数理统计复习题第五章

合集下载

概率论与数理统计练习册(理工类) - 第5,6章答案

概率论与数理统计练习册(理工类) - 第5,6章答案

答;收入至少400元的概率几乎为0.
(2)设出售1.2元的蛋糕数量为Y,则Y ~ B(300, 0.2), E(Y ) = 60, D(Y ) = 48.
P{Y

60}
=
Y P{
− 60

0}
=
(0)
=
0.5
48
答:售出价格为1.2元的蛋糕多于60只的概率0.5.
28
一、选择题:
概率论与数理统计练习题
x} = (x)
n→
n
n
Xi −n
(C) lim P{ i=1
x} = (x)
n→
n
n
Xi −
(D) lim P{ i=1
x} = (x)
n→
n
二、填空题:
224
1.对于随机变量 X,仅知其 E( X ) = 3,D( X ) = 1 ,则可知 P{| X − 3 | 3} 225
一、选择题:
概率论与数理统计练习题

专业
班 姓名
学号
第五章 大数定律与中心极限定理
1.设 n 是 n 次重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中出现的概率,则对任意


0
均有
lim
P

n

p



n→ n

[A ]
(A) = 0
(B) = 1
(C) 0
(D) 不存在

专业
班 姓名
学号
第六章 数理统计的基本知识
§6.1 总体、样本与统计量、§6.2 抽样分布
1.设 X1, X 2 , X 3 是取自总 X 体的样本,a 是一个未知参数,下述哪个样本函数是统计量[ B ]

《概率论与数理统计》典型例题第五章数理统计初步

《概率论与数理统计》典型例题第五章数理统计初步

第五章 数理统计初步例1.若总体2~(,)X N µσ,其中2σ已知,但µ未知,而为来自总体的一个简单随机样本,试指出下列样本函数中 12,,n X X X …是统计量, 不是统计量:(1)11n i i X n =∑; (2)211(n i i X n )µ=−∑; (3)211()1n i i X X n =−−∑;;X 。

分析:利用统计量的定义即可辨别,特别注意不能含有未知参数。

解:由统计量的定义:设为总体12,,n X X X …X 的一个样本,为连续函数,如果不包含任何未知参数,则称其为一个统计量。

12(,,)n g x x x …12(,,)n g X X X …显然,(1),(3),(4),(6)给出的是统计量;而(2),(5)给出的量因含有未知参数µ,所以不是统计量。

注:统计量不包含任何未知参数,它具有两重性。

统计量是样本的一个函数,所以是一个随机变量。

若是的一组观察值,则统计量12,,nX X X …12(,,)n g X X X …12,,n x x x …12,,n X X X …12(,,)n g x x x …又是一个确定的数。

例2.设随机变量X 和Y 都服从标准正态分布,则 。

(A ) X Y +服从正态分布。

(B ) 22X Y +服从2χ分布。

(C ) 2X 和都服从2Y 2χ分布。

() D 22X 服从F 分布。

分析:考察统计中三种常见分布的构成,注意正态分布的性质。

解:由于的联合分布是否为二维正态分布未知,不能确定(,)X Y X Y +服从正态分布,又因X 与Y 是否独立未知,因而不能确定X Y +服从正态分布,也不能确定22X Y +服从2χ分布,也不能确定22X Y 服从F 分布,因而选。

C 注:本例重在强调各分布的构成中,都有独立性的要求。

另外,正态分布的性质中也同样要求独立性。

例3.设2~(,)X N µσ,则样本均值X 与总体期望µ的偏差不超过(n 为样本容量)的概率为 。

概率论与数理统计第五章考试卷

概率论与数理统计第五章考试卷

注意事项: 1. 请在本试卷上直接答题. 2. 密封线下面不得写班级,姓名,学号等. ………………………………………装订线…………………………………装订线…………………………………装订线………………………………………作业序号______姓名班级教师姓名………………………………………密封线…………………………………密封线…………………………………密封线……………《概率论与数理统计B》第五章考试卷1.设随机变量),(~211σμNX,),(~222σμNY,且}1|{|}1|{|21<-><-μμYPXP,则必有( ).(A)21σσ>;(B) 21σσ<;(C) 21μμ<;(D) 21μμ>.2.设随机变量序列}{nX相互独立,],[~nnUX n-,,2,1=n,则对}{nX( ).(A)可使用切比雪夫大数定律;(B) 不可使用切比雪夫大数定律;(C) 可使用辛钦大数定律;(D) 不可使用辛钦大数定律.3.设随机事件A在第i次独试验中发生的概率为i p,ni,,2,1=.m表示事件A在n次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εniinpnnmP11l i m( ).(A)1;(B) 0;(C)21;(D)不可确定.4.设,,,,21nXXX相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim1xxnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ;(B) )(lim1xxnnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→;(C) )(lim1xxnnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ;(D) )(lim1xxnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ.5.设随机变量序列,,,,21nXXX相互独立同分布,0)(=iXE,2)(σ=iXD,且)(4i XE存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim21=⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP;(B) 11lim212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP;(C) 11lim212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP;(D) 01lim212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP.二、填空题(本题共5小题, 每小题4分, 共20分.把答案填在题中横线上)6.随机变量X的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(XEXP.7.设随机变量X和Y的期望都是2,方差分别为1和4,而其相关系数为0.5,则根据切比雪夫不等式≤≥-}6|{|YXP.8.设n X是n重贝努里试验中事件A出现的次数,又A在每次实验中出现的概率为)10(<<pp,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εpnXP nnlim.9.设随机变量,,,1nXX相互独立同分布,且具有有限的均值与方差,)(,)(2≠==σμiiXDXE,随机变量σμnnXYniin-∑==1的分布函数)(xFn,对任意的x,满足PxFnn=∞→)(lim{ }= .10.设随机变量序列,,,,21nXXX相互独立同分布,且0)(=nXE,则=∑<=∞→)(lim1niinnXP.三、解答题 (本题共6小题, 共60分)11(本题满分10分)某年的统计资料表示,在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数.(1)写出X的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值.第五章考试卷第1页;共2页。

天津理工大学概率论与数理统计第五章习题答案详解

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。

数理统计复习题

数理统计复习题

第五、六、七、九章复习题一. 设4321,,,X X X X 是来自正态总体()22,0N 的简单随机样本,()()243221432X X b X Xa Y -+-=问当a 和b 为何值时统计量服从2χ分布,其自由度是多少? 二. 设随机变量X 和Y 相互独立且都服从正态分布()23,0N ,而921,,,X X X和921,,,Y Y Y 分别是来自总体X 和Y 的简单随机样本,问统计量29222121Y Y Y X X X U ++++++=服从什么分布? 三. 设总体X 服从正态分布()22,0N ,而1521,,,X X X 是来自总体X 的简单随机样本,则随机变量()21521221121022212X X X X X X Y ++++++= 服从什么分布?四. 设1ˆθ和2ˆθ分别是参数θ的两个独立的无偏估计量,且1ˆθ的方差是2ˆθ方差的5倍,求当1k ,2k 取何值时,2211ˆˆθθk k +是θ的无偏估计量并且在所有这样的线性估计中方差最小。

五、设灯泡的使用寿命),(~2σμN X ,为了估计μ与2σ,测试10个灯泡,得x =1500小时,S =20小时,试求μ与2σ的90%的置信区间. 六、正常人的脉博平均为分次72,某医生测得10例慢性中毒患者的脉博(次/分)为:54, 67, 68, 78, 70, 66, 67, 70, 65, 69.已知脉博服从正态分布,问在显著性水平α=0.05条件下,中毒患者与正常人的脉博有无显著差异?七、已知用精饲料养鸡时,经若干天鸡的平均重量为2kg ,现对一批鸡改用粗饲料,同时改善饲养方法,经过同样长的饲养期,随机抽取10只,得重量数据如下:2.15 1.85 1.90 2.05 1.95 2.30 2.35 2.50 2.25 1.90经验表明,同一批鸡的重量服从正态分布,试判断这批鸡的平均重量是否有所提高。

05.0=α八、已知某种新型材料的抗压强度()2,~σμN X ,现随机地抽取9个样品进行抗压试验,测得数据如下:482 493 457 471 510 446 435 418 469求平均抗压强度μ的置信水平为95%的置信区间。

《概率论与数理统计》第5章复习题答案

《概率论与数理统计》第5章复习题答案

第五章大数定律及中心极限定理复习题1.设2(,2)XN µ ,从X 中抽取容量为n 的样本,其均值为X ,至少取 ,才能使样本均值X 与总体均值µ的绝对值小于0.1的概率不小于95%。

(0.9751.96Z =)解答:1537(|0.95(||(||0.95210.95P X P P Z≥⇔<=<≥⇔Φ−≥ 即0.975 1.961536.64n Φ≥⇒>⇒> 2.证明:若()0h ξ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何C>0,1{()}()P h C C Eh ξξ−≥≤。

证明:令,()0,()C h C Y h C ξξ≥ = <,由()0h ξ≥,有()h Y ξ≥两边取期望(){()}Eh EY CP h C ξξ≥=≥,得证。

3.若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而k ξ,l ξ(||2k l −≥)是独立的,证明这时对{}k ξ大数定律成立。

(提示:证明对任意的0ε>,皆有1111lim {||}1n nk k n k k P E n n ξξε→∞==−<=∑∑)证明:由切比雪夫不等式得到12111()11{||}1nk n nk k k k k D n P E n n ξξξεε===−<≥−∑∑∑如果能证明11()0nk k D n ξ=→∑,则结论成立不妨设2kD ξσ=≤∞,则 122122211111111|()||()||(,)|[(1)]n n n n k k k k k k k k k D D D Cov n n n n n n ξξξξξσσ−+======+≤+−∑∑∑∑…………(*)其中211|(,)||(,|k k k k Cov ξξρξξσ++=≤ 由(*)式知11()0nk k D n ξ=→∑成立,因此对{}k ξ大数定律成立。

数理统计第5章部分习题解答

数理统计第5章部分习题解答

第五章习题5.1.假设X 和Y 为随机变量,且满足E [X ]=-2, E [Y ]=2, Var[X ]=1, Var[Y ]=9, X 与Y 的相关系数,X Y r =-0.50.5.试由切比雪夫不等式确定满足不等式.试由切比雪夫不等式确定满足不等式{6}P X Y +³c £的最小正数c 之值之值. .解:因为{][][]220[][][]2cov(,)[][]2(,)[][]E X Y E X E Y Var X Y Var X Var Y X Y Var X Var Y r X Y Var X Var Y +=+=-+=+=++=++192(0.5)197=++´-´´=.2[](()[]6)6Var X Y P X Y E X Y ++-+³£由切比雪夫不等式:,有277(6)=636P X Y +³£.得736c =.5.2.设12,X X 为随机变量且0,[]1(1,2)i i EX Var X i ===. . 证明:证明:对任意的0,l >有22121{2}P X X l l+³£.证明:不妨设12(,)X X 为二维连续型随机变量,其密度函数为12,X X f . 由于12222212,[]()(,)X X E X X x y fx y dxdy +¥+¥-¥-¥+=+òò,12122222222212,,22(2)(,)(,)2X X X X x y x y x y P X X f x y dxdy f x y dxdylll l+³+³++³=£òòòò1222,22221212221122(,)2111[][][]22211([]([]))([]([]))22X X x y f x y dxdy E X X E X E X Var X E X Var X E X lll ll l+¥+¥-¥-¥+£=+=+=+++òò111(10)(10)22lll=+++=.5.3.在一枚均匀正四面体的四个面上分别画上1,2,3,4个点个点. . . 现将该四面体重复投现将该四面体重复投掷,(1,2,)i X i =为第i 次投掷向下一面的点数,试求当n ¥®时,211ni i X n =å依概率收敛的极限.的极限.解: 已知已知 (1,2,3,)i X i =的分布列为的分布列为12341/41/41/41/4i X P4422211115[]() , 1,2,3,.42i i k k E X k P X k k i ===×==×==åå可见,222123,,,X X X 是独立同分布的随机变量序列,且有相同的数学期望152,满足辛钦大数定律,因此对任意0e >,有,有 21115lim 02n i n i P X n e ®+¥=æö-³=ç÷èøå,即211ni i X n =å依概率收敛的极限为152.5.4.设{n X }是独立的随机变量序列,且假设{ln }{ln }0.5, 1,2,n n P X n P X n n ===-==,问{n X }是否服从大数定律?是否服从大数定律?解: []ln 0.5(ln )0.50,i E X i i =´+-´=22222[][]([]) (ln )0.5(ln )0.50ln , 1,2,3,.i i i Var X E X E X i i i i =-=´+-´-==则1111[][]0, n n i i i i E X E X n n ====åå 22111111[][]ln , 1,2,3,.n n n i i i i i Var X Var X i n n n n ======ååå利用切比雪夫不等式:对任意0e >,由,由12111[]11([])ni n n i i i i i Var X n P X E X n n e e===-³£ååå, 得2211222111ln ln 1ln (0)nnni i ii i nn nnP X n n e eee===-³££=ååå,从而有从而有211ln 0lim (0)lim 0nin n i n P X n n e e ®+¥®+¥=£-³£=å,得 11lim (0)0n i n i P X n e ®+¥=-³=å.即随机变量序列{}n X 服从大数定律服从大数定律. .5.5.设{n X }是独立同分布的随机变量序列,且假设[]2, []6n n E X Var X ==,证明:22212345632313,Pn n n X X X X X X X X X a n n --++++++¾¾®®¥,并确定常数a 之值.之值.解:232313 1,2,3,k k k k Y X X X k --=+=令.由于{}k X 是独立同分布的随机变量序列,所以{}k Y 也是独立同分布的随机变量序列也是独立同分布的随机变量序列,,且223231332313[][][][] k k k k k k k E Y E X X X E X E X X ----=+=+232323132 ([]([]))[][] (62)2214, 1,2,.k k k k Var XE XE X E X k ---=++=++´==可见,序列{}k Y 满足辛钦大数定律的条件满足辛钦大数定律的条件. . . 根据辛钦大数定律,得根据辛钦大数定律,得根据辛钦大数定律,得1214, PnY Y Y n n+++¾¾®®+¥ 即2221234563231314, Pn n nX X X X X X X X X n n--++++++¾¾®®+¥ 所以,a =14.5.6.设随机变量X ~B(100,0.8)B(100,0.8),试用棣莫弗—拉普拉斯定理求,试用棣莫弗—拉普拉斯定理求{80100}P X £<的近似值.似值.解:由~(100,0.8)X B 知[]1000.880, []1000.80.216E X Var X =´==´´=. 根据棣莫弗根据棣莫弗--拉普拉斯定理作近似计算,有拉普拉斯定理作近似计算,有99[]80[](80100)(8099)[][]E X E X P X P X Var X Var X æöæö--£<=££»F -F ç÷ç÷ç÷ç÷èøèø()()99808080 4.75010.5=0.51616--æöæö=F -F =F -F =-ç÷ç÷èøèø.5.7.一仪器同时收到50个信号k X ,k =1,2,=1,2,………………,50. ,50. ,50. 设设150,,X X 相互独立,且都服从区间服从区间[0[0[0,,9]9]上的均匀分布,试求上的均匀分布,试求501(250)k k P X =>å的近似值.的近似值.解:由~(0,9) , (0,9) , 1,1,2,,50k X U k =,有,有[]92kE X =,[]()212790124kVar X =-=.根据林德伯格根据林德伯格--莱维定理作近似计算,有莱维定理作近似计算,有5050112501250k k k k P X P X ==æöæö>=-£ç÷ç÷èøèøåå250509/215027/4-´æö»-Fç÷´èø()1 1.3610.9130.087=-F =-=.5.8.一个复杂的系统由n 个相互独立起作用的部件所组成,每个部件损坏的概率为0.100.10,,为了使整个系统正常运行,至少需要80%80%或或80%80%以上的部件正常工作,问以上的部件正常工作,问n 至少为多大才能使整个系统正常工作的概率不小于95%95%..解: : 将将n 个部件编号:个部件编号:1,2,...,n, 1,2,...,n, 1,2,...,n, 记记1, 1,2,,.0,i i X i n ì==íî若第个部件正常工作个部件正常工作,,否则否则,,则 ~(1,0.9)i X B ,且12,,,n X X X 相互独立相互独立. .依题意,要求有依题意,要求有110.80.95nii P X n =æö³³ç÷èøå即要求满足即要求满足 10.80.95n i i P X n =æö³³ç÷èøå.根据棣莫弗根据棣莫弗--拉普拉斯定理作近似计算,有拉普拉斯定理作近似计算,有10.80.90.811330.90.1ni i n n n n P X n n =æöæö-´-æöæö³»-F =-F =F ÷ç÷ç÷ç÷ç´´èøèøèøèøå. 由(1.65)0.95F =,应有 1.653n ³,即()23 1.6524.5025n ³´=,取25n =.。

概率论与数理统计 第五章 概率数理统计

概率论与数理统计 第五章 概率数理统计

概率论与数理统计第五章概率数理统计例题
10. 设总体 X 的密度 f(x)=2������ ������ − 最大似然验估计量。
1
(������−μ ) ������
λ>0,λ、μ 均为未知参数,������1 ,������2 ,… , ������������ 为样本,求 λ、μ 的
11. 设总体 X 的密度 f(x)=
15. 设某种病发病的年龄服从正态分布 N (μ,δ2 ) , 随机抽取 10 名患者, 记下年龄������1 ,������2 ,… , ������10 , 10 10 2 计算 ������ =1 ������������ =210, ������ =1 ������������ =4510,问显著水平 α=0.05 下可否认为该病发病的平均年龄 为 18 岁。
������������ +1 −������ ������ ������ ������ +1
~t(n-1)。
概率论与数理统计第五章概率数理统计例题
4. 设总体 X~N(μ, δ2 ) (δ>0) ������1 ,������2 ,… , ������2������ (n>2) 是 X 的一组简单随机样本, 设������=2������ ������=
求������1 ,������2 ,… , ������������ 为样本观测值,求 a 的矩估计量和最大似然估计量。
概率论与数理统计第五章概率数理统计例题
������ ������
13. 设总体 X 的密度为 f(x)=
k −1 !
������ ������−1 ������ −β x 0 < x ,β<0 为未知参数,k>0,为已知参数, x≤0 0

概率论与数理统计习题及答案-第五章

概率论与数理统计习题及答案-第五章

习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.【解】设i X 表每次掷的点数,则41i i X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而 22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.现要求n ,使得1{0.760.84}0.9.n i i X P n =≤≤≥∑即0.80.9ni X n P -≤≤≥∑ 由中心极限定理得0.9,Φ-Φ≥整理得0.95,Φ≥⎝⎭1.64,≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ 查表知1.64,= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量20205~(0,1).k V Z N -⨯==∑近似的于是105205{105}10P V P ⎧⎫⎪⎪-⨯⎪>=>⎬⎪⎪⎭1000.3871(0.387)0.348,10V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩ 第人治愈其他 令1001.ii X X ==∑ (1) X ~B (100,0.8),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭ 8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T =故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ= 9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ 故0.95, 1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2P 0.05 0.80.15 易知E (Xi =1.1),D (X i )=0.19,i =1,2, (400)而400i i X X=∑,由中心极限定理得400400 1.1~(0,1).i X N -⨯=∑近似地 于是{450}1{450}1P X P X >=-≤≈-Φ 1(1.147)0.1357.=-Φ= (2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得{340(2.5)0.9938.P Y ≤≈Φ=Φ= 11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.P X ≤≈Φ=Φ-=-Φ= 12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件{}.n m S ≤=≤ 由中心极限定理知:{}1{}10.95.n n P m S P S m ≤=-<≈-Φ≥ 从而 0.05,Φ≤ 故1.65,=- 所以 m =900-15.65=884.35≈884人(2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.n P S M ≤≈Φ==1.65,M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”.于是所求概率为{120}P X =≈21(60230.18110.0517e 0--===⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为{060}P X ≤≤≈Φ-Φ(0)0.5.⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)【解】令Z =X -Y ,有()0,()()()()2 3.E Z D Z D X Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = =依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199,即最多可装98箱.。

概率论与数理统计+第五章+大数定律及中心极限定理+练习题

概率论与数理统计+第五章+大数定律及中心极限定理+练习题

滨州学院《概率论与数理统计》(公共课)练习题第五章 大数定律及中心极限定理一、填空题1.设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限{}≈≤≤105X P .2.设试验成功的概率p=20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .3.将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α .4.将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 .5.随机变量X 和Y 的数学期望分别为-2和2, 方差分别为1和4, 而相关系数为-0.5, 则根据切比雪夫不等式≤≥+)6|(|Y X P .6.已知随机变量X 的数学期望为10,方差DX 存在且1.0)4020(≤<<-X P ,则≥DX .7.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为2的指数分布,则∞→n 当时,∑==n i i n X n Y 121依概率收敛于 . 8.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为0>λ的泊松分布,若∑==ni i X n X 11,则对任意实数x ,有≈<)(x X P . 二、选择题1.设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21 ( ).(A) 有相同期望和方差; (B) 服从同一离散型分布;(C) 服从同一指数分布; (D) 服从同一连续型分布.2.下列命题正确的是( ).(A) 由辛钦大数定律可以得出切比雪夫大数定律;(B) 由切比雪夫大数定律可以得出辛钦大数定律;(C) 由切比雪夫大数定律可以得出伯努利大数定律;(D) 由伯努利大数定律可以得出切比雪夫大数定律.3.设随机变量X 的方差为2, 则根据切贝雪夫不等式有估计{}≤≥-2||EX X P ( ).(A )21; (B )31; (C )41; (D )81. 4.设随机变量 ,n X X X ,,,21独立同分布,其分布函数为 ∞<<∞-+=x b x a x F ,arctan 1)(π,0≠b 则辛钦大数定律对此序列( ). (A )适用; (B )当常数a 和b 取适当数值十适用;(C )不适用; (D )无法判别.5.设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindeberg)中心极限定理, 当n 充分大时, n S 近似服从正态分布, 只要nX X X ,,,21 ( ).(A)有相同的数学期望; (B)有相同的方差;(C)服从同一指数分布; (D)服从同一离散型分布.6.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为1≠λ的指数分布,则( ).(A ))()(lim 1x x n n X P n i i n Φ=≤-∑=+∞→λ; (B ))()(lim 1x x nn X P n i i n Φ=≤-∑=+∞→;(C ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ; (D ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ. 三、解答题1.设n ν是n 次伯努利试验成功的次数,p(0<p<1)是每次试验成功的概率,n f n n ν=是n次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α=∆≥-p f n P . 试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α和∆估计n .2.假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值;(2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?3.设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率 {}αμ=∆≥-n X P ,其中μ=i EX ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值;(2) α和n ,求∆的近似值;(3) α和∆,估计n .4.某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β;(3) 一年获利润不少于60000元的概率γ.5.假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.6.生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数.7.将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .8.利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.9.设X 是任一非负(离散型或连续型)随机变量,已知X 的数学期望存在,而 0>ε是任意实数,证明不等式{}εεXX P ≤≥.10.设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α.11.设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?12.利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题. 13.设 ,n X X X ,,,21为独立同分布的随机变量序列,且 ,2,1,,2===i DX EX i i σμ,令∑=+=n i i n iX n n Y 1)1(2,试证明:μP n Y →. 14.设}{n X 为一列独立同分布的随机变量序列,其概率密度函数为⎩⎨⎧<≥=--ax a x e x f a x 0)()( 令},,,m in{21n n X X X M =,试证:a M Pn →.15.在一家保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡时,其家属可向保险公司领取1000元的赔偿费.试求:(1)保险公司没有利润的概率为多大?(2)保险公司一年的利润不少于60000元的概率为多大?16.已知生男孩的概率近似地等于0.515,求在10000个婴孩中,男孩不多于女孩的概率.17.某药厂断言,该工厂生产的某种药品对于医治一种疑难的疾病的治愈率为0.8,某医院试用了这种药品进行治疗,该医院任意抽查了100个服用此药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝这一断言.问:(1)若实际上此药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?18.一生产线生产的产品成箱包装, 每箱的重量是随机的, 假设每箱平均重50kg, 标准差为5kg . 若用最大载重量为5吨的汽车承运, 试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(977.0)2(=Φ).19.一家有800间客房的大宾馆的每间客房内装有一台2kW (千瓦)的空调机,若该宾馆的开房率为70%,试问应供应多少千瓦的电力才能以99%的概率保证有充足的电力开动空调机?20.设有30个电子器件,他们的使用寿命(单位:小时)3021,,,T T T 均服从平均寿命为10小时的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用等等. 令T 为30个器件使用的总计时间,求T 超过350小时的概率.。

陈国华等主编概率论与数理统计第五章习题解答

陈国华等主编概率论与数理统计第五章习题解答

x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,

《概率论与数理统计》习题第五章数理统计的基本概念

《概率论与数理统计》习题第五章数理统计的基本概念

第五章 数理统计的基本概念一. 填空题1. 设X 1, X 2, …, X n 为来自总体N(0, 2), 且随机变量)1(~)(221χ∑==ni iX C Y , 则常数C=___.解.∑=ni iX1~ N(0, n 2),)1,0(~1N n Xni iσ∑=所以21,1σσn c n c ==.2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且243221)43()2(X X b X X a Y -+-=,则a = ______, b = ______时, Y 服从2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100))1,0(~20221N X X -, )1,0(~1004343N X X -201,201==a a ; 1001,1001==b b . Y 为自由度2的2分布.3. 设X 1, X 2, …, X n 来自总体2(n)的分布,则._____)(______,)(==X D X E解. 因为X 1, X 2, …, X n 来自总体2(n), 所以E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n),)(n X E = 22)()(221=⋅==∑=nnn nX D X D ni i二. 单项选择题1. 设X 1, X 2, …, X n 为来自总体N(0, 2)的样本, 则样本二阶原点矩∑==n i i X n A 1221的方差为 (A)2 (B) n 2σ (C) n 42σ (D) n4σ 解. X 1, X 2, …, X n 来自总体N(0, 2), 所以,1)(),1(~)(222=σχσiiX E X 2)(2=σiX Dnn nnX D nX D A D ni ini i4242214212222))(()()(σσσσ=⋅===∑∑==. (C)是答案.2. 设X 1, X 2为来自正态总体N(,2)的样本, 则X 1 + X 2与X 1-X 2必 (A) 线性相关 (B) 不相关 (C) 相关但非线性相关 (D) 不独立 解. 假设 Y 1 = X 1 + X 2, Y 2 = X 1-X 2 所以 E(Y 2) = E(X 1)-E(X 2) = 0.cov(Y 1, Y 2) = E(Y 1Y 2)-E(Y 1)E(Y 2) = E(0)()()22212221=-=-X E X E X X . (B)是答案.3. 设X 服从正态分布N(0, 22), 而X 1, X 2, …, X 15为来自总体X 的简单随机样本, 则随机变量)(221521121021X X X X Y ++=所服从的分布为 (A) 2(15) (B) t(14) (C) F(10, 5) (D) F(1, 1)解.)10(~4221021χX X +, )5(~42215211χX X + 所以 )5,10(~204021521121021F X X X X ++++ , 即 )5,10(~)(221521121021F X X X X Y ++= (C)是答案.三. 计算题1. 设X 1, X 2, …, X 102)的一个样本, 求∑=>1012)44.1(i iXP .解. 因为X 1, X 2, …, X 102)的一个样本, 所以)10(~3.0101222∑=i i X χ ()44.1(1012P X P i i=>∑=1.0)16)10(()09.044.13.0101222=>=>∑=i i P X χ 2. 从一正态总体中抽取容量为10的一个样本, 若有2的样本均值与总体均值之差的绝对值在4以上, 试求总体的标准差. 解. 因为总体X 服从N(,2),所以)1,0(~10/N X σμ-. 由02.0)4|(|=>-μX P 知 02.0)104|10/(|=>-σσμX P即 99.0)104(,01.0)104(=Φ=-Φσσ查表得.43.533.2104,33.2104===σσ3. 设总体X ~N(72, 100), 为使样本均值大于70的概率不小于0.95 , 问样本容量至少应取多大?解. 假设样本容量为n, 则)1,0(~1072),100,72(~N nX nN X -由 95.0)70(≥>X P 得P(n X 1072->95.0)107270≥-n 所以 0625.68,65.15,95.0)5(≥≥≤Φn nn.4. 设总体X 服从N(, 4), 样本(X 1, X 2, …, X n )来自X, X 为样本均值. 问样本容量至少应取多大才能使i. 1.0)|(|2≤-μX E ii. 95.0)1.0|(|2≥≤-μX P解. i. 1.04)(1)()|(|2≤===-nX D n X D X E μ 所以 n ≥ 40. ii. )1,0(~2),4,(~N nX nN X μμ-. 所以 P X P =≤-)1.0|(|μ(95.0)21.0|2|≥≤-nnX μ975.0)201(≥Φn , 查表得 ,96.1201≥n n ≥ 1537 5. 设∑==ni i X n X 11, 证明:i.∑=-ni iX12)(μ=∑=---ni i X n X X 122)()(μ;ii.∑∑==-=-ni ni i iX n X X X12122)()(.解. i.=-∑=ni iX12)(μ∑=-+-ni iX X X12)(μ=2)(12+-∑=ni iX X∑=+--ni i X X X 1))((μ∑=-ni X 12)(μ=2)(12+-∑=ni iX X∑=+--ni i X n X X 1))((μ2)(μ-X n=∑=---ni iX n X X122)()(μii.=-∑=ni i X X 12)(21121222)2(X n X X X X X X X ni i ni ini i i+-=+-∑∑∑====22122X n X n Xni i+-∑==212)(X n X ni i ∑=-上海第二工业大学《概率论与数理统计》复习题一、填空题1. 已知()()P A B P A =,则A B 与的关系是 独立 。

数理统计复习题第五章范文

数理统计复习题第五章范文

第五章 大数定律与中心极限定理一、 典型题解例1设随机变量X 的数学期望()(){}2,3E X u D X X u σσ==-≥方差,求P 的大小区间。

解 令3εσ=,则有切比雪夫不等式有:()()()22221,339D X P X E X P X E X σεσεσ⎡⎤⎡⎤-≥≤-≥≤=⎣⎦⎣⎦有例2在n 次独立试验中,设事件A 在第i 次试验中发生的概率为()1,2,....i p i n =试证明:A 发生的频率稳定于概率的平均值。

证 设X 表示n 次试验中A 发生的次数,引入新的随机变量0i A X A ⎧=⎨⎩1,发生•,不发生()12,...i n =,,则X 服从()01-分布,故 ()()(),1i i i i i i i E X p D X p p p q ==-=,又因为()()224140i i i i i i i i p q p q p q p q -=+-=-≥,所以()()11,2, (4)i i i D X p q i n =≤= 由切比雪夫大数定理,对,o ε∀>有()11lim 1n i i n i p X E X n ε→∞=⎧⎫-<=⎡⎤⎨⎬⎣⎦⎩⎭∑ 即 11lim 1n i n i X p p n n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑例 3 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长,1名家长、2名家长来参加会议的概率分别为。

若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布。

(1)求参加会议的家长数X 超过450的概率;(2)求有1名家长来参加会议的学生数不多于340的概率。

解(1)以()400,,2,1 =k X k 记第k 个学生来参加会议的家长数,则k X 的分布律为k X 0 1 2 k P 0.05 0.8 0.15易知()()19.0,1.1==k k X D X E ,1,2,...400.k =而∑==4001k k X X .由独立同分布中心极限定理知,随机变量19.04001.140019.04001.14004001⨯-=⨯-∑=X Xk k近似服从正态分布()0,1N ,于是{}()14004001.145011.147.00.4000.1911.1470.1357P X P P⎫>=>=-≤⎬⎭≈-Φ= (2)以Y 记有一名家长来参加会议的学生数,则(400,0.8)Y B ,由德莫佛—拉普拉斯定理得{}()340 2.52.50.9938.P Y P P ≤=≤⎫=≤⎬⎭≈Φ=例4一加法器同时收到20个噪声电压()20,,2,1 =k V k ,设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布。

第五章 习题参考答案与提示

第五章 习题参考答案与提示

第五章习题参考答案与提示第五章数理统计初步习题参考答案与提示1.在总体中随机抽取一长度为36的样本,求样本均值)3.6,52(~2NXX落50.8到53.8之间的概率。

答案与提示:由于)/,(~2nNXσμ,所以{50.853.8}0.8293PX<<=。

2.在总体中随机抽取一长度为100的样本,问样本均值与总体均值的差的绝对值大3的概率是多少?)20,8(~2NX答案与提示:由于2~(,/XNnμσ),所以{83}0.1336PX−>=3.设为来自总体n XXX,,,21)(~λPX的一个样本,X、分别为样本均值和样本方差。

求2SXD及。

2ES答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体期望、总体方差的关系,显然应由定理5-1来解决这一问题。

2,DXDXESnnλλ===。

4.设是来自正态总体的随机样本,。

试确定、b使统计量4321XXXX,,,)30(2,N243221)32()2(XXbXXaX−+−=a X服从分布,并指出其自由度。

2χ答案与提示:依题意,要使统计量X服从分布,则必需使及服从标准正态分布。

解得2χ)2(212/1XXa−)32(432/1XXb−a=1/45;b=1/117。

5.设X和Y独立同分布和分别是来自N()032,,921XXX,,,921YYY,,,X和Y 的简单抽样,试确定统计量UXXYY=++++112929 所服从的分布。

答案与提示:应用t分布的定义,得UXXYY=++++191292~()t96.设随机变量~()Xtn(1n> ),试确定统计量21YX=所服从的分布。

答案与提示:先由t分布的定义知nVUX=,再利用F分布的定义即可。

—1—第五章习题参考答案与提示)1,(~12nFXY=。

7.设总体X服从正态分布,而是来自总体)2,0(2N1521,,,XXX X的简单随机样本,试确定随机变量)(221521121021XXXXY++++=所服从的分布。

概率论与数理统计第五章

概率论与数理统计第五章

4. 设 X 1, X 2 , 为相互独立的随机变量序列, 且 X i ( i 1, 2, ), 服
从参数为 的泊松分布, 则
n
Xi n
lim P i 1
n
n
x _____ .
三、解答题 1. 一药厂试制成功一种新药, 卫生部门为了检验此药的效果, 在100
名患者中进行了试验 , 决定若有 75 名或更多患者显示有效时, 即
验中 , 事件 A 出现的次数 , 试用切比雪夫不等式估计得
P 0.74
0.76
.
10000
10
3. 某批产品的次品率为 0.1, 连续抽取10000 件, 表示其中的次品
数 , 试用中心极限定理计算 P{ 970 }
.
已知 F0.1(1) 0.8413 , F 0.1 (2) 0.9772 , F0.1(33.333) 1.
5. 某灯泡厂生产的一批灯泡 , 次品率为 1% , 现随机地抽样 500 个 ,
试用泊松逼近和正态逼近二种方法计算次品不超过5个的概率是
多少? 已知标准正态分布函数 F0,1 ( x) 的值
F0,1(2.25) 0.9878, F0,1(0) 0.5, F0,1(1.01) 0.8438.
k
泊松分布
11
3. 为了使问题简化 , 假定计算机进行数的加法运算时, 把每个加数 取为最接近于它的整数 (其后一位四舍五入) 来计算, 设所有的取 整误差是相互独立的, 且它们都在[ 0.5, 0.5]上服从均匀分布, 若 有 1500 个数相加,问误差总和的绝对值超过15 的概率是多少?已
知标准正态分布函数 F 0,1( x)的值 : F0,1(0.12) 0.5478, F0,1(1.342) 0.9099, F0,1(0.134) 0.5517.

概率论与数理统计第5章习题

概率论与数理统计第5章习题

1
200 160 157.44
0 160 157.44
1 200 160 157.44
160 0 157.44
1 3.19 1 0.9992886 0.0007114
24
10 0.05 10 0.05
2(0.632) 1 0.472
20
5. 某 商 店 负 责 供 应 某 地 区1000人 的 商 品,某 种 商 品 任 一 段 时 间 内,每 人 需 用 一 件 的 概 率 为0.6, 假 定 在 这 一 段 时 间 内 每 人 购买 与 否 彼 此 无 关,问 商 店 至 少 应 预 备 多 少 件 商 品才 能 以99.7%的 概 率 保 证 不会脱销?
DX i
n
2
n
n
i1 X i ~ N (0,1)
n
2
1
n
i 1
Xi
n
~
N (0,1)
n

X
n i 1
Xi
n
n
n
2
分 子 分 母 同 乘 以
Xi n
X
lim n
i 1
n p{ X
x}
lim
n
p
n i 1
Xi n
n
x
lim
p
n i 1
Xi
n
x ( x)
n
n
2
2. 已知一本300页的书中每页印刷错误的个数服从
解 : 设X表示某段时间内1000人中需用一件商品的人数
则X ~ B(1000,0.6) EX np 600 DX npq 240 设应预备n件商品,则由拉普拉斯中心极限定理

X ~ N( 600,240)

概率论与数理统计复习题册答案(西农版)

概率论与数理统计复习题册答案(西农版)

第一章 随机事件与概率 §1.1 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==U 甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=ΦU ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间 1.{}3,420L ,, 2[]0,100 3.z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度。

三、(1)任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=(2){}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=U ,{}6AB ω=,{}15,A B ωω=U四、(1)ABC ;(2)ABC ;(3)“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;(4)A B C U U ;(5)“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC U U .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB AC BC U U .§1.2 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10!,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排。

故8!3!1()10!15P A ⋅==。

概率论与数理统计习题库,第五章

概率论与数理统计习题库,第五章

长沙理工大学二手货QQ 交易群146 808 417#00001生产灯泡的合格率为0.6,求10000个灯泡中合格灯泡数在5800~6200的概率。

*00001解:由题意10000个灯泡中合格灯泡数X~B (10000,0.6),再由中心极限定理知X~N (6000,2400),则所求概率为11)082.4(2)082.4()082.4()240060005800()240060006200(}62005800{=-Φ=-Φ-Φ=-Φ--Φ=≤≤X P #00002已知正常男性成人血液中,每毫升白细胞数平均是7300,均方差是700。

利用切贝雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率。

*00002解:设每毫升含白细胞X 个,则E (X )=7300,σ(X )=700, 由切贝雪夫不等式知,所求概率98210070012100)(121005|)({|222≈-=-><-x D x E X P即所求概率约为98。

#00003从大批发芽率为0.9的种子中随意抽取1000粒,试估计这1000粒种子发芽率不低于0.88的概率。

(注:Φ(0.2222)=0.5871,Φ(2.108)=0.9826) *00003解:设这批种子发芽率为)9.0,1000(~1000,B P P ''则由中心极限定理得)90,900(~1000N P ',则所求概率为)108.2()108.2(1)90900880(1}8801000{}88.0{Φ=-Φ-=-Φ-=≥'=≥'P P P P#00004将一枚硬币抛1000次,试利用切贝雪夫不等式估计:在1000次中,出现正面H 的次数在400至600次之间的概率。

*00004解:设出现正面H 的次数为X ,其中E(X)=500,D(X)=250,则所求概率为975.0100002501100)(1}100|500{|2=-=-≥≤-X D X P即所求概率为0.975。

概率论与数理统计第五章习题

概率论与数理统计第五章习题

概率论与数理统计习题 第五章 大数定律及中心极限定理习题5-1 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的。

求这16只元件的寿命的总和大于1920小时的概率。

解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP习题5-2 设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg ,均方差为0.1kg ,问5000只零件的总重量超过2510kg 的概率是多少?解设X i 表示第i 只零件的重量, 则E (X i )=0.5, D (X i )=0.01. 于是5000只零件的总重量X =∑=50001i iX, 所以由独立同分布中心极限定理知,{2510}P X >=P >1Φ≈-=1-0.921=0.079.习题5-3 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少? 解设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ1(2.5)10.99380.0062.=-Φ=-=习题5-4(1)一复杂的系统由100个相互独立起作用的部件所组成.在整个运行期间每个部件损坏的概率为0.10 ,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.100(100,0.9),85{85)11( 1.67)(1.67)0.9525X X B P X ⨯⨯≈Φ-Φ≥≈-Φ=-Φ-=Φ=注释:设这个部件中没有损坏部件数为, 则服从二项分布且有______EX=np=1000.9=90,DX=npq=900.1=9由拉普拉斯定理,b-EX a-EXP{a<X<b}故至少须有个部件工作的概率为:85-90(2)一复杂的系统由n 个相互独立起作用的部件所组成.每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?解:(2)设每个部件为X i (i=1,2,……n )⎩⎨⎧=部件损坏不工作部件工作1i XP {X i =1}=p =0.9, P {X i =0}=1-p =0.1 E (X i ) =p =0.9,D (X i ) =0.9×0.1=0.09由问题知95.0100801=⎭⎬⎫⎩⎨⎧>∑=n i i n X P 求n=?而⎭⎬⎫⎩⎨⎧>∑=n X P n i i 100801⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=∑=)(10080)(1i i ni i X nD np n X nD npX P=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-∑=n n n nn X P ni i 3.09.0100803.09.01=1-⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-≤-∑=n n n nn X P n i i 3.09.0100803.09.01由中心极限定理知=95.03.01.03.01.01≥⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫⎝⎛-Φ-n n n n 查标准正态分布表得645.13.01.0≥nn解得n ≥24.35取n=25,即n 至少为25才能使系统可靠性为0.95.习题5-5 随机地选取两组学生,每组80人,分别在两个实验室里测量某种化合物的pH 值.各人测量的结果是随机变量,它们相互独立,且服从同一分布,其数学期望为5,方差为0.3,以Y X ,分别表示第一组和第二组所得结果的算术平均:(1)求}1.59.4{<<X P ; (2)求}1.01.0{<-<-Y X P(1)求P {4.9<1.5<X } (2)1.01.0{<-<-Y X P } 解:由中心极限定理知3.080580801⨯⨯-=∑=i iXU ~N (0,1)3.080580801⨯⨯-=∑=j jYV ~N (0,1)(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-⨯<⨯⨯-<⨯⨯-⨯=<<∑=3.080580801.53.0805803.080580809.4}1.59.4{801i i X P X P8968.019484.021)63.1(263.12458063.1801=-⨯=-Φ=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯-<-∑=i i X P (2)由X i , Y j 的相互独立性知∑∑==801801j ji iYX 与独立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 大数定律与中心极限定理
一、 典型题解
例1设随机变量X 的数学期望()(){}2,3E X u D X X u σσ==-≥方差,求P 的大小区间。

解 令3εσ=,则有切比雪夫不等式有:
()()
()22
221
,339D X P X E X P X E X σεσεσ⎡⎤⎡⎤-≥≤
-≥≤=⎣⎦⎣⎦有
例2在n 次独立试验中,设事件A 在第i 次试验中发生的概率为()1,2,....i p i n =
试证明:A 发生的频率稳定于概率的平均值。

证 设X 表示n 次试验中A 发生的次数,引入新的随机变量0i A X A ⎧=⎨⎩1,发生•
,不发生
()12,...i n =,
,则X 服从()01-分布,故 ()()(),1i i i i i i i E X p D X p p p q ==-=,
又因为
()
()2
2
4140i i i i i i i i p q p q p q p q -=+-=-≥,
所以
()()1
1,2, (4)
i i i D X p q i n =≤
= 由切比雪夫大数定理,对,o ε∀>有()11lim 1n i i n i p X E X n ε→∞
=⎧⎫
-<=⎡⎤⎨⎬⎣⎦⎩⎭
∑ 即 11lim 1n i n i X p p n n ε→∞
=⎧⎫
-<=⎨⎬⎩⎭

例 3 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学
生无家长,1名家长、2名家长来参加会议的概率分别为。

若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布。

(1)求参加会议的家长数X 超过450的概率;(2)求有1名家长来参加会议的学生数不多于340的概率。

解(1)以()400,,2,1 =k X k 记第k 个学生来参加会议的家长数,则k X 的分布律为
k X 0 1 2 k P 0.05 0.8 0.15
易知()()19.0,1.1==k k X D X E ,1,2,...400.k =而∑==400
1
k k X X .由独立同分布中
心极限定理知,随机变量
19
.04001.140019
.04001
.1400400
1
⨯-=
⨯-∑=X X
k k
近似服从正态分布()0,1N ,于是
{
}()14004001.1
45011.147.00.4000.19
11.1470.1357
P X P P
⎫>=>=-≤
⎬⎭≈-Φ= (2)以Y 记有一名家长来参加会议的学生数,则(400,0.8)Y B ,由德莫佛—拉普拉斯定理得
{
}
()340 2.52.50.9938.
P Y P P ≤=≤⎫=≤⎬
⎭≈Φ=
例4一加法器同时收到20个噪声电压()20,,2,1 =k V k ,设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布。

记∑==20
1k k V V ,求()105P V >的近
似值。

解 易知()())20,,2,1(12100,5 ===k V D V E k k ,由独立同分布中心极限定理,随机变量
20
1210052020
121005
2020
1
⨯-=
⨯-=
∑=V V
Z k k
近似服从正态分布()0,1N ,于是
()
()20387201001050.38712101220
110.
38710.3870.348
20t P V P P P dt --∞

⎫⎧

⎪>=>
=>⎬⎪⎭⎧
⎫⎪
=-≤≈-=-Φ=
⎬⎪⎭

即有 ()1050.348.P V >≈
例5一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于03的概率为
1
3
p =
,若船舶遭受了90 000次波浪冲击,问其中有29 500~30 500次纵摇角度大于03的概率是多少?
解 我们将船舶每遭受一次波浪冲击看作是一次试验,并假定各次试验是独立的。

在90 000次波浪冲击中纵摇角度大于03的次数记为X ,则X 是一个随机变量,且有
1(90000,)3
X B 。

其分布律为{}9000090000
12,0,1,,90000.33k k
k P X k C
k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭
所求的概率为
{}9000030500
9000029500
122950030500.33k
k
k
k P X C -=⎛⎫⎛⎫≤≤= ⎪ ⎪
⎝⎭⎝⎭∑
要直接计算是麻烦的,我们利用德莫佛—拉普拉斯定理来求它的近似值。

即有
{}
2
22950030500.t P X P dt -⎧⎫≤≤=≤≤⎛⎫⎛⎫
≈=Φ-Φ
其中
190000,3n p ==。

即有
{}()()
295003050020.9995P X ≤≤≈Φ-Φ-=.
例6 设在某中重复独立试验中,每次试验事件A 发生的概率为1
4
,问能以0.9997的概率保证在1000次试验中A 发生的频率与1
4
相差多少?此时A 发生的次数在哪个范围之内?
解 设A n 为n 重伯努利试验中事件A 发生的次数,p 是在各次试验中事件A 发生的概率。

则(),A n B n p ,当n 很大时,由德莫佛—拉普拉斯定理,有A n 近似服从()(),1,N np np p -从而
{}A A n p p p np n n np n n βεεε⎧⎫
=-≤=-≤≤+⎨
⎬⎩⎭
p ⎧⎫=≤≤
21⎛⎫⎛⎫⎛≈Φ-Φ=Φ- ⎝
从而由题设 1
1000,,0.99974n p β===,
而 要求0.9997.A n p p n εε⎧⎫
-≤=⎨⎬⎩⎭
中的
由于210.9997A n p p n ε⎛⎧⎫-≤=Φ-= ⎨⎬ ⎩⎭⎝,故
0.9999⎛
Φ= ⎝查表得
3.62, 3.62 3.620.0496ε====故。

四、练习题配置
1.设随机变量X 的数学期望()10E X =,方差()0.04D X =,利用切比雪夫不等式估计{}9.211P X <<的大小。

2.设电路共电网中内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关彼此独立,计算同时开着的灯数在6800与7200之间的概率。

3. 生产灯泡12,,,,n X X X L L 的合格率为0.6,求10 000个灯泡中合格灯泡数在5 800~6 200的概率。

4. 某心里学家要研究一群孩子智商的平均值m ,他用1
1n
i i X X n ==∑作为m 的估
计,用12,,,n X X X L 分别表示对这n 个孩子智商测试的结果。

若(),i E X m =()263.66i D X =,1,2,,i n =L 为使X 对m 的估计误差不超过5的概率不低于0.95,问他至少要测试多少个孩子?
5. 设有30个电子器件,它们的使用寿命1230,,T T T L 服从参数为0.1λ=[单位:(小时)1-]的指数分布。

其使用规则是第一个损坏时立即使用第二个,第二个损坏时立即使用第三个等等。

令T 为30个器件使用的总时间,求T 超过350小时的概率。

6. 设某车间有400台同类型的机器,每台机器开动时需要15单位的电能,根据产品的需求,每台机器开动时间是总时间的3/4。

假定各机器的开动是相互独立的。

问至少供应多少单位的电能才能以不低于99.9%的把握保证不致因供电不足而影响生产。

7. 一复杂的系统由n 个相互独立起作用的部件组成,每个部件的可靠性为0.90,且必须至少有85%的部件工作才能使整个系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?
8.某种电子器件的寿命(小时)具有数学期望μ(未知),方差2400=s 为了估计μ,随机地取几只这种器件,在时刻t =0投入测试(设测试是相互独立的)直到失败,测得其寿命12,,,,n X X X 以 作为μ的估计,为使 问n 至少为多少?。

相关文档
最新文档