学中极限的基本概念、性质、计算方法以及应用。
极限的定义函数的极限设函数( f(x) )定义在点( a )的某个去心邻域内,如果存在常数( L ),对于任意给定的正数( \epsilon )(无论多么小),总存在正数( \delta ),使得当( 0 < |x - a| < \delta )时,都有( |f(x) - L| < \epsilon ),则称( L )是函数( f(x) )当( x )趋于( a )时的极限,记作( \lim_{x \to a} f(x) = L )。
无穷远处的极限函数( f(x) )在( x )趋于无穷大时的极限,如果存在常数( L ),使得对于任意给定的正数( \epsilon ),总存在正数( M ),使得当( |x| > M )时,都有( |f(x) - L| < \epsilon ),则称( L )是函数( f(x) )当( x )趋于无穷大时的极限,记作( \lim_{x \to \infty} f(x) = L )。
极限的性质唯一性极限存在且唯一。
保号性如果( \lim_{x \to a} f(x) = L ),且( L > 0 ),则存在( \delta > 0 ),使得当( 0 < |x - a| < \delta )时,( f(x) >0 )。
有界性如果( \lim_{x \to a} f(x) = L ),则存在( \delta > 0 ),使得当( 0 < |x - a| < \delta )时,( f(x) )是有界的。
极限的计算方法直接代入法如果函数( f(x) )在点( a )处连续,则可以直接代入( x = a )来求极限。
高数极限的知识点笔记总结
高数极限的知识点笔记总结一、数列极限的概念1.1、数列的概念1.1.1、若给定一个从自然数集合N到实数集合R的函数an=f(n),则称序列{an}为数列。
1.1.2、数列是数学中的一个重要概念,它是指有序的一串数的集合。
比如,1,2,3,4,5,6,... 就是一个数列,其中每一个数都有一个位置,称之为该数在数列中的项。
这个位置通常用自然数n表示,称为项数。
1.2、数列极限的概念1.2.1、若数列{an}的项在某一项之后,无论距离这一项多近,都能无限地接近某一个确定的常数A,则称常数A为数列{an}的极限。
极限通过记号lim(an)=A来表示。
1.2.2、数列极限的概念是指当n趋于无穷大时,数列中的项an的极限值。
1.2.3、形式化定义:对于数列{an},若对于任意给定的正数ε>0,存在正整数N,使得当n>N时,|an-A|<ε,则称A是数列{an}的极限。
1.3、无穷大数列1.3.1、若数列{an}满足:对于任何实数M,存在正整数N,使得当n>N时,有|an|>M,则称数列{an}为无穷大数列。
1.3.2、无穷大数列的极限是无穷大。
1.4、数列极限的性质1.4.1、唯一性:数列的极限若存在,则唯一。
1.4.2、有界性:如果数列有极限,则这个数列一定是有界的。
1.4.3、保号性:如果数列{an}有极限A, 且A>0(或A<0),则存在正整数N1,当n>N1时,有an>0(或an<0)。
二、函数极限的概念2.1、函数极限的概念2.1.1、在自然数集N上定义的函数f(n),若当n趋于无穷大时,f(n)的极限存在,则称函数f(n)在n趋于无穷大时有极限。
2.1.2、形式化定义:对于函数f(x),若对于任意给定的正数ε>0,存在正数δ>0,使得当0<|x-a|<δ时,有|f(x)-A|<ε,则称A是f(x)当x趋于a时的极限。
大一高数极限知识点归纳
大一高数极限知识点归纳一、定义和基本性质高等数学中的极限是一种重要的数学概念,其定义如下:设函数 f(x) 在某一点 a 的某一邻域内有定义,如果存在一个常数 L,对于任意给定的正数ε,无论它多么小,总存在正数δ,当0 < |x - a| < δ 时,使得 |f(x) - L| < ε 成立,则称函数 f(x) 当 x 趋于 a 时的极限为 L,记作lim(x→a) f(x) = L。
极限具有以下基本性质:1. 唯一性:如果极限存在,则极限值唯一。
2. 局部有界性:若函数在某一点的邻域内有极限,则函数在该点的某一邻域内有界。
3. 夹逼定理:如果函数 f(x) 在点 a 的某一邻域内,除点 a 外的其他点的函数值都被两个函数 g(x) 和 h(x) 夹住,即g(x) ≤ f(x) ≤ h(x),并且lim(x→a) g(x) = lim(x→a) h(x) = L,则函数 f(x) 在点 a 处的极限也存在,且等于 L。
二、常见极限公式1. 基本极限公式:- 常值函数极限:lim(x→a) c = c,其中 c 为常数。
- 自变量 x 的幂函数极限:lim(x→a) x^n = a^n,其中 n 为正整数。
- 指数函数极限:lim(x→a) a^x = a^a,其中 a 为正实数。
- 对数函数极限:lim(x→a) logₐ x = logₐ a,其中 a 为正实数,且a ≠ 1。
2. 三角函数极限公式:- 正弦函数极限:lim(x→0) sinx = 0。
- 余弦函数极限:lim(x→0) cosx = 1。
- 正切函数极限:lim(x→0) tanx = 0。
- 余切函数极限:lim(x→0) cotx = ∞。
3. 指数函数与对数函数极限公式:- 自然对数函数极限:lim(x→0) ln(1+x) = 0。
- 指数函数极限:lim(x→0) (a^x - 1) / x = ln a,其中 a 为正实数,且a ≠ 1。
高数极限总结
高数极限总结高等数学中的极限是一个重要的概念,深入理解和掌握极限的性质和计算方法对于学习数学和应用数学都是非常关键的。
本文将对高数中的极限进行总结,从极限的定义、性质到计算方法进行系统地探讨。
1. 极限的定义极限是数学分析中最重要的概念之一,它描述了函数在某一点附近的变化趋势。
对于函数$f(x)$当$x$无限接近某一点$a$时,如果$f(x)$的函数值趋近于某个常数$L$,则称$L$为函数$f(x)$在$x=a$处的极限,记作$\lim_{x\to a}f(x)=L$。
这个定义可以形象地理解为“当$x$无限接近$a$时,$f(x)$趋近于$L$”。
2. 极限的性质极限具有一些重要的性质,其中最基本的有唯一性、有界性和保号性。
- 唯一性:如果函数$f(x)$在$x=a$处的极限存在,那么极限值$L$是唯一确定的,即唯一确定一个函数在某点的极限。
- 有界性:如果函数$f(x)$在$x=a$处的极限存在,那么函数在某个邻域内是有界的,即存在一个上界$M$和下界$m$,使得对于所有的$x$都有$m\leq f(x)\leq M$。
- 保号性:如果函数$f(x)$在$x=a$处的极限存在且为正数(负数),那么函数在某个邻域内保持正号(负号),即对于任意$x$,都有$f(x)>0$($f(x)<0$)。
3. 极限的计算方法计算极限是数学分析中的基本技能,要熟练掌握各种计算方法。
- 代入法:对于简单的函数,可以直接将$x$的值代入函数中计算极限,如$\lim_{x\to3}(2x+1)=2\cdot3+1=7$。
- 基本极限法则:根据极限的性质,可以利用基本的极限法则来计算复杂函数的极限,如$\lim_{x\to0}\frac{\sin{x}}{x}=1$。
- 多项式函数的极限:对于多项式函数,可以通过化简或利用洛必达法则来计算极限,如$\lim_{x\to2}\frac{x^2-4}{x-2}=\lim_{x\to2}\frac{(x-2)(x+2)}{x-2}=\lim_{x\to2}(x+2)=4$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极限总结
一.极限的产生
极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。
极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。
但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。
从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。
[1]
二.极限知识点总结
1. 极限定义
函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式
时,对应的函数值 都满足不等式:
那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。
[2] 单侧极限:①.左极限:或 ②.右极限:或 定理:
函数当时极限存在的充分必要条件是左、右极限各自存在且相
等 即。
2. 极限概念
函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式
时,对应的函数值f(x)都满足不
δ<<|x -x |00ε
<-|)(|A x f A x f x
x =→)(lim 0
A x f x
x =-
→)(lim )()(左→→x A x f A x f x
x =+
→)(lim )()(右→→x A x f A x f x f A x f x x ==⇔
=+-→)()()(lim 0)()()()()(0000lim
x f x f x f x f x f x x ==⇔=+
-→)(x f 0x x →)()()(lim 0
00x f x f x f x
x →+
-==0,,,x x x x x →-∞→+∞→∞→0x x →
等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。
时的极限。
函数极限具有唯一性、局部有限性、局部保号性[2]
3. 存在准则
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。
下面介绍几个常用的判定数列极限的定理。
准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有;
(2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时,
(2),,
那么存在,且等于。
夹逼定理:(1)当时,有 成立
(2)
,那么,极限存在,且等于A
【准则Ⅰ,准则Ⅰ´合称夹逼定理】 准则Ⅱ: 单调有界数列必有极限
准则Ⅱ' :设函数在点的某个左(右)邻域内单调并且有界,则在的左(右)极限必定存在[3]
单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
柯西准则:数列收敛的充分必要条件是任给o >ε,存在)(εN ,使得当N >n ,
N >m 时,有ε<-||m n x x 成立。
[2] 极限运算相关法则、定理及推论
(1).设α、β为同一极限过程下的无穷小 (无穷小) (2).穷小之积为无穷小 (无穷小)
{}n x {}n y {}n z +∈∃N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞
→lim {}n x a x n x =∞
→lim ),(0r x U x ο
∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim )
(0
A x h x x x o =∞→→)(lim )
()(lim )
(0
x f x x x ∞→→A ),(x 0r x U ο
∉()0x f )(x f 0x )(x f 0x )(-x f ()[]
+x f 0=±βα0=•βα
[1]极限理论 2017.11.24
[2]函数极限函数极限/727083?fr=aladdin 2017.11.24
[3]同济大数学系《高等数学第七版上册》北京高等教育出版社1987年
[4]来自QQ空间由大学生笔记墙整理。