函数的单调性 知识点与题型归纳

合集下载

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。

五十三期:导数单调性十种题型归纳

五十三期:导数单调性十种题型归纳

五十三期:导数单调性十种题型归纳导数单调性是微积分中重要的概念之一,是指函数在定义域上的单调性特征。

在解题过程中,常常会遇到与导数单调性相关的题型,这里将十种常见的题型归纳总结如下。

一、直接利用导数的正负判别这种题型要求我们利用导数的正负来判断函数的单调性。

具体来说,我们需要计算函数的导函数,然后通过求解导数的符号来确定函数的单调性。

当导数恒大于零时,函数单调递增;当导数恒小于零时,函数单调递减。

二、利用导数的正负变化这种题型要求我们通过导数的正负变化来判断函数的单调性。

具体来说,我们需要找出函数的导函数,然后观察导函数的正负变化情况。

当导数先减小后增大时,函数存在极值点,在极值点附近函数单调性发生变化;当导数先增大后减小时,函数存在极值点,在极值点附近函数单调性发生变化。

三、应用导数的加减法则这种题型要求我们利用导数的加减法则来判断函数的单调性。

具体来说,我们需要将函数表示为若干个函数之和或之差,并进一步求出每个函数的导数。

然后,根据导数的正负判断每个函数的单调性,并结合加减法则得出函数整体的单调性。

四、应用导数的乘法法则这种题型要求我们利用导数的乘法法则来判断函数的单调性。

具体来说,我们需要将函数表示为若干个函数之积,并求出每个函数的导数。

然后,根据导数的正负判断每个函数的单调性,并结合乘法法则得出函数整体的单调性。

五、应用函数的单调性判别法这种题型要求我们利用函数的单调性判别法来判断函数的单调性。

具体来说,我们需要根据函数的定义和性质,结合导数的正负判别,来判断函数在给定区间上的单调性。

六、应用导数的奇偶性这种题型要求我们利用导数的奇偶性来判断函数的单调性。

具体来说,如果函数以奇对称或偶对称的方式分布,则可以通过导数的奇偶性来判断函数的单调性。

七、综合利用多种方法这种题型要求我们综合利用多种方法来判断函数的单调性。

具体来说,我们可以应用前述的各种方法和技巧,结合具体题目的条件和要求,来判断函数的单调性。

专题03 函数的单调性题型归纳

专题03 函数的单调性题型归纳

专题03 函数基本性质(单调性)一、学法指导与考点梳理1、函数的单调性 (1)单调函数的定义自左向右看图象是上升的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值 注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 3、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数;(2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反;(4)函数()()()0y f x f x =≥在公共定义域内与y =的单调性相同;(5)一些重要函数的单调性: ①1y x x=+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减;②by ax x =+(0a >,0b >)的单调性:在,⎛-∞ ⎝和⎫+∞⎪⎪⎭上单调递增,在⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝上单调递减.二、重难点题型突破重难点1 判断或证明函数的单调性1.(单调性不能混合乘除)复合函数的单调性①增函数+增函数=增函数,减函数+减函数=减函数;②增函数-减函数=增函数,减函数-增函数=减函数; ③如果(x)f 是增函数()(x)0f ≠,那么1(x)f 是减函数,(x)f -也是减函数。

2.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性. 3.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例.(1)判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解析】设-1<x 1<x 2<1,⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛-+-=111111)(x a x x a x f⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-+=-111111)()(2121x a x a x f x f =a (x 2-x 1)(x 1-1)(x 2-1), 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.(2)(2020·四川成都市·成都外国语学校高一月考)函数()f x =间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .()2,+∞C .()1,+∞D .()1-∞,【解析】令2320x x -+≥,则2x ≥或1x ≤,所以函数()f x =(][),12,-∞+∞,因为函数232t x x =-+在(),1-∞上单调递减,在()2,+∞上单调递增,且函数y=()0,∞+上单调递增,所以函数()f x =()2,+∞.故选:B.(3)函数()f x 的递增区间是(4,7)-,则(3)y f x =-的递增区间是A .(2,3)-B .(1,10)-C .(1,7)-D .(4,10)-解:令437x -<-<,解得110x -<<,故选B .重难点2 利用函数的单调性求参数 例2.(1)已知函数1()2ax f x x +=+在区间(2,)-+∞上为增函数,则a 的取值范围是 . 解:函数112()22ax af x a x x +-==+++,结合复合函数的增减性, 再根据()f x 在(2,)-+∞为增函数,可得12()2ag x x -=+在(2,)-+∞为增函数, 120a ∴-<,解得12a >,故答案为:1{|}2a a >.(2)(2020·成都市实验外国语学校(西区)高一期中)若函数(31)4,1(),1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围为( ) A .1183⎡⎫⎪⎢⎣⎭, B .103⎛⎫ ⎪⎝⎭, C .1,8⎡⎫+∞⎪⎢⎣⎭ D .11,,83⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】()f x 是定义在R 上的减函数,所以3100314a a a a a-<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<.故选:A.(3)已知函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则a 的取值范围是 .解:2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,∴对称轴14a -即3a -,故答案为:[3-,)+∞.【变式训练1】已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则a 的取值范围是________.【解析】:设1<x 1<x 2,所以x 1x 2>1.因为函数f (x )在(1,+∞)上是增函数,所以f (x 1)-f (x 2)=x 1-a x 1+a 2-()012212122<⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-x x a x x a x a x 因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1.【变式训练2】(1)(2020·成都市田家炳中学高一月考)函数2()2(1)1f x x a x =--+在区间(2,3)上为单调函数,则实数a 的取值范围是( )A .(,3][4,)-∞⋃+∞B .(,3)(4,)-∞⋃+∞C .(,3]-∞D .[4,)+∞【解析】二次函数开口向上,对称轴为1x a =-,因为函数在区间()2,3上为单调函数,所以12a -≤或31a ≤-,解得3a ≤或4a ≥,故选A .(2)(2020·四川成都市树德协进中学高一月考)函数2()2(1)2f x ax a x =+-+在区间(,4)-∞上为减函数,则实数a 的取值范围为( )A .105a <≤B .15a ≥C .105a ≤≤D .15a >【解析】当0a =时,()22f x x =-+,显然在(),4-∞上为减函数,当0a ≠时,因为()f x 在(),4-∞上为减函数,所以()02142a a a >⎧⎪-⎨-≥⎪⎩,所以105a <≤.综上可知:105a ≤≤.故选C. (3)(2020·成都新津为明学校高一期中)已知函数2()2(1)8f x x k x =---在[5,20]上不单调,则实数k 的取值范围是( ) A .(,6]-∞B .[21,)+∞C .(,6][21,)-∞⋃+∞D .(6,21)【解析】二次函数2()2(1)8f x x k x =---的对称轴为1=-x k因为函数2()2(1)8f x x k x =---在[5,20]上不单调,所以5120k <-<即621k <<,故选:D【变式训练3】函数是的减函数,则取值范围是 A .,B .C .,D .,【解析】由题意,在上是减函数,时,其过定点,且时是减函数,对称轴,① 又时,,是减函数,函数是上减函数,,②,又①②得.选. 重难点3 利用函数的单调性解不等式例3.(1)(2019·四川省成都市新都区第二中学高一期中)已知()y f x =在定义域(-1,1)上是减函数,且(12)(21),f a f a -<-则a 的取值范围___________【解析】由题意可知,122111211211a a a a ->-⎧⎪-<-<⎨⎪-<-<⎩,解得102<<a ,故答案为:102⎛⎫⎪⎝⎭,.23,0()1,0x a x f x x ax x --⎧=⎨-+<⎩(,)-∞+∞a ()[01]31(0,)3(01]3[01)3()f x R 0x ∴<2()1f x x ax =-+(0,1)0x <∴02ax =0x ()3f x x a =--23,0()1,0x a x f x x ax x --⎧=⎨-+<⎩(,)-∞+∞31a ∴103a A(2)(2021·全国高一)已知()223,03,0x x x f x x x x ⎧+≥=⎨-+<⎩,则不等式()()224f x f x -<-的解集为( ) A .()1,6-B .()6,1-C .()3,2-D .()2,3-【详解】()f x 的图象如下图所示:由图象可知:()f x 在R 上单调递增,因为()()224f x f x-<-,所以224x x -<-,所以260x x +-<即()()320x x +-<,所以解集为:()3,2-.故选:C. 【变式训练】已知函数2(),(0,)1xf x x x =∈+∞+ (1)判断函数的单调性,并用定义法证明; (2)若(21)(1)f m f m ->-,求实数m 的取值范围. 解:(1)证明如下:设120x x <<,则121222()2+,()2+11f x f x x x --==++,()()()()()212112122221111x x f x f x x x x x --=-=++++,120x x <<,210x x ->,()()210f x f x ->,2()1xf x x =+在(0,)x ∈+∞上单调递增 (2)若(21)(1)f m f m ->-,由2()1xf x x =+在(0,)x ∈+∞上单调递增,得21010211m m m m->⎧⎪->⎨⎪->-⎩,即213m <<,则实数m 的取值范围为213m << 重难点4 利用函数的单调性求最值 例.(1)函数121)(-=x x f 在[]5,1上的最大值为________,最小值为________;(2)(2020·四川成都市·高一月考(理))已知函数4()2(0)f x x x x=++>,则函数()f x 的最小值为( ) A .4B .5C .6D .7【解析】在区间()0,2上任取12,x x ,且12x x <,()()()()()121212121212121244441x x f x f x x x x x x x x x x x x x -⎛⎫-=+--=--=-- ⎪⎝⎭, ()12,0,2x x ∈,1204x x ∴<<,则12401x x <<,12410x x -<, 又12x x <,()1212410x x x x ⎛⎫∴--> ⎪⎝⎭,即()()12f x f x >, ∴函数()f x 在()0,2上单调递减,同理可证函数在()2,+∞上单调递增,所以函数()f x 在2x =处取得最小值,最小值为()22226f =++=.故选:C (3)(2019·四川成都市·树德中学高一月考)函数21x y x +=-在区间[2,5)上的最大值,最小值分别是( ) A .无最大值,最小值是4 B .74,4C .最大值是4,无最小值D .4,0【解析】函数23111x y x x +==+--在[2,5)上递减,即有x =2处取得最大值22(2)421f +==-, 由x =5取不到,无最小值.故选:C .【变式训练】(1)函数()f x =的最小值为______。

函数单调性与奇偶性【15类题型全归纳】(无答案版)

函数单调性与奇偶性【15类题型全归纳】(无答案版)

热点专题2-2函数单调性与奇偶性15类题型全归纳【题型1】函数的单调性 (2)【题型2】复合函数单调性的判断 (3)【题型3】由分段函数的单调性与最值求参数范围 (4)【题型4】利用单调性求最值或值域 (6)【题型5】由单调性求参数的范围 (7)【题型6】结合单调性解函数不等式 (8)【题型7】已知函数的奇偶性求解析式、求值 (10)【题型8】函数的奇偶性的判断与证明 (11)【题型9】函数图像的识别 (13)【题型10】利用单调性,奇偶性比大小 (16)【题型11】已知函数的奇偶性求参数 (17)【题型12】解奇函数不等式 (19)1/242/24【题型13】解偶函数不等式.......................................................................................................20【题型14】函数不等式恒成立问题与能成立问题...................................................................21【题型15】存在任意双变量问题...............................................................................................22【题型1】函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)几条常用的判断单调性的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x为增函数,1()f x 为减函数;④若()0f x >且()f x为减函数,1()f x 为增函数.3/241.(2024·安徽蚌埠·模拟预测)下列函数中,满足“对任意的12,(0,)x x ∈+∞,使得()()12120f x f x x x -<-”成立的是()A .2()21f x x x =--+B .1()f x x x=-C .()1f x x =+D .2()log (2)1f x x =+【巩固练习1】已知函数()f x 的定义域为R ,则“(1)()f x f x +>恒成立”是“函数()f x 在R 上单调递增”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【巩固练习2】(2024·陕西榆林·一模)已知函数()f x 在[)0,∞+上单调递增,则对实数0,0a b >>,“a b >”是“()()f a f b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【题型2】复合函数单调性的判断复合函数的单调性:“同增异减”判断复合函数()y f g x =⎡⎤⎣⎦的单调性的步骤,第一步:定义域优先,拆分前必须确定函数的定义域。

高中数学归纳《函数的单调性》

高中数学归纳《函数的单调性》

【知识要点】一、判断函数单调性的方法判断函数单调性一般有四种方法:单调四法 导数定义复合图像 1、定义法用定义法判断函数的单调性的一般步骤:①取值,设D x x ∈21,,且12x x <;②作差,求)()(21x f x f -;③变形(合并同类项、通分、分解因式、配方等);④判断)()(21x f x f -的正负符号;⑤根据函数单调性的定义下结论.2、复合函数分析法设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数.如下表:()u g x =()y f u =[()]y f g x =增 增 增 增 减 减 减 增 减 减减增3、导数判断法设()f x 在某个区间(,)a b 内有导数()f x ',若()f x 在区间(,)a b 内,总有()0(()0)f x f x ''><,则()f x 在区间(,)a b 上为增函数(减函数).4、图像法一般通过已知条件作出函数图像的草图,如果函数的图像,在某个区间D ,从左到右,逐渐上升,则函数在这个区间D 是增函数;如果从左到右,是逐渐下降,则函数是减函数. 二、证明函数的单调性的方法证明函数的单调性一般有三种方法:定义法、复合函数分析法和导数法.由于数学的证明是比较严谨的,所以图像法只能用来判断函数的单调性,但是不能用来证明.三、求函数的单调区间求函数的单调区间:单调四法,导数定义复合图像 1、定义法 :由于这种方法比较复杂,所以一般用的较少.2、复合函数法:先求函数的定义域,再分解复合函数,再判断每一个内层函数的单调性,最后根据复合函数的单调性确定函数的单调性.3、导数法:先求函数的定义域D ,然后求导()f x ',再解不等式()()0f x '>< ,分别和D 求交集,得函数的递增(减)区间 .4、图像法:先利用描点法或图像的变换法作出函数的图像,再观察函数的图像,写出函数的单调区间.四、一些重要的有用的结论1、奇函数在其对称区间上的单调性相同,如函数xy 1=、x y =和3x y =;偶函数在其对称区间上的单调性相减,如函数2x y =.2、在公共的定义域内,增函数+增函数是增函数,减函数+减函数是减函数.其他的如增函数⨯增函数不一定是增函数,函数x y =和函数3x y =都是增函数,但是它们的乘积函数4x y =不是增函数. 3、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”. 4、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题.5、在多个单调区间之间不能用“或”和“”连接,只能用逗号隔开.如函数()y f x =的增区间为(1,2),(3,5).不要写成(1,2)(3,5).【方法讲评】【例1】证明函数()(0)f x x a x=+>在区间)+∞是增函数.【点评】(1)本题就是利用定义判断函数单调性的典型例题,其中关键是第三步变形,多利用因式分解等知识,但是一定要变形到最后能判断它的符号为止.(2)有些同学在判断)()(21x f x f -的符号时,没有利用到D x x ∈21,,且12x x <,一般情况下是有问题的,必须利用这些条件你才能确定)()(21x f x f -符号. 学.科.网【反馈检测1】讨论函数21)(++=x ax x f )21(≠a 在),2(+∞-上的单调性.【例2】已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x ,都有1212()()()f x x f x f x =+,且当1x >时()0f x >,(2)1f =.(1)求证()f x 是偶函数;(2)()f x 在(0,)+∞上时增函数;(3)解不等式2(21)2f x -<. 【解析】12(1)1(1)(1)(1)(1)0x x f f f f ==∴=+∴=令121[(1)(1)](1)(1)02(1)(1)0x x f f f f f ==-∴-⨯-=-+-∴=-∴-=令121[(1)]()(1)()()()x xx f x f x f f x f x f x ==-∴⨯-=+-∴-=∴令是偶函数111212222222(2)0()()()()()()()x xx x f x f x f x f x f x f f x x x >>∴-=-=+-设 1111212222()011()0()0()()0x x x f x x x f x f f x f x x x x =>>∴>>>∴>∴->时,0+∴∞函数在(,)上是增函数【点评】(1)本题是对抽象函数的单调性的判断和证明,其实和具体的函数的单调性的判断和证明的 方法本质上是一样的.区别在于一个有解析式,一个没有.所以在变形和判断)()(21x f x f -的符号时,难度要大一些,主要是充分利用已知条件进行变形.(2)本题第2问的关键是对1()f x 的变形,要充分利用已知条件“1212()()()f x x f x f x =+,且当1x >时()0f x >”,所以可以这样拆,1122()()x f x f x x =122()()x f x f x =+.(3)对于抽象函数的问题,常用赋值法解答,即根据解题的需要,给已知条件中的等式的变量赋恰当的值.【反馈检测2】已知()f x 是定义在区间[1,1]-上的奇函数,且(1)1f =,若,[1,1],0m n m n ∈-+≠时,有()()0f m f n m n +>+.(1)解不等式1()(1)2f x f x +<-(2)若2()21f x t at ≤-+对所有[1,1],[1,1]x a ∈-∈-恒成立,求实数t 的取值范围.方法二 导数法使用情景 一般使用于结构较复杂的函数.解题步骤先求函数的定义域,再求导()f x ',再判断()f x '的符号,最后下结论.【例3】已知函数1ln )1()(2+++=ax x a x f (1)讨论函数)(x f 的单调性;(2)设1-<a .如果对任意),0(,21+∞∈x x ,||4)()(|2121x x x f x f -≥-,求a 的取值范围.(2)不妨假设12x x ≥,而a <-1,由(1)知在(0,+∞)单调减少,从而12,(0,)x x ∀∈+∞,1212()()4f x f x x x -≥-等价于 12,(0,)x x ∀∈+∞,2211()4()4f x x f x x +≥+ ①令()()4g x f x x =+,则1'()24a g x ax x+=++ ①等价于()g x 在(0,+∞)单调减少,即1240a ax x+++≤.从而22222241(21)42(21)2212121x x x x a x x x ------≤==-+++ 故a 的取值范围为(,2]-∞-.【点评】(1)函数的问题,必须注意定义域优先的原则,所以利用导数求函数的定义域也必须先考虑函数的定义域.(2)对于参数的问题注意分类讨论和分离参数,第1问利用了分类讨论的数学思想,第2问利用了分离参数的方法. 分类讨论和分离参数是处理参数问题很常用的两种重要方法. 【反馈检测3】已知函数1()ln 1af x x ax x-=-+-()a R ∈. (1)当12a ≤时,讨论()f x 的单调性; (2)设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.【例4】 设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值.【点评】对于三角函数,也可以利用求导的方法求函数的单调区间和极值,它们的方法是一样的. 【反馈检测4】 某地有三家工厂,分别位于矩形ABCD 的顶点,A B 及CD 的中点P 处,已知20AB km =,10CB km = ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且,A B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道,,AO BO OP ,设排污管道的总长为y km . (1)按下列要求写出函数关系式:①设()BAO rad θ∠=,将y 表示成θ的函数关系式; ②设OP x =(km ) ,将y 表示成x 的函数关系式.(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.【反馈检测5】函数()f x 的导函数'()f x ,对x R ∀∈,都有'()()f x f x >成立,若(ln 2)2f =,则满足不等式()xf x e >的x 的范围是( )CBPOADA .1x >B .01x <<C .ln 2x >D .0ln 2x <<【反馈检测6】【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) (A )a b c << (B )c b a << (C )b a c <<(D )b c a <<方法三 复合函数分析法 使用情景 较简单的复合函数.解题步骤先求函数的定义域,再分解复合函数,再判断每一个内层函数的单调性,最后根据复合函数的单调性确定函数的单调性.【例5】【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞【点评】(1)函数的问题,不管是具体函数,还是抽象的函数,都要注意“定义域优先”的原则.所以求函数的单调区间,首先必须求函数的定义域. (2)分解函数时,要把函数分解成一些初等函数,才能比较熟练地写出这些内层函数的单调性.【反馈检测7】 已知函数22()sin 3sin sin()2cos 2f x wx wx wx wx π=+++ (0)x R w ∈>,在y轴右侧的第一个最高点的横坐标为6π. (1)求w ;(2)若将函数()f x 的图象向右平移6π个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求函数()y g x =的最大值及单调递减区间. 方法四图像法使用情景 函数的图像比较容易画出.解题步骤一般通过已知条件作出函数图像的草图,如果函数的图像,在某个区间,从左到右,逐渐上升,则函数在这个区间是增函数;如果从左到右,是逐渐下降,则函数是减函数.【例6】求函数2()||f x x x =-+的单调区间.【点评】函数的同种单调区间之间一般不用“”连接,一般用“,”隔开.【反馈检测8】 已知函数),1()(0)(-=≥x x x f x R x f 时上的偶函数,当是定义在 (1)求函数)(x f 的解析式;(2)若)(x f =2,求x 的值; (3)画出该函数的图像并根据图像写出单调区间.高中数学常见题型解法归纳及反馈检测第06讲: 函数的单调性的判断、证明和单调区间的求法参考答案【反馈检测1答案】当12a >时,原函数是增函数;当12a <时,原函数是减函数.【反馈检测2答案】(1)104x ≤≤;(2)022t t t =≥≤-或或 【反馈检测2详细解析】212121212121()()(1)1,()()()()()()f x f x x x f x f x f x f x x x x x +->>-∴-=+-=--设1>212121212121()()()()()00()()f x f x f x f x x x x x x x x x +-+-=->->+-+-由已知得21111211()()0()(1)111024112x f x f x f x f x x x x x⎧-≤+≤⎪⎪∴->∴+<-∴-≤-≤∴≤<⎨⎪⎪+<-⎩函数在定义域内单调递增。

2023年新高考数学大一轮复习专题15 单调性问题(原卷版)

2023年新高考数学大一轮复习专题15 单调性问题(原卷版)

专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。

函数的单调性知识点与题型归纳

函数的单调性知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.★备考知考情1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用.2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现.一、知识梳理《名师一号》P15注意:研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集单调区间不能并!知识点一函数的单调性1.单调函数的定义专业整理专业整理2.单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题?(1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式:设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么①1212()()0->-f x f x x x ⇔f (x )在[a ,b ]上是增函数;专业整理1212()()0-<-f x f x x x ⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2、《名师一号》P16 问题探究 问题2单调区间的表示注意哪些问题?单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法:利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. (2) 导数法:设函数y =f (x )在某区间D 内可导.如果f ′(x )>0,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充)(1)若使得f ′(x )=0的x 的值只有有限个,专业整理则如果f ′(x )0≥,则f (x )在区间D 内为增函数; 如果f ′(x ) 0≤,则f (x )在区间D 内为减函数. (2)单调性的判断方法:《名师一号》P17 高频考点 例2 规律方法定义法及导数法、图象法、复合函数的单调性(同增异减)、 用已知函数的单调性等(补充)单调性的有关结论1.若f (x ),g (x )均为增(减)函数, 则f (x )+g (x )仍为增(减)函数. 2.若f (x )为增(减)函数,则-f (x )为减(增)函数,如果同时有f (x )>0, 则()1f x 为减(增)(减)函数.3.互为反函数的两个函数有相同的单调性. 4.y =f [g (x )]是定义在M 上的函数, 若f (x )与g (x )的单调性相同,则其复合函数f [g (x )]为增函数; 若f (x )、g (x )的单调性相反,则其复合函数f [g (x )]为减函数. 简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反.专业整理函数单调性的应用《名师一号》P17 特色专题 (1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小. (3)解、证不等式.(4)求参数的取值范围或值. (5)作函数图象.二、例题分析:(一) 函数单调性的判断与证明 例1.(1)《名师一号》P16 对点自测 1 判断下列说法是否正确(1)函数f (x )=2x +1在(-∞,+∞)上是增函数.( )(2)函数f (x )=1x在其定义域上是减函数.( )(3)已知f (x )=x ,g (x )=-2x ,则y =f (x )-g (x )在定义域上是增函数.( )答案: √ × √例1.(2)《名师一号》P16 高频考点例1(1)(2014·北京卷)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=x+1 B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)答案:A.例2.(1)《名师一号》P16 高频考点例1(2)判断函数f(x)=axx+1在(-1,+∞)上的单调性,并证明.法一:定义法设-1<x1<x2,则f(x1)-f(x2)=ax1x1+1-ax2x2+1=ax1x2+1-ax2x1+1x1+1x2+1=a x1-x2x1+1x2+1专业整理∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.同理当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.法二:导数法注意:《名师一号》P17 高频考点例1 规律方法1.判断函数的单调性应先求定义域;2.用定义法判断(或证明)函数单调性的一般步骤为:取值—作差—变形—判号—定论,其中变形为关键,而变形的方法有因式分解、配方法等;3.用导数判断函数的单调性简单快捷,应引起足够的重视(二)求复合函数、分段函数的单调性区间例1.《名师一号》P16 高频考点例2(1)求函数y=x-|1-x|的单调增区间;专业整理专业整理y =x -|1-x |=⎩⎨⎧1,x ≥1,2x -1,x <1.作出该函数的图象如图所示.由图象可知,该函数的单调增区间是(-∞,1].例2.(1)《名师一号》P16 高频考点 例2(2) 求函数y =log 13(x 2-4x +3)的单调区间.解析:令u =x 2-4x +3,原函数可以看作y =log 13u 与u =x 2-4x +3的复合函数.令u =x 2-4x +3>0.则x <1或x >3.∴函数y =log 13(x 2-4x +3)的定义域为(-∞,1)∪(3,+∞).又u=x2-4x+3的图象的对称轴为x=2,且开口向上,∴u=x2-4x+3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y=log13u在(0,+∞)上是减函数,∴y=log13(x2-4x+3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1).注意:《名师一号》P17 高频考点例2 规律方法求函数的单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间.例2.(2)(补充)21122log4log⎛⎫=-⎪⎝⎭y x x专业整理专业整理答案:增区间:1,4⎛⎫+∞ ⎪⎝⎭;减区间:10,4⎛⎫ ⎪⎝⎭练习:()222log log y x x =-答案:增区间:)+∞;减区间:((三)利用单调性解(证)不等式及比较大小 例1.(1)《名师一号》P17 特色专题 典例(1)已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0【规范解答】 ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.专业整理例1.(2)《名师一号》P17 特色专题 典例(2)已知函数f (x )=⎩⎨⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式 f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)【规范解答】作出函数f (x )的图象,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).注意:本例分段函数的单调区间可以并!(四)已知单调性求参数的值或取值范围例1.(1)《名师一号》P17 特色专题 典例(3)专业整理已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数x 1≠x 2,都有1212()()0-<-f x f x x x 成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,2【规范解答】函数f (x )是R 上的减函数,于是有⎩⎨⎧ a -2<0,a -2×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138, 即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,138.例2.(1) (补充)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.[答案][-14,0][解析](1)当a=0时,f(x)=2x-3,在定义域R上单调递增,故在(-∞,4)上单调递增;(2)当a≠0时,二次函数f(x)的对称轴为直线x=-1 a ,因为f(x)在(-∞,4)上单调递增,所以a<0,且-1a≥4,解得-14≤a<0.综上所述-14≤a≤0.例2.(2)(补充)若f(x)=x3-6ax的单调递减区间是(-2,2),则a的取值范围是( )A.(-∞,0] B.[-2,2] C.{2} D.[2,+∞)专业整理[答案] C[解析]f′(x)=3x2-6a,若a≤0,则f′(x)≥0,∴f(x)单调增,排除A;若a>0,则由f′(x)=0得x=±2a,当x<-2a和x>2a时,f′(x)>0,f(x)单调增,当-2a<x<2a时,f(x)单调减,∴f(x)的单调减区间为(-2a,2a),从而2a=2,∴a=2.变式:若f(x)=x3-6ax在区间(-2,2)单调递减,则a的取值范围是?[点评] f(x)的单调递减区间是(-2,2)和f(x)在(-2,2)上单调递减是不同的,应加以区分.本例亦可用x=±2是方程f′(x)=3x2-6a=0的两根解得a=2.专业整理专业整理例2.(3) (补充) 若函数)2,3()(log )(321---=在ax x x f 上单调递减, 则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]答案:A温故知新P23 第9题若函数()()212log 3=-+f x x ax a 在区间 [)2,+∞上单调递减,则实数a 的取值范围是《计时双基练》P217 基础7《计时双基练》P217 基础8、10 8、设函数()12+=+ax f x x a在区间()2,-+∞上是增函数, 那么a 的取值范围是答案: [)1,+∞专业整理10、设函数()()=≠-x f x x a x a(2)若0>a 且()f x 在区间()1,+∞内单调递减, 求a 的取值范围.答案: [)1,+∞(五)抽象函数的单调性例1.(补充)已知f (x )为R 上的减函数,那么满足 f (|1x|)<f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案:C解析:因为f (x )为减函数,f (|1x |)<f (1),所以|1x |>1,则|x |<1且x ≠0,即x ∈(-1,0)∪(0,1).专业整理练习:()y f x =是定义在[]1,1-上的增函数,解不等式2(1)(1)f x f x -<-答案:()0,1温故知新 P12 第8题注意:解抽象函数的不等式通常立足单调性定义或借助图像求解例2. 《计时双基练》P216 培优4函数()f x 的定义域为()0,+∞,且对一切0,0>>x y 都有()()()=-x f f x f y y,当1>x 时,有()0>f x 。

高一数学:函数的单调性知识点+例题讲解+课堂练习

高一数学:函数的单调性知识点+例题讲解+课堂练习

第3讲 函数的单调性教学内容一、知识梳理单调性定义设函数y =)(x f 的定义域为A ,区间A M ⊆.如果取区间M 上的任意两个值x 1 , x 2,改变量12x x x -=∆>0,则 当)()(12x f x f y -=∆>0时,就称函数)(x f 在区间M 上是增函数; 当)()(12x f x f y -=∆<0时,就称函数)(x f 在区间M 上是增函数. 如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).二、方法归纳在同一单调区间上,两个增(减)函数的和仍为增(减)函数,但单调性相同的两个函数的积未必是增函数.设[]b a x x ,,21∈,若有 (1)2121)()(x x x f x f -->0,则有[]b a x f ,)(在上是增函数.(2)2121)()(x x x f x f --<0,则有[]b a x f ,)(在上是减函数.在函数)(x f 、)(x g 公共定义域内,增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数. 函数的单调性常应用于如下三类问题: (1)利用函数的单调性比较函数值的大小.(2)利用函数的单调性解不等式,常见题型是,已知函数的单调性,给出两 个函数的大小,求含于自变量中的某个特定的系数,这时就应该利用函数的单调性“脱”去抽象的函数“外衣”,以实现不等式间的转化.(3)利用函数的单调性确定函数的值域,求函数的最大值和最小值. 若函数)(x f y =在定义域()b a ,上递增,则函数值域为()(a f ,)(b f );若函数)(x f y =在定义域()b a ,上递减,则函数值域为()(b f ,)(a f ); 若函数)(x f y =在定义域[]b a , 上递增,则函数值域为 [)(a f ,)(b f ] ; 若函数)(x f y =在定义域 []b a , 上递减,则函数值域为 [)(b f ,)(a f ]; 若函数)(x f y =在定义域[]b a ,上递增,则函数的最大值为)(b f ,最小值为)(a f ;若函数)(x f y =在定义域[]b a ,上递减,则函数的最大值为)(a f ,最小值为)(b f ;三、典型例题精讲[例1]若ax y =与xb y -=在()+∞,0上都是减函数,对函数bx ax y +=3的单调性描述正确的是( )A. 在()+∞∞-,上是增函数B. 在()+∞,0上是增函数C. 在()+∞∞-,上是减函数D. 在()0,∞-上是增函数,在()+∞,0上是减函数 解析: 由函数 ax y =在()+∞,0上是减函数,得 a <0,又函数xby -=在()+∞,0上是减函数,得 b <0, 于是,函数3ax ,bx 在()+∞∞-,上都是减函数, ∴ 函数bx ax y +=3在()+∞∞-,上是减函数,故选C .【技巧提示】 熟悉函数ax y =,3ax y =,bx y =,xby =的单调性与a 、b 的符号的关系,就能正确的描述由它们组合而成的函数的单调性.[例2]求函数31)(--+=x x x f 的最大值.解析:由31431)(-++=--+=x x x x x f ,知函数31)(--+=x x x f 在其定义域 [3,+∞ )上是减函数. 所以31)(--+=x x x f 的最大值是2)3(=f .【技巧提示】 显然由31431-++=--+x x x x 使得问题简单化,当然函数定义域是必须考虑的.又例 已知[]1,0∈x ,则函数x x y --+=12的值域是 .解析:∵ x x y --+=12在[]1,0∈x 上单调递增,∴ 函数x x y --+=12的值域是[])1(),0(f f .即[]3,12-.再例 求函数x x y 21++=的值域.解析:∵ x x y 21++= 在定义域⎪⎭⎫⎢⎣⎡+∞-,21上是增函数,∴ 函数x x y 21++=的值域为 ⎪⎭⎫⎢⎣⎡+∞-,21.[例3]函数)(x f 在R 上为增函数,求函数)1(+=x f y 单调递减区间. 解析:令1+=x u ,则u 在(-∞,-1]上递减, 又函数)(x f 在R 上为增函数,∴ 函数)1(+=x f y 单调递减区间为(-∞,-1].【技巧提示】 这是一个求复合函数的单调性的例子,同时又含有抽象函数.只要知道函数1+x 的单调性,)1(+=x f y 与1+x 的单调性和单调区间相同.如果变函数)(x f 在R 上为减函数,那么函数)1(+=x f y 的单调性与函数1+x 的单调性相反,即函数)1(+=x f y 单调递增区间为(-∞,-1].又例 设函数)(x f 在R 上为减函数,求函数)1(xf y =单调区间. 再例 设函数)(x f 在R 上为增函数,且)(x f >0,求证函数)(1x f y =在R 上单调递减.[例4]试判断函数xbax x f +=)()0,0(>>b a 在()0,+∞上的单调性并给出证明.解析:设120x x >> ,()()()12121212ax x bf x f x x x x x --=- 由于120x x ->故当12,x x ⎫∈∞⎪⎪⎭ 时()()120f x f x ->,此时函数()f x在⎫∞⎪⎪⎭上增函数,同理可证函数()f x在⎛⎝上为减函数.【技巧提示】 xbax x f +=)()0,0(>>b a 是一种重要的函数模型,要引起足够的重视.事实上,函数()()0,0b f x ax a b x =+>>的增函数区间为,⎛-∞ ⎝和⎫∞⎪⎪⎭,减函数区间为⎛ ⎝和⎛⎫⎪ ⎪⎝⎭.但注意本题中不能说()f x在,⎛-∞ ⎝⎫∞⎪⎪⎭上为增函数,在⎛ ⎝⎛⎫⎪ ⎪⎝⎭上为减函数, 在叙述函数的单调区间时不能在多个单调区间之间添加符号“∪”和“或”.又例:求函数4522++=x x y 的最小值.解析:由()u g uu x x x x y =+=+++=++=1414452222,[)+∞∈,2u ,用单调性的定义法易证()u u u g 1+= 在[)+∞,2上是增函数,易求函数4522++=x x y 的最小值为25为所求. 再例:已知函数()[)+∞∈++=,1,22x xax x x f . 若对于x [)+∞∈,1,)(x f >0恒成立,试求a 的取值范围.解析:由)(x f = [)+∞∈++=++,1,222x xax x a x x .当a >0时, ()2++=xa x x f 显然有)(x f >0 在[)∞+.1恒成立; a ≤0时,由()[)+∞∈++=++=,x ,xax x a x x x f 1222知其为增函数,只需)(x f 的最小值)1(f =3+a >0,解之,a >-3.∴当a >-3时,)(x f >0在[)+∞,1上恒成立.[例5]已知)(x f 是定义在R 上的增函数,对x ∈R 有)(x f >0,且)10(f =1,设)(x F =)(1)(x f x f +,讨论)(x F 的单调性,并证明你的结论. 解析:在R 上任取1x 、2x ,设1x <2x ,∴)(2x f >)(1x f ,],)()(11)][()([])(1)([])(1)([)()(2112112212x f x f x f x f x f x f x f x f x F x F --=+-+=-∵)(x f 是R 上的增函数,且)10(f =1,∴当x <10时0<)(x f <1,而当x >10时)(x f >1; ① 若1x <2x <10,则0<)(1x f < )(2x f <1, ∴0< )(1x f )(2x f <1, ∴)()(1121x f x f -<0,∴)(2x F <)(1x F ;② 2x >1x >10,则)(2x f >)(1x f >1 , ∴)(1x f )(2x f >1, ∴)()(1121x f x f ->0, ∴ )(2x F >)(1x F ;综上,)(x F 在(-∞,10)为减函数,在(10,+∞)为增函数.【技巧提示】 该题属于判断抽象函数的单调性问题,用单调性定义解决是关键.[例6]已知113a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-.(1)求函数()g a 的表达式; (2)判断函数()g a 在区间[31,1]上的单调性,并求()g a 的最小值. 解析:(1)∵131≤≤a ∴ 函数()f x 的图像为开口向上的抛物线,且对称轴为].3,1[1∈=ax ∴()f x 有最小值aa N 11)(-= .当2≤a 1≤3时,a ∈[)(],21,31x f 有最大值()()11M a f a ==-; 当1≤a 1<2时,a ∈()(],1,21x f 有最大值M (a )=f (3)=9a -5;∴ ⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤+-=).121(169),2131(12)(a a a a a a a g(2)设1211,32a a ≤<≤则 121212121()()()(1)0,()(),g a g a a a g a g a a a -=-->∴> ∴ ]21,31[)(在a g 上是减函数.设1211,2a a <<≤ 则121212121()()()(9)0,()(),g a g a a a g a g a a a -=--<∴< ∴ ]1,21()(在a g 上是增函数. ∴当12a =时,()g a 有最小值21. 【技巧提示】 当知道对称轴为]3,1[1∈=ax 后,要求2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,就必须分类讨论.本题对培养学生分类讨论的思想有很好的作用.第(2)问讨论一个分段函数的单调性并求最值,也具有一定的典型性.四、课后训练1、函数1()(0)f x x x x=+≠的单调性描述,正确的是( ) A 、在(-∞,+∞)上是增函数; B 、在(-∞,0)∪(0,+∞)上是增函数; C 、在(-∞,-1)∪(1,+∞)上是增函数; D 、在(-∞,-1)和(1,+∞)上是增函数 2、证明函数()x f =2x 在[0,+∞)上是增函数.3、证明函数x x y 14+= 在),21[+∞上是增函数. 4、对于任意R x ∈,函数()x f 表示3+-x ,2123+x ,342+-x x 中的较大者,则()x f 的最小值是_____________.5、已知函数)(x f 、)(x g 在R 上是增函数,求证:))((x g f 在R 上也是增函数.6、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数7、函数()f x 是定义在[0,)+∞上的单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =递减区间是9、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为10、求函数12)(2--=ax x x f 在区间]2,0[上的最值.11、若函数22)(2+-=x x x f 当]1,[+∈t t x 时的最小值为()g t ,求函数()g t 当]2,3[--∈t 时的最值.12、讨论函数()f x =)0(12≠-a x ax,在-1<x <1上的单调性. 五、参考答案1.D 2.略 3.解析:设1x >2x ≥21, 则 )(2x f -)(1x f =2214x x +-(1114x x +) =212112)(4x x x x x x -+-=21211214)(x x x x x x -⋅-, ∵ 012<-x x ,4121>x x , ∴ )(2x f -)(1x f <0∴ 函数x x y 14+= 在),21[+∞上是增函数. 4.25.证明:设1x >2x ,则)(1x f -)(2x f >0,)(1x g -)(2x g >0, 即 )(1x g >)(2x g于是 ))((1x g f -))((2x g f >0 ∴ ))((x g f 在R 上也是增函数.6.C 7.]1,0[ 8.)2,(--∞和),2(+∞- ]2,2(- 9.),3[+∞10.解析:函数12)(2--=ax x x f )1()(22+--=a a x ,当 0<a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)0(f =-1 )(x f 在区间]2,0[上的最大值为)(max x f =)2(f =a 43-; 当 10<≤a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)1(2+-a )(x f 在区间]2,0[上的最大值为)(max x f =)2(f =a 43-; 当 21<≤a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)1(2+-a )(x f 在区间]2,0[上的最大值为)(max x f =)0(f =-1; 当 2≥a 时,)(x f 在区间上的最小值为)(min x f =)2(f =a 43- )(x f 在区间]2,0[上的最大值为)(max x f =)0(f =-1; 11.解析:因为函数22)(2+-=x x x f =1)1(2+-x 当t ≤0时,最小值)(t g =)1(+t f =12+t ; 当0<t ≤1时,最小值)(t g =)1(f =1; 当t >1时,最小值)(t g =)(t f =222+-t t ;∴ ⎪⎩⎪⎨⎧>+-≤<≤+=1,2210,10,1)(22t t t t t t t g ,)(t g 当]2,3[--∈t 时的最大值为)3(-g =10;最小值为)2(-g =5.12.解析:函数)(x f =12-x ax =xx a 1- 作函数xx x g 1)(-=, )(x g 为奇函数且在)0,1(-和)1,0(上都是增函数, ∴ 当a <0时,)(x f 在)0,1(-和)1,0(上都是增函数; 当a >0时,)(x f 在)0,1(-和)1,0(上都是减函数.。

导数与函数的单调性专题(基础)(学生版)

导数与函数的单调性专题(基础)(学生版)

导数与函数的单调性专题(基础)一、高考地位在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.二、知识回顾1.利用导数判断函数单调性条件结论函数y=f(x)在区间(a,b)上可导f′(x) 0f(x)在(a,b)内单调递增f′(x) 0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是函数2.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的条件.3.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有()且f′(x)在(a,b)上的任何子区间内都不恒为零.三、题型归纳题型一求无参函数的单调区间使用场景知函数()f x的解析式判断函数的单调性解题模板第一步计算函数()f x的定义域;第二步求出函数()f x的导函数'()f x;第三步若'()0f x>,则()f x为增函数;若'()0f x<,则()f x为减函数.例1:已知函数()ln xx af x e +=. (1)当1a =时,判断()f x 的单调性; 【解析】(1)当1a =时,()ln 1xx f x e +=, 第一步,计算函数()f x 的定义域:第二步,求出函数()f x 的导函数'()f x : 第三步,第四步,结论.【变式演练1】(1)函数()ln f x x x =的单调递减区间是( )A .10,e ⎡⎤⎢⎥⎣⎦B .10,e ⎛⎤ ⎥⎝⎦C .(]0,eD .[),e +∞(2)设函数()()2xf x x e =−,则其单调增区间是( )A .(),1−∞B .(),2−∞C .1,D .()2+∞(3)函数()ln 1f x x x =+的单调递减区间是( )A .1,e ⎛⎫−∞ ⎪⎝⎭B .1,e⎛⎫+∞ ⎪⎝⎭C .10,e ⎛⎫ ⎪⎝⎭D .(),e +∞(4)以下使得函数()cos 22sin f x x x =+单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭题型二 利用导数判断函数图像使用场景已知函数图像判断导函数图像或者已知导函数图像判断函数图像 解题模板 第一步 确定所给图像是函数图像还是导函数图像;第二步 导函数图像只看正负,函数图像只看增减; 第三步 根据导数与函数单调性极值之间的关系确定图像.例2:已知函数()y xf x '=的图象如图所示,则()y f x =的图象可能是( )A .B .C .D .【变式演练2】(1)已知函数f (x )的导函数()2b x axc f x '=++的图象如图所示,则f (x )的图象可能是( )A .B .C .D .(2)设函数()f x 的图象如图所示,则导函数()f x '的图象可能为( )A .B .C .D .题型三 判定含参数的函数的单调性使用场景函数()f x 的解析式中含有参数解题模板 第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例3 已知函数()()2ln 21f x x x ax a R =+−+∈.(1)讨论()f x 的单调性;【解析】(1)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :第二步,讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0:第三步,根据导函数的符号变换判断其单调区间:【变式演练3】(主导函数是一次型函数)已知函数()=1,f x nx ax a R −∈.(1)讨论函数f x ()的单调性;【变式演练4】(主导函数为类一次型)已知函数()xf x e ax −=+.(I )讨论()f x 的单调性;【变式演练5】(主导函数为二次型)(1)(2009天津理20)已知函数()()()2223e x f x x ax a a x =+−+∈R ,其中a ∈R .当23a ≠时,求函数()f x 的单调区间与极值.(2)已知函数()2ln af x x a x x=−−,0a ≥.讨论()f x 的单调性;(3)已知函数2()ln f x x x a x =−+,讨论f (x )在定义域上的单调性。

完整版)利用导数求函数单调性题型全归纳

完整版)利用导数求函数单调性题型全归纳

完整版)利用导数求函数单调性题型全归纳利用导数求函数单调性题型全归纳一、求单调区间例1:已知函数$f(x)=ax+x^2-x\ln a(a>0,a\neq 1)$,求函数$f(x)$的单调区间。

解:$f'(x)=ax\ln a+2x-\ln a=2x+(a x-1)\ln a$。

令$g(x)=f'(x)$,因为当$a>0,a\neq 1$时,$g'(x)=2+a\ln a>0$,所以$f'(x)$在$\mathbb{R}$上是增函数,又$f'(0)=-\ln a0$的解集为$(0,+\infty)$,故函数$f(x)$的单调增区间为$(0,+\infty)$,减区间为$(-\infty,0)$。

变式:已知$f(x)=e^{-ax}$,求$f(x)$的单调区间。

解:$f(x)=e^{-ax}$,当$a\leq 0$时,$f(x)>0$,$f(x)$单调递增;当$a>0$时,由$f(x)=e^{-a x}>0$得:$x>\ln a$,$f(x)$在$(\ln a,+\infty)$单调递增;由$f(x)=e^{-a x}0$时,$f(x)$的单调递增区间为$(\ln a,+\infty)$,递减区间为$(-\infty,\ln a)$。

二、函数单调性的判定与逆用例2:已知函数$f(x)=x+ax-2x+5$在$(0,+\infty)$上既不是单调递增函数,也不是单调递减函数,求正整数$a$的取值集合。

解:$f'(x)=3x+2ax-2$。

因为函数$f(x)=x+ax-2x+5$在$(0,+\infty)$上既不是单调递增函数,也不是单调递减函数,所以$f'(x)=3x+2ax-2=0$在$(0,+\infty)$上有解。

所以$f''(x)=6+2a>0$在$(0,+\infty)$上恒成立。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

函数的单调性知识点总结与经典题型归纳

函数的单调性知识点总结与经典题型归纳

函数的单调性知识梳理1. 单调性概念一样地,设函数()f x 的概念域为I :(1)若是关于概念域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)若是关于概念域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.2. 单调性的判定方式 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。

(2)概念法步骤;①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >);②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判定整个差式符号为止); ③定号:判定12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:依照概念得出其单调性.(3)复合函数的单调性:当内外层函数的单调性相同时那么复合函数为增函数;当内外层函数的单调性相反时那么复合函数为减函数。

也确实是说:同增异减(类似于“负负得正”)3. 单调区间的概念若是函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在那个区间上具有单调性,区间D 叫做()y f x =的单调区间.例题精讲【例1】以下图为某地域24小时内的气温转变图.(1)从左向右看,图形是如何转变的?(2)在哪些区间上升?哪些区间下降?解:(1)从左向右看,图形先下降,后上升,再下降;(2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。

【例2】画出以下函数的图象,观看其转变规律:(1)f (x )=x ;①从左至右图象上升仍是下降?②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么转变?(2)f (x )=x 2.①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么转变?②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么转变?解:(1)①从左至右图象是上升的;②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大.(2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小;②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大.【例3】函数()y f x =在概念域的某区间D 上存在12,x x ,知足12x x <且12()()f x f x <,那么函数()y f x =在该区间上必然是增函数吗?解:不必然,例如以下图:【例4】以下图是概念在闭区间[5,5]-上的函数()y f x =的图象,依照图象说出函数的单调区间,和在每一单调区间上,它是增函数仍是减函数.解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---;其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数.【例5】证明函数()32f x x =+在R 上是增函数.证明:设12,x x 是R 上的任意两个实数,且12x x < (取值)那么1212()()(32)(32)f x f x x x -=+-+ (作差)123()x x =-由12x x <,得 120x x -<于是12()()0f x f x -< (定号)因此12()()f x f x <因此,函数()32f x x =+在R 上是增函数。

必修一函数的单调性题型归纳

必修一函数的单调性题型归纳

必修一函数的单调性题型归纳函数的单调性与最值函数单调性的性质可以分为增函数和减函数。

对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1f(x2),则函数为减函数。

此外,函数的单调性还有以下性质:函数f(x)与函数-f(x)的单调性相反;当f(x)恒为正或恒为负时,函数f(x1)-f(x2)0,函数kf(x)与函数f(x)具有相同的单调性(如果k0,则函数f(x)与函数f(-x)具有相同的单调性。

对于复合函数,判断其单调性需要使用同增异减的方法。

在证明单调性时,可以使用定义法证明单调性的等价形式:设x1,x2∈[a,b],x1≠x2,那么(x1-x2)(f(x1)-f(x2))>0,当且仅当f(x)在[a,b]上是增函数;(x1-x2)(f(x1)-f(x2))<0,当且仅当f(x)在[a,b]上是减函数。

例1:证明函数f(x)=x^2在R上是增函数。

解:对于任意x1,x2∈R,且x10,(f(x1)-f(x2))=(x1^2-x2^2)=(x1+x2)(x1-x2)>0,因此f(x)在R上是增函数。

例2:求函数f(x)=2x/(1-x)在(-1,+∞)内的单调性。

解:当x∈(-1,1)时,f(x)为增函数;当x>1时,f(x)为减函数。

因此,f(x)在(-1,+∞)内的单调性为:增-减。

例3:设y=f(x)的单增区间是(2,6),求函数y=f(2-x)的单调区间。

解:令u=2-x,则x=2-u,代入y=f(2-x)得y=f(u),即y=f(2-x)=f(u)。

因为y=f(x)在(2,6)上单增,所以u=2-x∈(2,4]。

因此,y=f(2-x)在[2,4)上为增函数,在(4,6)上为减函数,单调区间为:增-减。

上的增函数,且f(3)>1,解不等式f(x)>2的解集.题型二、比较函数值的大小例4、已知函数y=f(x)在[0.+∞)上是减函数,试比较f(1)与f(a-a+1)的大小。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

专题 函数:高中常见函数的单调性与值域、最值-高一数学热点题型归纳与分阶培优练(原卷版)

专题 函数:高中常见函数的单调性与值域、最值-高一数学热点题型归纳与分阶培优练(原卷版)

专题7 常见函数的单调性与值域、最值目录【题型一】单调性定义 .............................................................................................................................................. 1 【题型二】1:反比例函数 ........................................................................................................................................ 2 【题型三】2:一元二次函数 .................................................................................................................................... 3 【题型四】3:分段函数 ............................................................................................................................................ 4 【题型五】4:“对勾”函数 ...................................................................................................................................... 5 【题型六】5:“双刀”函数(双曲函数) .............................................................................................................. 6 【题型七】6:无理函数 ............................................................................................................................................ 6 【题型八】7:max 与min 函数 ................................................................................................................................. 7 【题型九】8:“放大镜”函数 .................................................................................................................................. 8 【题型十】9:取整函数(高斯函数) .................................................................................................................... 9 培优第一阶——基础过关练 ...................................................................................................................................... 8 培优第二阶——能力提升练 .................................................................................................................................... 11 培优第三阶——培优拔尖练 (12)【题型一】单调性定义【典例分析】下列说法错误的是( )A .函数()f x 的定义域为(),a b ,若()12,,x x a b ∀∈,当12x x <时,()()21f x f x <,则函数()f x 是(),a b 上的减函数B .函数()f x 的定义域为(),a b ,若()12,,x x a b ∃∈,当12x x <时,()()21f x f x <,则函数()f x 不是(),a b 上的增函数C .若函数()f x 在[],a b 上是增函数,在(],b c 上也是增函数,则函数()f x 在[],a c 上是增函数D .若函数()f x 在[],a b 上是增函数,在[],b c 上也是增函数,则函数()f x 在[],a c 上是增函数1.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( ) A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x ≠2.下列有关函数单调性的说法,不正确的是( )A .若()f x 为增函数,()g x 为增函数,则()()f x g x +为增函数B .若()f x 为减函数,()g x 为减函数,则()()f x g x +为减函数C .若()f x 为增函数,()g x 为减函数,则()()f x g x +为增函数D .若()f x 为减函数,()g x 为增函数,则()()f x g x -为减函数3.下列函数f x ()中,满足“对任意()120x x ∈+∞,,,且12x x <都有()()12f x f x >”的是( )A .f x =()B .2f x x x=-() C .22f x x x =+-() D .3f x x =-()【题型二】1:反比例函数【典例分析】()f x =,*N x ∈,则()f x 取得最大值时的x 值为______.1.关于函数3125x y x -=-,下列说法正确的是( ) A .若x N ∈,则函数只有最大值没有最小值 B .若x N ∈,则函数只有最小值没有最大值 C .若x N ∈,则函数有最大值没有最小值 D .若x N ∈,则函数有最小值也有最大值2.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值D .()f x 无最大值,最小值753..已知函数31()1x f x x -=-,其定义域是[4-,2)-,则( ) A .()f x 有最大值73-,最小值135-B .()f x 有最大值73-,无最小值C .()f x 有最大值135-,最小值73-D .()f x 有最小值135-,无最大值【题型三】2:一元二次函数【典例分析】若函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,则b a -( )A .有最大值,但无最小值B .既有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值1.函数y = ) A .3,2⎛⎫-∞- ⎪⎝⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--2..已知2()2a f x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .23.若函数2()45f x x mx =-+在区间[1,)-+∞上是增函数,则(2)f 的最小值是 A .8 B .8- C .37 D .37-【题型四】3:分段函数【典例分析】.已知函数()21,=,2x c f x x x x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( )A .11,2⎡⎤--⎢⎥⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞1.已知()32f x x =-,()22g x x x =-,若()()()()()()(),,g x f x g x Fx f x f x g x ⎧≥⎪=⎨<⎪⎩,则()F x 的最值是( )A .最大值为3,最小值1-B .最大值为7-C .最大值为3,无最小值D .无最大值,最小值为1-2..函数2,[1,0]()1,(0,1]x x f x x x⎧∈-⎪=⎨∈⎪⎩的最值情况为( ).A .最小值0,最大值1B .最小值0,无最大值C .最小值0,最大值5D .最小值1,最大值5【题型五】4:“对勾”函数【典例分析】.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( ) A .103B .152C .3D .41.若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是( )A .132⎡⎤⎢⎥⎣⎦,B .1023⎡⎤⎢⎥⎣⎦,C .51023⎡⎤⎢⎥⎣⎦,D .556⎡⎤⎢⎥⎣⎦,2.设0a >,函数100()f x x x=+在区间(0,]a 上的最小值为m 1,在区间[,)a +∞上的最小值为m 2,若122020m m =,则a 的值为( )A .1B .2C .100D .1或1003..函数()()2404xf x x x x x =++>+的最小值为( )A .2B .103C .174D .2654..函数2y =的最小值为( ) A .2 B .52C .1D .不存在【题型六】5:“双刀”函数(双曲函数)【典例分析】已知函数4(),[,)af x x b x b x=++∈+∞,其中0,b a R >∈,记M 为()f x 的最小值,则当2M =时,a 的取值范围为( ) A .13a >B .13a <C .14a >D .14a <1.函数y =x -1x在[1,2]上的最大值为( )A .0B .32C .2D .32..函数()12f x x x=-在区间[]1,2上的最小值是( )A .72- B .72 C .1D .-13.已知0x >,则92535x x x x ⎛⎫⎛⎫+-⋅++ ⎪ ⎪⎝⎭⎝⎭的最小值为A .B .48C .79316D .60【题型七】6:无理函数【典例分析】若()f x =()g x =0a >)的最大值相等,则a 的值为( )A .1BC .2D .1.函数y =A .⎡⎣B .(C .(-∞D .)⎡+∞⎣2.已知函数()f x x =()f x 有( )A .最小值1,无最大值B .最大值32,无最小值C .最小值32,无最大值 D .无最大值,无最小值3.关于函数y = )A .既没有最大值也没有最小值B CD .既有最小值0【题型八】7:max 与min 函数【典例分析】()()()()()()}{21,1,,max ,,f x x g x x x R M x f x g x =+=+∈=则函数()M x 的最小值是__________.1.设{}2()min 2,16,816(0)x f x x x x x =--+≥,其中{}min ,,a b c 表示a ,b ,c 三个数中的最小值,则()f x 的最大值为 A .6 B .7 C .8 D .92.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( ) A .-1B .0C .1D .43.已知{}max ,,a b c 表示a ,b ,c 中的最大值,例如{}max 1,2,33=,若函数(){}2max 4,2,3f x x x x =-+-++,则()f x 的最小值为( ) A .2.5 B .3C .4D .5【题型九】8:“放大镜”函数【典例分析】定义域为R 的函数()f x 满足()()122f x f x -=,且当[)2,0x ∈-时,()22f x x x =--,则当[)2,4x ∈时,()f x 的最大值为( ) A .4 B .2C .12D .141.定义域为R 的函数()f x 满足(1)3()f x f x +=,且当(0,1]x ∈时,()4(1)f x x x =-,则当[2,1)x ∈--时,()f x 的最小值是( )A .181- B .127-C .19-D .02..定义域为R 的函数()f x 满足()()12f x f x +=,且当(0,1]x ∈时,()2f x x x =-,则当(]2,1x ∈--时,()f x 的最小值为( )A .116- B .18- C .14- D .03.已知定义在R 上的函数()y f x =满足()2(1)f x f x =+,且当(0,1]x ∈时,2()f x x x =-,则当(1,0]x ∈-时,函数()y f x =的最小值为( ).A .18- B .14- C .12- D .1-【题型十】9:取整函数(高斯函数)【典例分析】世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子"美誉的高斯提出了取整函数[][],y x x =表示不超过x 的最大整数,例如][1.11, 1.12⎡⎤=-=-⎣⎦.已知()()()21,,32,1x f x x x ∞∞-⎡⎤=∈--⋃+⎢⎥+⎣⎦,则函数()f x 的值域为( ) A .{}0,1,2 B .{}1,2,3 C .{}2,3,4 D .{}2,3【提分秘籍】 基本规律 取整函数[][],y x x =表示不超过x 的最大整数,又叫做“高斯函数”,可参考图像如下图。

高中数学函数单调性的几种常见题型总结

高中数学函数单调性的几种常见题型总结

高中数学函数单调性的几种常见题型总结在高中数学学习中,函数是非常重要的一部分内容。

其中,函数的基本性质——单调性更是重中之重。

在对函数问题的考查中,函数的单调性占很大的比重。

因此,需要对函数单调性的常见题型进行系统的归纳总结。

本文将从以下四方面结合具体的例子来分析总结涉及到函数单调性的几种常见题型。

一、分段函数单调性问题目前,高中数学教材必修一中这样定义函数单调性:一般地,设函数定义域为 :如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;如果对于定义域内某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。

根据定义,我们可以得到,若函数在上单调递增,则满足两个条件:(1)在上单调递增,在上单调递增;(2);同理,若函数在上单调递减,则满足两个条件:(1)在上单调递减,在上单调递减;(2) .例题:已知函数在上是减函数,则的取值范围是.这道题考查的是分段函数的单调性问题。

根据题意,时,是二次函数,在对称轴左侧单调递减;时,是对数函数,在时单调递减;再利用端点处的函数值大小关系即可得出满足条件的的取值范围。

解答:当时,为二次函数,对称轴为,在对称轴左侧单调递减,所以,解得;当时,,当时单调递减。

所以可得到,需满足,解得 .所以答案为.这里需要注意的是端点处函数值的大小关系是学生容易忽略或出错的地方,我们在教学中需要加以解释与强调。

利用函数单调性参数取值范围在这一类问题中,我们重点分析以下这种与对数函数相关的复合函数类型的题目,这是学生们的易错点,我们在上课时需要引起重视。

例题:若在区间上递减,则的取值范围为().这道题考查与对数函数相关的复合函数的单调性,我们知道复合函数单调性遵从“同增异减”的原则。

解答:令,则,由题意,在区间上,的取值需令真数,且函数在区间上单调递减。

配方得,故对称轴为,如图所示:由图像可知,当对称轴时,在区间上单调递减,又真数,二次函数在上单调递减,故只需当时,,则时,真数恒成立,代入解得,所以得取值范围是 .故选 .在教学过程中,我发现“真数大于0”这一条件在解题过程中很容易被忽略,或者有的学生对“真数大于0”这一条件该如何列不等式计算模棱两可,所以这一类型的题目在学生们中出现了“屡教不改”的现象。

(完整版)函数的单调性知识点与题型归纳

(完整版)函数的单调性知识点与题型归纳
( “分解因式 ”、配方成同号项的和等 ); ③依据差式的符号确定其增减性. (2) 导数法 :
设函数 y= f(x)在某区间 D 内可导.如果 f ′x()>0,则 f (x)在区间 D 内为增函数;如果 f ′x()<0,则 f(x)在区间 D 内为减函数. 注意: (补充 ) ( 1)若使得 f ′x()=0 的 x 的值只有有限个,
一、知识梳理 《名师一号》 P15 注意:
研究函数单调性必须 先求函数的定义域, 函数的单调区间是 定义域的子集 单调区间 不能并 !
知识点一 函数的单调性 1. 单调函数的定义
1
2.单调性、单调区间的定义
若函数 f(x)在区间 D 上是 增函数或减函数 ,则称函数 f(x) 在这一区间上具有 (严格的 )单调性, 区间 D 叫做 f (x)的单 调区间 .
法一:定义法
设- 1<x1<x2,
ax1 ax2 则 f(x1)-f (x2)=x1+ 1- x2+1
ax1 x2+ 1 - ax2 x1+ 1

x1+1 x2+ 1
a x1-x2
= x1+ 1
x2+ 1
∵- 1<x1<x2,
∴x1- x2<0, x1+1>0,x2+ 1>0.
6
∴当 a>0 时, f(x1)- f(x2)<0, 即 f(x1)<f(x2), ∴函数 y=f (x)在(-1,+ ∞)上单调递增. 同理当 a<0 时, f (x1)-f (x2)>0, 即 f(x1)>f(x2), ∴函数 y=f (x)在(-1,+ ∞)上单调递减.
[答案 ] C [解析 ] f ′x()=3x2-6a, 若 a≤0,则 f ′x() ≥0,∴ f(x)单调增,排除 A ; 若 a>0,则由 f ′x()=0 得 x= ± 2a,当 x<- 2a和 x> 2a 时,f ′x()>0,f(x)单调增,当- 2a<x < 2a时,f (x)单调减, ∴f (x)的单调减区间为 (- 2a, 2a),从而 2a=2, ∴a= 2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.★备考知考情1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用.2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现.一、知识梳理《名师一号》P15注意:研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集单调区间不能并!知识点一函数的单调性1.单调函数的定义122.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意:1、《名师一号》P16 问题探究 问题1关于函数单调性的定义应注意哪些问题?(1)定义中x 1,x 2具有任意性,不能是规定的特定值.(2)函数的单调区间必须是定义域的子集;(3)定义的两种变式:设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①1212()()0->-f x f x x x ⇔f (x )在[a ,b ]上是增函数;3 1212()()0-<-f x f x x x ⇔f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2、《名师一号》P16 问题探究 问题2单调区间的表示注意哪些问题?单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法(1) 定义法:利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性.(2) 导数法:设函数y =f (x )在某区间D 内可导.如果f ′(x )>0,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数.注意:(补充)(1)若使得f ′(x )=0的x 的值只有有限个,4 则如果f ′(x )0≥,则f (x )在区间D 内为增函数; 如果f ′(x ) 0≤,则f (x )在区间D 内为减函数.(2)单调性的判断方法:《名师一号》P17 高频考点 例2 规律方法定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f (x ),g (x )均为增(减)函数,则f (x )+g (x )仍为增(减)函数.2.若f (x )为增(减)函数,则-f (x )为减(增)函数,如果同时有f (x )>0, 则()1f x 为减(增)(减)函数.3.互为反函数的两个函数有相同的单调性.4.y =f [g (x )]是定义在M 上的函数,若f (x )与g (x )的单调性相同,则其复合函数f [g (x )]为增函数;若f (x )、g (x )的单调性相反,则其复合函数f [g (x )]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用《名师一号》P17 特色专题(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.二、例题分析:(一)函数单调性的判断与证明例1.(1)《名师一号》P16 对点自测 1判断下列说法是否正确(1)函数f(x)=2x+1在(-∞,+∞)上是增函数.()(2)函数f(x)=1x在其定义域上是减函数.()(3)已知f(x)=x,g(x)=-2x,则y=f(x)-g(x)在定义域上是增函数.()答案:√×√例1.(2)《名师一号》P16 高频考点例1(1)5(2014·北京卷)下列函数中,在区间(0,+∞)上为增函数的是()A.y =x+1 B .y=(x -1)2C.y=2-x D.y=log0.5(x+1)答案:A.例2.(1)《名师一号》P16 高频考点例1(2)判断函数f(x)=axx+1在(-1,+∞)上的单调性,并证明.法一:定义法设-1<x1<x2,则f(x1)-f(x2)=ax1x1+1-ax2x2+1=ax1x2+1-ax2x1+1x1+1x2+1=a x1-x2x1+1x2+1∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.67∴当a >0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数y =f (x )在(-1,+∞)上单调递增.同理当a <0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴函数y =f (x )在(-1,+∞)上单调递减.法二:导数法注意:《名师一号》P17 高频考点 例1 规律方法1.判断函数的单调性应先求定义域;2.用定义法判断(或证明)函数单调性的一般步骤为: 取值—作差—变形—判号—定论,其中变形为关键,而变形的方法有因式分解、配方法等;3.用导数判断函数的单调性简单快捷,应引起足够的重视(二)求复合函数、分段函数的单调性区间例1.《名师一号》P16 高频考点 例2(1) 求函数y =x -|1-x |的单调增区间;y =x -|1-x |=⎩⎨⎧1,x ≥1,2x -1,x <1. 作出该函数的图象如图所示.由图象可知,该函数的单调增区间是(-∞,1].例2.(1)《名师一号》P16 高频考点例2(2)(x2-4x+3)的单调区间.求函数y=log13解析:令u=x2-4x+3,原函数可以看作y=log1u与u=x2-4x+3的复合函数.3令u=x2-4x+3>0.则x<1或x>3.(x2-4x+3)的定义域为∴函数y=log13(-∞,1)∪(3,+∞).又u=x2-4x+3的图象的对称轴为x=2,且开口向上,∴u=x2-4x+3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y=log1u在(0,+∞)上是减函数,389 ∴y =log13(x 2-4x +3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1).注意:《名师一号》P17 高频考点 例2 规律方法求函数的单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的 图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间. 例2.(2)(补充)21122log 4log ⎛⎫=- ⎪⎝⎭y x x答案:增区间:1,4⎛⎫+∞ ⎪⎝⎭;减区间:10,4⎛⎫ ⎪⎝⎭练习:()222log log y x x =-答案:增区间:)+∞;减区间:(10 (三)利用单调性解(证)不等式及比较大小 例1.(1)《名师一号》P17 特色专题 典例(1)已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0【规范解答】 ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.例1.(2)《名师一号》P17 特色专题 典例(2)已知函数f (x )=⎩⎨⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式 f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)11【规范解答】作出函数f (x )的图象,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).注意:本例分段函数的单调区间可以并!(四)已知单调性求参数的值或取值范围例1.(1)《名师一号》P17 特色专题 典例(3)已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数x 1≠x 2,都有1212()()0-<-f x f x x x 成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138 C .(-∞,2] D.⎣⎢⎡⎭⎪⎫138,212【规范解答】函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,a -2×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138, 即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,138.例2.(1) (补充)如果函数f (x )=ax 2+2x -3在区间 (-∞,4)上单调递增,则实数a 的取值范围是________.[答案] [-14,0] [解析] (1)当a =0时,f (x )=2x -3,在定义域R 上单调递增,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a<0.综上所述-14≤a≤0.例2.(2)(补充)若f(x)=x3-6ax的单调递减区间是(-2,2),则a的取值范围是()A.(-∞,0]B.[-2,2] C.{2} D.[2,+∞)[答案] C[解析]f′(x)=3x2-6a,若a≤0,则f′(x)≥0,∴f(x)单调增,排除A;若a>0,则由f′(x)=0得x=±2a,当x<-2a和x>2a 时,f′(x)>0,f(x)单调增,当-2a<x<2a时,f(x)单调减,∴f(x)的单调减区间为(-2a,2a),从而2a=2,∴a=2.变式:若f(x)=x3-6ax在区间(-2,2)单调递减,则a的取值范围是?1314[点评] f (x )的单调递减区间是(-2,2)和f (x )在(-2,2)上单调递减是不同的,应加以区分. 本例亦可用x =±2是方程f ′(x )=3x 2-6a =0的两根 解得a =2.例2.(3) (补充) 若函数)2,3()(log )(321---=在ax x x f 上单调递减, 则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]答案:A温故知新P23 第9题若函数()()212log 3=-+f x x ax a 在区间 [)2,+∞上单调递减,则实数a 的取值范围是 《计时双基练》P217 基础7《计时双基练》P217 基础8、1015 8、设函数()12+=+ax f x x a在区间()2,-+∞上是增函数, 那么a 的取值范围是答案: [)1,+∞10、设函数()()=≠-xf x x a x a(2)若0>a 且()f x 在区间()1,+∞内单调递减, 求a 的取值范围.答案: [)1,+∞(五)抽象函数的单调性例1.(补充)已知f (x )为R 上的减函数,那么满足 f (|1x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案:C16 解析:因为f (x )为减函数,f (|1x |)<f (1),所以|1x|>1,则|x |<1且x ≠0,即x ∈(-1,0)∪(0,1).练习:()y f x =是定义在[]1,1-上的增函数, 解不等式2(1)(1)f x f x -<-答案:()0,1温故知新 P12 第8题注意:解抽象函数的不等式通常立足单调性定义 或借助图像求解例2. 《计时双基练》P216 培优4函数()f x 的定义域为()0,+∞,且对一切0,0>>x y 都有()()()=-x f f x f y y,当1>x 时,有()0>f x 。

相关文档
最新文档