安徽省马鞍山市2019年中考数学模拟试卷(含答案)

合集下载

安徽省马鞍山市2019-2020学年中考数学一模试卷含解析

安徽省马鞍山市2019-2020学年中考数学一模试卷含解析

安徽省马鞍山市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒2.如图所示的几何体,它的左视图与俯视图都正确的是( )A .B .C .D .3.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( ) A .9B .4C .43D .334.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 5.下列运算正确的是( ) A .(a 2)4=a 6B .a 2•a 3=a 6C .236⨯=D .235+=6.已知等边三角形的内切圆半径,外接圆半径和高的比是( ) A .1:2:3 B .2:3:4C .1:3:2D .1:2:37.估计19273⨯-的运算结果应在哪个两个连续自然数之间( ) A .﹣2和﹣1B .﹣3和﹣2C .﹣4和﹣3D .﹣5和﹣48.如图,在平面直角坐标系xOy 中,△A B C '''由△ABC 绕点P 旋转得到,则点P 的坐标为( )A .(0, 1)B .(1, -1)C .(0, -1)D .(1, 0)9.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°11.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:912.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B 之间的距离为_____m.14.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.16.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.17.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲乙丙丁x7 8 8 7s2 1 1.2 0.9 1.818.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD 的相似比为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.20.(6分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)21.(6分)解不等式组:12231x x x -⎧⎨+≥-⎩<.22.(8分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A ,B ,C ,D 表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请 根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.23.(8分)已知:如图,在半径为2的扇形AOB 中,90AOB ︒∠=°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE CD 、.(1)若C 是半径OB 中点,求OCD ∠的正弦值; (2)若E 是弧AB 的中点,求证:2•BE BO BC =;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长. 24.(10分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.25.(10分)对x ,y 定义一种新运算T ,规定T (x ,y )=22ax by x y++(其中a ,b 是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T (3,1)=22319314a b a b ⨯+⨯+=+,T (m ,﹣2)=242am bm +-.填空:T (4,﹣1)= (用含a ,b 的代数式表示);若T (﹣2,0)=﹣2且T (5,﹣1)=1. ①求a 与b 的值;②若T (3m ﹣10,m )=T (m ,3m ﹣10),求m 的值. 26.(12分)△ABC 在平面直角坐标系中的位置如图所示.画出△ABC 关于y 轴对称的△A 1B 1C 1;将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴. 27.(12分)问题提出(1)如图1,在△ABC 中,∠A =75°,∠C =60°,AC =2,求△ABC 的外接圆半径R 的值; 问题探究(2)如图2,在△ABC 中,∠BAC =60°,∠C =45°,AC =6,点D 为边BC 上的动点,连接AD 以AD 为直径作⊙O 交边AB 、AC 分别于点E 、F ,接E 、F ,求EF 的最小值; 问题解决(3)如图3,在四边形ABCD 中,∠BAD =90°,∠BCD =30°,AB =AD ,BC+CD =3,连接AC ,线段AC 的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.2.D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.3.D【解析】【分析】【详解】解:设方程的另一个根为a a=解得a=故选D.4.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数. 5.C【解析】【分析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ==C选项正确;D D选项错误.故选:C.【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.6.D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.7.C【解析】根据二次根式的性质,可化简得19273⨯-=3﹣33=﹣23,然后根据二次根式的估算,由3<23<4可知﹣23在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.8.B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心. 故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.9.C【解析】【分析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.10.C【解析】【分析】根据DE∥AB可求得∠CDE=∠B解答即可.【详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【点睛】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.11.A【解析】【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OBOB'=,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.12.D【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴4144x=+,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(50﹣5033).【解析】【分析】过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【详解】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N,则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM =AM =50m .∵在直角△BCN 中,∠BCN =∠ACB +∠ACD =60°,BN =50m ,∴CN =60BNtan (m ),∴MN =CM−CN =(m ).则AB =MN =()m .故答案是:(50−3). 【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题. 14.85 【解析】 【分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题. 【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99, 中位数为中间两数84和86的平均数, ∴这六位同学成绩的中位数是85. 【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键. 15.25【解析】 【详解】解:根据题意可得:列表如下黄2 黄2,红1 黄2,红2 黄2,黄1 黄2,黄3 黄3 黄3,红1 黄3,红2 黄3,黄1 黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82 205.【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.16.3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.17.丙【解析】【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.18.3:1.【解析】∵△AOB与△COD关于点O成位似图形,∴△AOB∽△COD,则△AOB与△COD的相似比为OB:OD=3:1,故答案为3:1 (或34 ).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20.(1)证明见解析;(2)23 3π-;【解析】【分析】(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.【详解】(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切; (2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形, ∴∠DOC=∠COA=60°, ∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积,=260212236023ππ⨯-⨯=n .【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点. 21.﹣4≤x <1 【解析】 【分析】 先求出各不等式的 【详解】12231x x x -⎧⎨+≥-⎩< 解不等式x ﹣1<2,得:x <1, 解不等式2x+1≥x ﹣1,得:x≥﹣4, 则不等式组的解集为﹣4≤x <1. 【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 22.(1)图形见解析,216件;(2)12【解析】 【分析】(1)由B 班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D 班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【详解】(1)4个班作品总数为:1201236360÷=件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品364×36=324件.条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3 BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B (B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.所以选取的两名学生恰好是一男一女的概率为61 122=.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.23.(2)3sin CD5O∠=;(2)详见解析;(2)当DCEV是以CD为腰的等腰三角形时,CD的长为2或32.【解析】【分析】(2)先求出OC12=OB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;(2)先判断出¶¶AE BE=,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;(3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D 和点O重合,即可得出结论.【详解】(2)∵C是半径OB中点,∴OC12=OB=2.∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x34=,∴CD54=,∴sin∠OCD35ODCD==;(2)如图2,连接AE,CE.∵DE是AC垂直平分线,∴AE=CE.∵E是弧AB的中点,∴¶¶AE BE=,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴BE OBBC BE=,∴BE2=BO•BC;(3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:①当CD=CE时.∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣2(舍)或a=2-;∴CD=2;②当CD=DE时.∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B 重合,∴CD=2.综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或2-.【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键. 24.(1)详见解析;(2)30°. 【解析】 【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案. 【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线, ∴PA=PB , ∴点P 即为所求.(2)如图,连接AP , ∵PA PB =, ∴PAB B ∠=∠, ∵AP 是角平分线, ∴PAB PAC ∠=∠, ∴PAB PAC B ∠=∠=∠, ∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°, ∴3∠B=90°, 解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键. 25.(1)163a b+ ;(2)①a=1,b=-1,②m=2. 【解析】 【分析】(1)根据题目中的新运算法则计算即可; (2)①根据题意列出方程组即可求出a,b 的值;②先分别算出T (3m ﹣3,m )与T (m ,3m ﹣3)的值,再根据求出的值列出等式即可得出结论. 【详解】解:(1)T (4,﹣1)==;故答案为;(2)①∵T (﹣2,0)=﹣2且T (2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0, ∴T (x ,y )===x ﹣y .∴T (3m ﹣3,m )=3m ﹣3﹣m=2m ﹣3, T (m ,3m ﹣3)=m ﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题.. 26.(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.【解析】【分析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.【详解】(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.【点睛】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.27.(1)△ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为92.【解析】【分析】(1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题;(2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD 与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.【详解】解:(1)如图1中,作△ABC的外接圆,连接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=12,∴OA=OC=1,∴△ABC的外接圆的R为1.(2)如图2中,作AH⊥BC于H.∵AC=6,∠C=45°,∴AH=AC•sin45°=86×22=83,∵∠BAC=10°,∴当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF•cos30°=43•3=1,∴EF=2EH=2,∴EF的最小值为2.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC2AC,∠AEC=∠ACE=45°,∴EC的值最小时,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH =12x ,EH ,∵CD+BC =,CD =x ,∴BC =x∴EC 2=EH 2+CH 2=(2x )2+212x x ⎛⎫+ ⎪⎝⎭=x 2﹣x+432, ∵a =1>0,∴当x =﹣2-=时,EC 的长最小, 此时EC =18,∴AC =,∴AC 的最小值为.【点睛】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题.。

安徽省马鞍山市2019年中考数学模拟试卷(含答案)

安徽省马鞍山市2019年中考数学模拟试卷(含答案)

2019年安徽省马鞍山市中考数学模拟试卷一.选择题(满分40分,每小题4分)1.的倒数是()A.2016B.C.﹣2016D.﹣2.下列各式中,运算正确的是()A.x2+x2=x4B.3x m y n﹣2x m y n=1C.﹣6x2y4÷3x2y4=﹣2D.4x2y3•5x3y2=9x5y53.2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×1084.甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:班级人数中位数方差平均字数甲 55 149 191 135乙 55 151 110 135 某同学根据上表分析得出如下结论:①甲,乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A.①②③B.①②C.①③D.②③5.如图所示的是由若干个同样大小的正方体搭成的几何体的俯视图,小正方形中的数字表示该位置正方体的个数,则这个几何体的左视图是()A.B.C.D.6.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC 的长为()A.B.πC.2πD.3π7.某商品标价x元,进价为400元,在商场开展的促销活动中,该商品按8折销售获利()A.(8x﹣400)元B.(400×8﹣x)元C.(0.8x﹣400)元D.(400×0.8﹣x)元8.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”9.关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5B.3<α<5<βC.α<2<β<5D.α<3且β>510.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于()A.20B.24C.﹣20D.﹣24二.填空题(满分20分,每小题5分)11.在实数范围内式子有意义,则x 的范围是.12.方程(x ﹣1)(x +2)=0的解是.13.某市规定了每月用水不超过18立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y (元)是用水x (立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为立方米.14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为.三.解答题15.(8分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;16.(8分)求不等式组的整数解.四.解答题17.(8分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA 与地面AB 垂直,斜拉杆CD 与AM 交于点C ,横杆DE ∥AB ,摄像头EF ⊥DE 于点E ,AC =5.5米,CD =3米,EF =0.4米,∠CDE =162°.(1)求∠MCD 的度数;(2)求摄像头下端点F 到地面AB 的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)18.(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (﹣4,1),B (﹣1,3),C (﹣1,1)(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;平移△AB C ,若A 对应的点A 2坐标为(﹣4,﹣5),画出△A 2B 2C 2;(2)若△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2,直接写出旋转中心坐标. (3)在x 轴上有一点P 使得PA +PB 的值最小,直接写出点P 的坐标.五.解答题19.(10分)如图,AB 、BC 、CD 分别与⊙O 相切于E 、F 、G 三点,且AB ∥CD ,OB =6cm ,OC =8cm .(Ⅰ)求证:OB ⊥OC ; (Ⅱ)求CG 的长.20.(10分)观察下面三行数:2,﹣4,8,﹣16,32,﹣64,…4,﹣2,10,﹣14,34,﹣62,…﹣1,2,﹣4,8,﹣16,32,…在上面三行数的第n列中,从上往下的三个数分别记为a,b,c,观察这些数的特点,根据你所得到的规律,解答下列为问题.(1)用含n的式子分别表示出a,b,c;(2)根据(1)的结论,若a,b,c三个数的和为770,求n的值.六.解答题21.(12分)今年4月23日,是第16个世界读书日.某校为了解学生每周课余自主阅读的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如图不完整的统计图表,请根据图表中的信息解答下列问题组别学习时间x(h)频数(人数)A0<x≤1 8B1<x≤2 24C2<x≤3 32D3<x≤4 nE4小时以上 4(1)表中的n=,中位数落在组,扇形统计图中B组对应的圆心角为°;(2)请补全频数分布直方图;(3)该校准备召开利用课余时间进行自主阅读的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.七.解答题22.(12分)如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.八.解答题23.(14分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.参考答案一.选择1.解:的倒数是2016,故选:A.2.解:A、x2+x2=2x2,错误;B、3x m y n﹣2x m y n=x m y n,错误;C、﹣6x2y4÷3x2y4=﹣2,正确;D、4x2y3•5x3y2=20x5y5,错误;故选:C.3.解:科学记数法表示:5500万=5500 0000=5.5×107故选:C.4.解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以(3)也正确.故选:A.5.解:根据题意,结合图形可知,题目中的几何体从左面看到的从左往右两列正方形的个数依次为2、3,选项B正确.故选:B.6.解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=,故选:A.7.解:由题意可得,该商品按8折销售获利为:(0.8x﹣400)元,故选:C.8.解:A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.9.解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.10.解:作DE ∥AO ,CF ⊥AO ,设CF =4x ,∵四边形OABC 为菱形, ∴AB ∥CO ,AO ∥BC , ∵DE ∥AO , ∴S △ADO =S △DEO , 同理S △BCD =S △CDE ,∵S 菱形ABCO =S △ADO +S △DEO +S △BCD +S △CDE , ∴S 菱形ABCO =2(S △DEO +S △CDE )=2S △CDO =40, ∵tan ∠AOC =, ∴OF =3x , ∴OC ==5x ,∴OA =OC =5x ,∵S 菱形ABCO =AO •CF =20x 2,解得:x =,∴OF =3,CF =4, ∴点C 坐标为(﹣3,4),∵反比例函数y =的图象经过点C , ∴代入点C 得:k =﹣24, 故选:D . 二.填空题11.解:根据题意得:x ﹣5>0, 解得,x >5. 故答案是:x >5.12.解:∵(x ﹣1)(x +2)=0 ∴x ﹣1=0或x +2=0 ∴x 1=1,x 2=﹣2, 故答案为x 1=1、x 2=﹣2.13.解:设当x >18时的函数解析式为y =kx +b ,,得,即当x >18时的函数解析式为y =4x ﹣18, ∵102>54,∴当y =102时,102=4x ﹣18,得x =30, 故答案为:30.14.解:∵S △BDE :S △CDE =1:3, ∴BE :EC =1:3; ∴BE :BC =1:4; ∵DE ∥AC ,∴△BDE ∽△BAC ,△DOE ∽△AOC , ∴=,∴S △DOE :S △AOC =()2=;故答案为:1:16. 三.解答题15.解:原式=1+4﹣(2﹣2)+4×,=1+4﹣2+2+2,=7. 16.解:∵由不等式①得:x <3,由不等式②得:x,∴不等式组的解集为,又∵x为整数,∴x=1、2.∴原不等式组的整数解为1,2.四.解答题17.(1)如图,延长ED,AM交于点P,∵DE∥AB,MA⊥AB∴EP⊥MA,即∠MPD=90°∵∠CDE=162°∴∠MCD=162°﹣90°=72°;(2)如图,在Rt△PCD中,CD=3米,∠MCD=72°,∴PC=CD•cos∠MCD=3×cos72°≈3×0.31=﹣0.93米∵AC=5.5米,EF=0.4米,∴PC+AC﹣EF=0.93+5.5﹣0.4=6.03米答:摄像头下端点F到地面AB的距离为6.03米.18.解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:,解得:,∴直线A′B的解析式为y=x+,当y=0时,x+=0,解得x=﹣,∴点P的坐标为(﹣,0).故答案为:(﹣,0).五.解答题19.解:(Ⅰ)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(Ⅱ)由(Ⅰ)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴OF=4.8cm.∴BF=3.6cm,∵CF、CG分别与⊙O相切于F、G,∴CG=CF=6.4cm.20.解:由题意可知,第一行数的规律为﹣(﹣2)n,第二行每个数是第一行数对应列的数加2,即第二行数的规律为﹣(﹣2)n+2,第三行每个数是第一行数对应列数除以(﹣2),即第三行数的规律为﹣(﹣2)n﹣1;(1)a=﹣(﹣2)n,b=﹣(﹣2)n+2,c=﹣(﹣2)n﹣1;(2)∵a,b,c三个数的和为770,∴﹣(﹣2)n﹣(﹣2)n+2﹣(﹣2)n﹣1=770,3×(﹣2)n﹣1+2=770,∴n=9.六.解答21.解:(1)调查的总人数为8÷10%=80,则n=15%×80=12,由于共有80个数据,∴中位数为第40、41个数据的平均数,而第40、41个数据均落在C组,∴中位数落在C组,扇形统计图中B组对应的圆心角为×360°=108°,故答案为:12,C,108;(2)如下图所示:(3)画树状图如下:共12种可能,抽取的两名学生都来自九年级的有2种可能,==,∴P(两个学生都是九年级)答:抽取的两名学生都来自九年级的概率为.七.解答22.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC =∠OCB =45°.连接CD ,∴CD ∥x 轴,∴∠DCB =∠OBC =45°,∴∠DCB =∠OCB , 在y 轴上取点G ,使CG =CD =2,再延长BG 交抛物线于点P ,在△DCB 和△GCB 中,CB =CB ,∠DCB =∠OCB ,CG =CD ,∴△DCB ≌△GCB (SAS )∴∠DBC =∠GBC .设直线BP 解析式为y BP =kx +b (k ≠0),把G (0,1),B (3,0)代入,得 k =﹣,b =1,∴BP 解析式为y BP =﹣x +1.y BP =﹣x +1,y =﹣x 2+2x +3当y =y BP 时,﹣x +1=﹣x 2+2x +3,解得x 1=﹣,x 2=3(舍去),∴y =,∴P (﹣,). (3)M 1(﹣2,﹣5),M 2(4,﹣5),M 3(2,3).八.解答23.解:(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =45°, ∴AC ==4,∵∠DAC =∠AHC +∠ACH =45°,∠ACH +∠ACG =45°, ∴∠AHC =∠ACG .故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.=•AH•AG=AC2=×(4)2=16.理由:∵S△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.。

安徽省马鞍山市2019-2020学年第四次中考模拟考试数学试卷含解析

安徽省马鞍山市2019-2020学年第四次中考模拟考试数学试卷含解析

安徽省马鞍山市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A.1 B.2 C.3 D.82.在实数0,2-,1,5中,其中最小的实数是()A.0B.2-C.1D.53.一个多边形的每一个外角都等于72°,这个多边形是( )A.正三角形B.正方形C.正五边形D.正六边形4.下列标志中,可以看作是轴对称图形的是()A.B.C.D.5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a ﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤6.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35 m/s;+;③图1中线段EF应表示为5005x④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A.①④B.②③C.①②④D.①③④7.下列图形中,既是中心对称图形又是轴对称图形的是( ) A.B.C.D.8.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A.120240420x x-=+B.240120420x x-=+C.120240420x x-=-D.240120420x x-=-9.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=()A3B.2 C.3 D3+210.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确11.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A .4200.5x +-420x=20 B .420x -4200.5x +=20 C .4200.5x --420x =20 D .420420200.5x x -=- 12.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( ) A .m≤2 B .m≥2 C .m <2 D .m >2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC ≌△ADE ,∠EAC =40°,则∠B =_______°.14.一组数据7,9,8,7,9,9,8的中位数是__________15.三个小伙伴各出资a 元,共同购买了价格为b 元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a 、b 的代数式表示)16.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.18.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?20.(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)21.(6分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.22.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;23.(8分)阅读材料,解答下列问题:神奇的等式当a≠b时,一般来说会有a2+b≠a+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:(13)2+23=13+22()3,(14)2+34=14+23()4,(15)2+45=15+(45)2,…(1100)2+99100=1100+(99100)2,…(1)特例验证:请再写出一个具有上述特征的等式:;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示为:;(3)证明推广:①(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;②等式(mn)2+n mn-=mn+(n mn-)2(m,n为任意实数,且n≠0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由.24.(10分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.25.(10分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.26.(12分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?27.(12分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

安徽省马鞍山市2019-2020学年中考数学模拟试题含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩2.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF 等于()A.12.5°B.15°C.20°D.22.5°3.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°4.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.25°5.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.16B.13C.12D.236.下列几何体中,其三视图都是全等图形的是()A.圆柱B.圆锥C.三棱锥D.球7.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D .三角形的三个内角中最多有一个钝角 8.下列计算中,错误的是( ) A .020181=;B .224-=;C .1242=;D .1133-=. 9.在△ABC 中,∠C =90°,tanA =,△ABC 的周长为60,那么△ABC 的面积为( )A .60B .30C .240D .12010.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°11.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定12.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( ) A . B . C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.14.如图:图象①②③均是以P 0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P 1P 2P 3,第二次移动后图形①②③的圆心依次为P 4P 5P 6…,依此规律,P 0P 2018=_____个单位长度.15.已知抛物线2y ax bx c =++开口向上且经过点()1,1,双曲线1y 2x=经过点()a,bc ,给出下列结论:bc 0①>;b c 0+>②;b ③,c 是关于x 的一元二次方程()21x a 1x 02a+-+=的两个实数根;a b c 3.--≥④其中正确结论是______(填写序号)16.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.17.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为_____.18.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC ⊥x 轴于点C ,交的图象于点A ,PD ⊥y 轴于点D ,交的图象于点B ,当点P 在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是__ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.20.(6分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AEBE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 21.(6分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,①在点()11,1P ,(22P ,322P ⎛ ⎝⎭中,直线m 的平行点是______; ②⊙O 10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.22.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)23.(8分)在平面直角坐标系中,一次函数34y x b=-+的图象与反比例函数kyx=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式34kx bx-+>的解集.24.(10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.25.(10分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1.(2)先化简,再求值:(x﹣1)÷(21x+﹣1),其中x为方程x2+3x+2=0的根.26.(12分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.27.(12分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:_(02)_(24)xyx--≤≤⎧=⎨--<≤⎩,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x 0 121321523724y 0 189815878(3)观察所画的图象,写出该函数的两条性质:.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩f,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.2.B【解析】【详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=12∠BOF=15°故选:B3.A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.4.A【解析】【分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.B【解析】【分析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:26=13.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.6.D 【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆, 故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图. 7.D 【解析】 【分析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断 【详解】如实数a ,b 满足a 2=b 2,则a =±b ,A 是假命题; 数a ,b 满足a <0,b <0,则ab >0,B 是假命题; 若实“购买1张彩票就中奖”是随机事件,C 是假命题; 三角形的三个内角中最多有一个钝角,D 是真命题; 故选:D 【点睛】本题考查了命题与定理,根据实际判断是解题的关键 8.B 【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确; B .224-=-,故B 错误; C .1242=.故C 正确;D .1133-=,故D 正确;故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.9.D【解析】【分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x 的值,确定出两直角边,即可求出三角形面积.【详解】如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.10.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.11.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.12.A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】已知BC=8, AD 是中线,可得CD=4, 在△CBA 和△CAD 中, 由∠B=∠DAC ,∠C=∠C , 可判定△CBA ∽△CAD ,根据相似三角形的性质可得AC CD BC AC = , 即可得AC 2=CD•BC=4×8=32,解得.14.1【解析】【分析】根据P 0P 1=1,P 0P 2=1,P 0P 3=1;P 0P 4=2,P 0P 5=2,P 0P 6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P 2018在正南方向上,P 0P 2018=672+1=1. 【详解】由图可得,P 0P 1=1,P 0P 2=1,P 0P 3=1;P 0P 4=2,P 0P 5=2,P 0P 6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3;∵2018=3×672+2,∴点P 2018在正南方向上,∴P 0P 2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.15.①③【解析】试题解析:∵抛物线2y ax bx c =++开口向上且经过点(1,1),双曲线12y x=经过点(a ,bc ),∴0112a a b c bc a ⎧⎪>⎪++=⎨⎪⎪=⎩,∴bc >0,故①正确;∴a >1时,则b 、c 均小于0,此时b+c <0,当a=1时,b+c=0,则与题意矛盾,当0<a <1时,则b 、c 均大于0,此时b+c >0,故②错误;∴21(1)02x a x a+-+=可以转化为:2()0x b c x bc +++=,得x=b 或x=c ,故③正确; ∵b ,c 是关于x 的一元二次方程21(1)02x a x a +-+=的两个实数根,∴a ﹣b ﹣c=a ﹣(b+c )=a+(a ﹣1)=2a ﹣1,当a >1时,2a ﹣1>3,当0<a <1时,﹣1<2a ﹣1<3,故④错误;故答案为①③.16.-1【解析】试题分析:∵正方形ADEF 的面积为4,∴正方形ADEF 的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B 点坐标为(t ,1),则E 点坐标(t-2,2),∵点B 、E 在反比例函数y=的图象上, ∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k 的几何意义.1732π【解析】【分析】由于六边形ABCDEF 是正六边形,所以∠AOB=60°,故△OAB 是等边三角形,OA=OB=AB=2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,OG=OA•sin60°,再根据S 阴影=S △OAB -S 扇形OMN ,进而可得出结论.【详解】∵六边形ABCDEF 是正六边形,∴∠AOB=60°,∴△OAB 是等边三角形,OA=OB=AB=2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴3sin60232OG OA ,=⋅︒=⨯= ∴S 阴影=S △OAB -S 扇形OMN =()260π31π 23323602.⨯⨯⨯⨯-=- 故答案为32π-【点睛】 考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.18.①②④.【解析】①△ODB 与△OCA 的面积相等;正确,由于A 、B 在同一反比例函数图象上,则两三角形面积相等,都为.②四边形PAOB 的面积不会发生变化;正确,由于矩形OCPD 、三角形ODB 、三角形OCA 为定值,则四边形PAOB 的面积不会发生变化.③PA 与PB 始终相等;错误,不一定,只有当四边形OCPD 为正方形时满足PA=PB .④当点A 是PC 的中点时,点B 一定是PD 的中点.正确,当点A 是PC 的中点时,k=2,则此时点B 也一定是PD 的中点.故一定正确的是①②④三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F 作FG ⊥AB 于G ,交CE 于H ,利用相似三角形的判定得出△AGF ∽△EHF ,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x .过F 作FG ⊥AB 于G ,交CE 于H (如图).所以△AGF ∽△EHF .因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x ﹣1.1.由△AGF ∽△EHF , 得AG GF EH HF =, 即 1.53023x -=, 所以x ﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米. 点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF ∽△EHF 是解题关键. 20.(1)12,14;(2)证明见解析;(3)34m n =. 【解析】【分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =g ,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥Q ,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽,∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =.故答案为:12,14.(2)如图11-中,作//DHCF交AB于H.2m=Q,3n=,∴tan∠B=12CE ACBE BC==,tan∠ACE= tan∠B=12AECE=∴BE=2CE,12AE CE=4BE AE∴=,2BD CD=,设AE a=,则4BE a=,//DH ACQ,∴2BH BDAH CD==,53AH a∴=,5233EH a a a=-=,//DH AFQ,∴3223EF AE aDE EH a===,32EF DE∴=.(3)如图2中,作DH AB⊥于H.90ACB CEB∠=∠=︒Q,90ACE ECB∴∠+∠=︒,90B ECB∠+∠=︒,ACE B∴∠=∠,DA DB=Q,EAG B∠=∠,EAG ACE∴∠=∠,90AEG AEC ∠=∠=︒Q ,AEG CEA ∴∆∆∽,2AE EG EC ∴=g ,32CG AE =Q ,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =Q ,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE Q ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,4AC b =,:4:3AC CD ∴=,mAC nDC =Q ,::4:3AC CD n m ∴==, ∴34m n =. 【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.21.(1)①2P ,3P ;②,(-,(,(-;(2)n ≤≤. 【解析】【分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为y =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线. 设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°. 所以2OB =. 直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =.在1Rt OHQ ∆中,可求13HQ =.所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==.所以22ON =.所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为(22,2点4Q 的坐标为(2,22-,综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°,∴23sin 60CD OC ==︒ 设⊙A 与直线BC 相切于点F ,在Rt △ACE 中,同法可得33AC =, ∴33OA = ∴43n = 根据对称性可知,当⊙A 在y 轴左侧时,43n =, 观察图象可知满足条件的N 的值为:4343n ≤≤. 【点睛】 此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.22.客车不能通过限高杆,理由见解析【解析】【分析】根据DE ⊥BC ,DF ⊥AB ,得到∠EDF=∠ABC=14°.在Rt △EDF 中,根据cos ∠EDF=DF DE,求出DF 的值,即可判断.【详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DFDE,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.23.(1)y=﹣34x+32,y=-6x;(2)12;(3) x<﹣2或0<x<4.【解析】【分析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.【详解】(1)∵一次函数y=﹣34x+b的图象与反比例函数y=kx(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣34×(﹣2)+b,k=﹣2×3=﹣6∴b=32,k=﹣6∴一次函数解析式y=﹣3342x+,反比例函数解析式y=6x-.(2)根据题意得:33426y xyx⎧+⎪⎪⎨-⎪⎪⎩=﹣=,解得:211242,332xxy y⎧=⎧=-⎪⎪⎨⎨==-⎪⎪⎩⎩,∴S△ABF=12×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.24.(1)直线l与⊙O相切;(2)证明见解析;(3).【解析】试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF 的长.试题解析:(1)直线l与⊙O相切.理由如下:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF .又∵∠EFB=∠BAE+∠ABF ,∴∠EBF=∠EFB .∴BE=EF .(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE ,∠DEB=∠BEA ,∴△BED ∽△AEB . ∴,即,解得;AE=,∴AF=AE ﹣EF=﹣1=.考点:圆的综合题.25.(1)6;(2)﹣(x+1),1.【解析】【详解】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x 2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1)当x=﹣1时,x+1=0,分式无意义,当x=﹣2时,原式=1 26. (Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形.(3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=.在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=;在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=;在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t=-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩. 27. (1) ①y=212x ;②221(02)212(24)2x x y x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩;(1)见解析;(3)见解析 【解析】【分析】(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x①当0≤x≤1时∴△APM∽△AOD∴AP AO2 PM DO==∴MP=1 2 x∵AC垂直平分MN∴PN=PM=12x∴MN=x∴y=12AP•MN=212x②当1<x≤4时,P在线段OC上,∴CP=4﹣x∴△CPM∽△COD∴CP CO2PII DO==∴PM=1(4)2x-∴MN=1PM=4﹣x∴y=11AP MN x(4x)22⋅=-=﹣2122x x+∴y=221(02)212(24)2x xx x x⎧⎪⎪⎨⎪+<⎪⎩剟…(1)由(1)当x=1时,y=12当x=1时,y=1当x=3时,y=32(3)根据(1)画出函数图象示意图可知1、当0≤x≤1时,y随x的增大而增大1、当1<x≤4时,y随x的增大而减小本题考查函数,解题的关键是数形结合思想.。

【附5套中考模拟试卷】安徽省马鞍山市2019-2020学年中考数学模拟试题(2)含解析

【附5套中考模拟试卷】安徽省马鞍山市2019-2020学年中考数学模拟试题(2)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查2.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H4.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A.(5,5) B.(5,4) C.(6,4) D.(6,5)5.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 336.18的绝对值是()A.8 B.﹣8 C.18D.﹣187.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.8.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=4x2D.(a+b)2=a2+b29.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=10.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限12.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度14.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).15.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=33,则AP的长为_____.16.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.17.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________. 18.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C 处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP 与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.20.(6分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.21.(6分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.22.(8分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.23.(8分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.24.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?25.(10分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).26.(12分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.27.(12分)如下表所示,有A、B两组数:(1)A组第4个数是;用含n的代数式表示B组第n个数是,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.D【解析】【分析】【详解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.3.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∴3<4,∵,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.4.B【解析】【分析】由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形∴AB∥CD,AB=CD,AD=BC,AD∥BC,∵A(1,4)、B(1,1)、C(5,1),∴AB∥CD∥y轴,AD∥BC∥x轴∴点D坐标为(5,4)故选B.【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.5.B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.6.C【解析】【分析】根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【详解】解:11 88 .故选C.【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.7.A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.8.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键9.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=32 -.∴函数的解析式是:32y x =-.故选A.10.B【解析】【分析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x…,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件. 11.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.14.43一4 【解析】 【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB 求CM,作差可求DC. 【详解】因为∠MAD=45°, AM=4,所以MD=4, 因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=43. 所以CD=43-4. 【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键. 15.33或63 【解析】 【分析】分成P 在OA 上和P 在OC 上两种情况进行讨论,根据△ABD 是等边三角形,即可求得OA 的长度,在直角△OBP 中利用勾股定理求得OP 的长,则AP 即可求得. 【详解】设AC 和BE 相交于点O .当P 在OA 上时, ∵AB=AD ,∠A=60°, ∴△ABD 是等边三角形, ∴BD=AB=9,OB=OD=12BD=92.则2222993=9-()2AB OB -=. 在直角△OBP 中,2222933(33)()2PB OB -=-=则933333=。

2019届安徽省马鞍山市中考一模数学试题含答案

2019届安徽省马鞍山市中考一模数学试题含答案

九年级数学试题 第1页 共6页马鞍山2019-2019学年度第二学期一模素质检测九年级数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.若a 与5互为倒数,则a= 【 】 A .15 B.5 C .-5 D.15-2. 下列运算正确的是 【 】 A .x 3•x 3=2x 6 B .(xy 2)3=xy 6 C .(a 3)2=a 5D .t 10÷t 9=t3. 2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资约334亿元人民币.把334亿用科学记数法可表示为 【 】 A. 110.33410´ B.10103.34⨯ C.9103.34⨯ D.2103.34⨯4. 如图三棱柱ABC -111C B A 的侧棱长和底面边长均为2,且侧棱⊥1AA 底面ABC ,其主视图是边长为2的正方形,则此三棱柱左视图的面积为 【 】 A . 3 B .23C .22D . 4(第4题)5.如图,已知AB ∥CD ,DE ⊥AF ,垂足为E ,若∠CAB=50°,则∠D 的度数为 【 】A .30°B .40°C .50°D .60°6. 等腰Rt △ABC 中,∠BAC=90°,D 是AC 的中点,EC ⊥BD 于E ,交BA 的延长线于F ,若BF=12,则△FBC 的面积为 【 】九年级数学试题 第2页 共6页第6题A .40B .46C .48D .507.某市2019年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2019比2019年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是 【 】 A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .%2%7%12x =+D .2(112%)(17%)(1%)x ++=+8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,10名评审团成员对我市2016人数 2 3 4 1 分数 80 85 90 95】 A.90和87.5 B.95和85 C.90和85 D.85和87.5 9.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin∠AOB=54,反比例函数xy 12=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于 【 】第9题A.10B.9C.8D.610. 如图,四边形ABCD 是边长为1的正方形,动点E 、F 分别从点C ,D 出发,以相同速度分别沿CB ,DC 运动(点E 到达C 时,两点同时停止运动).连接AE ,BF 交于点P ,过点P 分别作PM ∥CD ,PN ∥BC ,则线段MN 的长度的最小值为 【 】5511..12A B C D -PCB第10题图 二、填空题(本大题共4小题,每小题5分,满分20分)11. 因式分解:39a b ab -九年级数学试题 第3页12. 有意义时,x 的取值范围是 . 13.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数x y =图象被⊙P所截得的弦AB 的长为a 的值是 .第13题图 14.如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是_______________.第14题图 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(21+a -1)÷212+-a a ,其中a =13+16.M 中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵? 四、(本大题共2小题,每小题8分,满分16分) 17. 如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.九年级数学试题 第4页 共6页18.一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.(1) 按照规律,表格中a=___,b=___,c=___.(2) 观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n的代数式表示第n 个“五边形数”是___________.五、(本大题共2小题,每小题10分,满分20分)19. 如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得∠ADP=60°,然后沿河岸走了110米到达C 处,测得∠BCP=30°,求这条河的宽.(结果保留根号)20. 如图,AB 是⊙O 的直径,点C 在⊙O 上,CE ⊥AB 于E ,CD 平分∠ECB ,交过点B 的射线于D ,交AB 于F ,且BC=BD .(1)求证:BD 是⊙O 的切线;(2)若AE=9,CE=12,求BF 的长.六、(本题满分12分)21. 为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.七、(本题满分12分)22. 某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2-2kn+9(k+3)(k 为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.八、(本题满分14分)23. 如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.九年级数学试题第5页共6页马鞍山2019-2019学年度第二学期一模素质检测数学试题参考答案一、选择题(本大题共10小题,每小题4分,满分40分)二、填空题(本大题共4小题,每小题5分,满分20分)11.ab(a+1)(a-1). 12.x<2 13.2+14.2550613或三、(本大题共2小题,每小题8分,满分16分)2211111=221(1).(1)1a a a aa a a a a a-----+?==++--+-解:原式…………5分1a==-=-将代入得:原式…………8分16.解:设购买了桂花树苗x棵,根据题意,得5(x+11-1)=6(x-1)………………………………………………………………4分解得x=56…………………………………………………………………6分答:购买了桂花树苗56棵……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图……………………………………………………………………2分(2)如图……………………………………………………………………2分九年级数学试题第6页共6页九年级数学试题 第7页 共6页(3)∵BB 1=B 1B 2的长=901802= ∴点B 所走的路径总长=2…………………………………………… 8分18.解:(1)28,36,35 ……………………………………………………… 3分 (2)n 2 ………………………………… 5分n 2 +x-n ……………………………………… 8分五、(本大题共2小题,每小题10分,满分20分)19.解:作AE ⊥PQ 于E ,CF ⊥MN 于F ,……………………………………………………………..2分∵PQ ∥MN , ∴四边形AECF 为矩形,∴EC=AF ,AE=CF ,设这条河宽为x 米, ∴AE=CF=x ,在Rt △AED 中, ∵∠ADP=60°,∴x =,∵PQ ∥MN , ∴∠CBF=∠BCP=30°,∴在Rt △BCF 中,BF=tan 30o CF =, ∵EC=ED+CD ,AF=AB+BF ,,………………………………………………………………………………………8分 解得,∴这条河的宽为10分九年级数学试题 第8页 共6页20.解:证明:∵CE ⊥AB ,∴∠CEB=90°.∵CD 平分∠ECB ,BC=BD …………………2分 ,∴∠1=∠2,∠2=∠D .∴∠1=∠D , ∴CE ∥BD ,∴∠DBA=∠CEB=90°, ∵AB 是⊙O 的直径,∴BD 是⊙O 的切线;…………………………………………………………………………………..4分 (2)连接AC ,∵AB 是⊙O 直径,∴∠ACB=90°.∵CE ⊥AB ,∴∠AEC=∠BEC=90°,∵∠A+∠ABC=90°,∠A+∠ACE=90°,∴∠ACE=∠ABC , ∴△ACE ∽△CBE ,∴CE AEEB CE=,即CE 2=AE •EB , ∵AE=9,CE=12,∴EB=16,………………………………………………………………….6分 在Rt △CEB 中,∠CEB=90,由勾股定理得BC=20,∴BD=BC=20, ∵∠1=∠D ,∠EFC=∠BFD ,∴△EFC ∽△BFD ,∴1216-,=20CE EF BFBD BF BF=即 ∴BF=10.……………………………………………………………………………………………..10分 六、(本大题满分12分)21.解:(1)参加本次比赛的学生有:50%84=÷(人) ………………………… 2分 (2)B 等级的学生共有:162820450=----(人). …………………… 4分 ∴所占的百分比为:%325016=÷∴B 等级所对应扇形的圆心角度数为:︒=⨯︒2.115%32360. ……………… 6分……………………………………… 10分九年级数学试题 第9页 共6页∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种. ∴P (选中1名男生和1名女生)21126==. …………………………… 12分 七、(本大题满分12分)22.(1)解:由题意,设y=a +b x , 由表中数据可得:1112012100b a b a ìïï=+ïïíïï=+ïïïî,解得:6600a b ì=ïïíï=ïî, ∴y=6+600x…………………………………………………………………………………2分由题意,若12=18﹣(6+600x ),则600x =0,∵x >0∴600x>0,∴不可能 ……………4分(2)解:将n=1、x=120代入x=2n 2﹣2kn+9(k+3),得:120=2﹣2k+9k+27, 解得:k=13, ∴x=2n 2﹣26n+144,将n=2、x=100代入x=2n 2﹣26n+144也符合,∴k=13;由题意,得:18=6+600x,解得:x=50,∴50=2n 2﹣26n+144,即n 2﹣13n+47=0,∵△=(﹣13)2﹣4×1×47<0,∴方程无实数根,∴不存在……………………………………………………………………8分 (3)解:第m 个月的利润为W , W=x (18﹣y )=18x ﹣x (6+600x) =12(x ﹣50)=24(m 2﹣13m+47),∴第(m+1)个月的利润为W′=24[(m+1)2﹣13(m+1)+47]=24(m 2﹣11m+35),若W≥W′,W ﹣W′=48(6﹣m ),m 取最小1,W ﹣W′取得最大值240; 若W <W′,W ﹣W′=48(m ﹣6),由m+1≤12知m 取最大11,W ﹣W′取得最大值240;∴m=1或11………………………………………………………………………………………12分 八、(本大题满分14分)23.解(1)34;(2)①证明见解析;②;(3)12. 【答案】(1)34;(2)①证明见解析;②(3)12.试题解析:(1)∵四边形ABCD 、四边形PEFG 是正方形,∴∠A =∠B =∠EPG =90°,PF ⊥EG ,AB =BC =4,∠OEP =45°, ∴∠AEP +∠APE =90°,∠BPC +∠APE =90°, ∴∠AEP =∠PBC ,∴△APE ∽△BCP ,∴AE AP BP BC =,即1414AE =-,解得:AE =34,故答案为: 34;………………………………………………………………..3分(2)①∵PF ⊥EG ,∴∠EOF =90°,∴∠EOF +∠A =180°,∴A 、P 、O 、E 四点共圆,∴点O 一定在△APE 的外接圆上;………………………………………………5分 ②连接OA 、AC ,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=12AC=即点O经过的路径长为8分(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=12 AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴AE APBP BC=,即44AE xx=-,解得:AE=214x x- =()21214x--+,∴x=2时,AE的最大值为1,此时MN的值最大=12×1=12,即△APE的圆心到AB边的距离的最大值为12.……………………………14分九年级数学试题第10页共6页九年级数学试题第11页共6页。

安徽省马鞍山市2019-2020学年中考数学模拟试题(5)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(5)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m3.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。

问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5 只羊,值金8 两。

问:每头牛、每只羊各值金多少两?” 设每头牛值金x 两,每只羊值金y 两,则列方程组错误的是()A.5210258x yx y+=⎧⎨+=⎩B.52107718x yx y+=⎧⎨+=⎩C.7718258x yx y+=⎧⎨+=⎩D.5282510x yx y+=⎧⎨+=⎩4.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是65.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62°B.38°C.28°D.26°6.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A .平均数 B .众数 C .中位数 D .方差7.下列命题中,错误的是( )A .三角形的两边之和大于第三边B .三角形的外角和等于360°C .等边三角形既是轴对称图形,又是中心对称图形D .三角形的一条中线能将三角形分成面积相等的两部分8.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c ;③4a+2b+c>0;④2c –3b<0;⑤a+b>n (an+b )(n≠1),其中正确的结论有( )A .2个B .3个C .4个D .5个9.若一次函数=y ax b +的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +< B .0a b -> C .0ab > D .0b a< 10.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .11.如图,△ABC 中,AB=3,AC=4,BC=5,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是( )A .相切B .相交C .相离D .无法确定12.下列立体图形中,主视图是三角形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系内,一次函数2y x b =-与21y x =-的图像之间的距离为3,则b 的值为__________.14.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.15.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD 分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD 的边长为12cm ,则梯形MNGH 的周长是 cm (结果保留根号).16.计算(﹣12a 2b )3=__. 17.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.18.在ABC V 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.20.(6分)如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线BC 上,连接BQ ,设DAQ α∠=(060α<<o o 且30α≠o ).(1)当030α<<o o 时,①在图1中依题意画出图形,并求BQE ∠(用含α的式子表示);②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当3060α<<o o 时,直接写出线段CE ,AC ,CQ 之间的数量关系.21.(6分)如图,在顶点为P 的抛物线y=a (x-h )2+k (a≠0)的对称轴1的直线上取点A (h ,k+14a ),过A 作BC ⊥l 交抛物线于B 、C 两点(B 在C 的左侧),点和点A 关于点P 对称,过A 作直线m ⊥l .又分别过点B ,C 作直线BE ⊥m 和CD ⊥m ,垂足为E ,D .在这里,我们把点A 叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE 叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x 2的焦点坐标以及直径的长.(2)求抛物线y=14x2-32x+174的焦点坐标以及直径的长.(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为32,求a的值.(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.②直接写出抛物线y=14x2-32x+174的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.22.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?23.(8分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)24.(10分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加▲ 件,每件商品盈利▲ 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?26.(12分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”(1)⊙O的半径为6,OP=1.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=3x+b上存在点P,使得点P 关于⊙C的“幂值”为6,请直接写出b的取值范围_____.27.(12分)“千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔B:兵马俑C:陕西历史博物馆D:秦岭野生动物园E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB 于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F 分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.2.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.3.D【解析】【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.4.D【解析】【分析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.5.C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.6.C【解析】【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 7.C【解析】【分析】根据三角形的性质即可作出判断.【详解】解:A 、正确,符合三角形三边关系;B 、正确;三角形外角和定理;C 、错误,等边三角形既是轴对称图形,不是中心对称图形;D 、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C .【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.8.B【解析】【分析】①观察图象可知a <0,b >0,c >0,由此即可判定①;②当x=﹣1时,y=a ﹣b+c 由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣2b a =1,可得a=﹣2b ,代入y=9a+3b+c <0即可判定④;⑤当x=1时,y 的值最大.此时,y=a+b+c ,当x=n 时,y=an 2+bn+c ,由此即可判定⑤.【详解】①由图象可知:a <0,b >0,c >0,abc <0,故此选项错误;②当x=﹣1时,y=a ﹣b+c <0,即b >a+c ,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c >0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c <0,且x=﹣2b a =1即a=﹣2b ,代入得9(﹣2b )+3b+c <0,得2c <3b ,故此选项正确;⑤当x=1时,y 的值最大.此时,y=a+b+c ,而当x=n 时,y=an 2+bn+c ,所以a+b+c >an 2+bn+c ,故a+b >an 2+bn ,即a+b >n (an+b ),故此选项正确.∴③④⑤正确.故选B .【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系。

马鞍山市2019-2020学年中考数学模拟试卷

马鞍山市2019-2020学年中考数学模拟试卷

马鞍山市2019-2020学年中考数学模拟试卷一、选择题1.一种巧克力的质量标识为“25±0.25千克”,则下列哪种巧克力是合格的( )A .25.30千克B .24.70千克C .25.51千克D .24.80千克 2.已知二次函数y =x 2﹣6x+m 的最小值是1,那么m 的值等于( ) A .10 B .4C .5D .6 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A.94B.95分C.95.5分D.96分 4.下列计算的结果是a 6的为( ) A .a 12÷a 2B .a 7﹣aC .a 2•a 4D .(﹣a 2)3 5.下列方程中,没有实数根的是( ) A .2x 2x 30--=B .2x 2x 30-+=C .2x 2x 10-+=D .2x 2x 10--= 6.已知函数:①y=2x ;②()2y=-x<0x;③y=3-2x ;④()2y=2x +x x 0≥,其中,y 随x 增大而增大的函数有( )A .1个B .2个C .3个D .4个7.如图所示,将Rt ABC ∆绕点A 按顺时针旋转一定角度得到Rt ADE ∆,点B 的对应点D 恰好落在BC 边上,若1AB =,30C ∠=︒,则CD 的长为( )A .1B .1.5C .2D .22 8.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是( ) A .正三角形B .正方形C .正五边形D .长方形 9.如图,在△ABC 中,BD 平分∠ABC ,DE ∥BC ,且交AB 于点E ,∠A =60°,∠BDC =86°,则∠BDE 的度数为( )A .26°B .30°C .34°D .52°10.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,»»DCCB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒11.我国古代伟大的数学家刘微将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.后人借助这种分割方法所得的图形证明了勾股定理,如图所示若a=3,b=4,则该三角形的面积为()A.10 B.12 C.998D.53412.在4, 5, 6, 6, 9这组数据中,去掉一个数后,余下的数据的中位数不变,且方差减小,则去掉的数是( )A.4 B.5 C.6 D.7二、填空题13.如图,线段BD、CE相交于点A,DE∥BC.如果AB=4,AD=2,DE=1.5,那么BC的长为_____.14.如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是_____.15.已知23xy,则xy=_____.16.如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D=72°,则∠BAE=______°.17.如图,在□ABCD中,AE⊥BD于点E,∠EAC=30°,AC=12,则AE的长为_____.18.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是_____.三、解答题19.计算:(1)()-201-3.14--124cos303π⎛⎫++︒ ⎪⎝⎭; (2)x 2-4x=-3 20.夏季多雨,在山坡CD 处出现了滑坡,为了测量山体滑坡的坡面长度CD ,探测队在距离坡底C 点1203米处的E 点用热气球进行数据监测,当热气球垂直升腾到B 点时观察滑坡的终端C 点,俯视角为60°,当热气球继续垂直升腾90米到达A 点,此时探测到滑坡的始端D 点,俯视角为45°,若滑坡的山体坡角∠DCH 为30°,求山体滑坡的坡面长度CD 的长.(计算保留根号)21.一次函数y =kx+b 的图象经过(﹣4,﹣2),(1,8)两点.(1)求该一次函数的表达式;(2)如图,该一次函数的图象与反比例函数y =m x的图象相交于点A ,B ,与y 轴交于点C ,且AB =BC ,求m 的值.22.观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为 ;(2)猜想:第n 个等式为 (用含n 的代数式表示),并证明.23.如图,△ABC 是正方形网格图中的格点三角形(顶点在格点上),请分别在图1,图2的正方形网格内按下列要求画一个格点三角形.(1)在图1中,以AB 为边画直角三角形△ABD (D 与C 不重合),使它与△ABC 全等.(2)在图2中,以AB 为边画直角三角形△ABE ,使它的一个锐角等于∠B ,且与△ABC 不全等.24.计算:()10133cos3012122π-︒⎛⎫-+-++- ⎪⎝⎭. 25.如图,已知抛物线y =x 2+bx+c 与x 轴交于点A ,B ,AB =2,与y 轴交于点C ,对称轴为直线x =2.(1)求抛物线的函数表达式;(2)设D 为抛物线的顶点,连接DA 、DB ,试判断△ABD 的形状,并说明理由;(3)设P 为对称轴上一动点,要使PC ﹣PB 的值最大,求出P 点的坐标.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A B C B C A C A AB A13.314.415.616.3617. 18.16三、解答题19.(1)10;(2)x 1=1,x 2=3.【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项运用负整数指数幂运算法则进行计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果;(2)方程移项后,运用因式分解法求解即可.【详解】(1)319-234102=+⨯=原式 (2) ∵x 2-4x=-3∴x2-4x+3=0∴(x-1)(x-3)=0∴x1=1,x2=3【点睛】此题考查了实数的运算和运用因式分解法解一元二次方程,熟练掌握运算法则是解本题的关键.20.山体滑坡的坡面长度CD的长为(5703﹣810)米.【解析】【分析】作DG⊥AE于G,DF⊥EH于F,设DF=a米,根据直角三角形的性质用a表示出CF、CD,根据正切的定义求出BE,根据题意列方程,解方程得到答案.【详解】解:作DG⊥AE于G,DF⊥EH于F,则四边形GEFD为矩形,∴GE=DF,GD=EF,设DF=a米,则GE=a,在Rt△DCF中,∠DCF=30°,∴CD=2DF=2a,CF=3a,∴EF=EC+CF=1203+3a,∵AM∥GD,∴∠ADG=∠MAD=45°,∴AG=DE=EF=1203+3a,∵BN∥EF,∴∠BCE=∠NBC=60°,在Rt△BEC中,tan∠BCE=BE CE,BE=EC•tan60°=1203×3=360,AG=AB+BE﹣GE=450﹣a,∴450﹣a=1203+3a,解得,a=2853﹣405,∴CD=2a=5703﹣810,答:山体滑坡的坡面长度CD的长为(5703﹣810)米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.21.(1)y=2x+6;(2)m=﹣4.【解析】【详解】(1)应用待定系数法可求解;(2)构造相似三角形,利用AB =BC ,得到相似比为1:2,表示点A 、B 坐标,代入y =kx+b 求解;(1)把(﹣4,﹣2),(1,8)两点代入y =kx+b-4k+b=-28k b ⎧⎨+=⎩,26k b =⎧⎨=⎩, ∴一次函数解析式为:y =2x+6;(2)分别过点A 、B 作AE ⊥y 轴于点E ,BD ⊥y 轴于点D ,设点B 坐标为(a ,b ),由已知ab =m ,由y =2x+6可知点C 坐标为(0,6),则CD =6﹣b ,∵AE ∥BD ,AB =BC ,∴AE =2a ,CE =2(6﹣b ),∴OE =6﹣2(6﹣b )=2b ﹣6,∴点A 坐标为(2a ,2b ﹣6),∴2a•(2b ﹣6)=m ,∵ab =m∴m =4a ,∴ab =4a ,∴b =4,则点B 坐标化为(a ,4)∵点B 在y =2x+6图象上∴a =﹣1,∴m =ab =﹣4.【点睛】本题考查了解直角三角形的应用-方向角问题:在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.22.(1)36﹣35=2×35;(2)3n+1﹣3n =2×3n .【解析】【分析】由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式,以及第n 个等式的底数不变,指数依次分别是n+1、n 、n .【详解】解:(1)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式36﹣35=2×35;故答案为:36﹣35=2×35;(2)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第n个等式的底数不变,指数依次分别是n+1、n、n,即3n+1﹣3n=2×3n.证明:左边=3n+1﹣3n=3×3n﹣3n=3n×(3﹣1)=2×3n=右边,所以结论得证.故答案为:3n+1﹣3n=2×3n.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)如图1,根据三边对应相等的两三角形全等作图即可;(2)根据三组对应边成比例的两个三角形相似作图.【详解】解:(1)如图1,∴△ACD为所求;(2)如图2,∴△ABD为所求.【点睛】本题考查了作图﹣应用与设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.此题灵活应用相似三角形的判定与性质.24.3【解析】【分析】先计算零指数幂、负指数幂、特殊角的三角函数、绝对值,再进行二次根式化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=2﹣133+133【点睛】考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数值、绝对值等考点的运算.25.(1)抛物线的函数表达式为y=x2﹣4x+3;(2)△ADB是等腰直角三角形;理由见解析;(3)P (2,﹣3).【解析】【分析】(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).所以1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理易求b、c的值;(2)先求出顶点D的坐标,再由勾股定理的逆定理证明△ABD是直角三角形,再由对称得AD=BD,进而得△ABD是等腰直角三角形;(3)连接CA,延长CA与直线x=2交于点P,连接BP,此时P点就是PC﹣PB的值最大的点,求出直线AC的解析式,再求直线AC与直线x=2的交点坐标便可.【详解】(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴D(2,﹣1),∴AD2+BD2=(2﹣1)2+(﹣1)2+(2﹣3)2+(﹣1)2=4,∵AB2=22=4,∴AD2+BD2=AB2,∴△ADB是直角三角形,由对称性有AD=BD,∴△ADB是等腰直角三角形;(3)连接CA,延长CA与直线x=2交于点P,连接BP,如图2,∵A、B两点关于直线x=2对称,∴PB=PA,∴PC﹣PB=PC﹣PA=AC其值最大(∵另取一点P′,有P′C﹣P′B=P′C﹣P′A<AC),令x=0,得y=x2﹣4x+3=3,∴C(0,3),∵A(1,0),∴易求直线AC的解析式为:y=﹣3x+3,当x=2时,y=﹣3x+3=﹣3,∴P(2,﹣3).【点睛】考查了二次函数综合题,待定系数法求抛物线的解析式,等腰直角三角形,勾股定理的应用,待定系数法求直线的解析式,解题关键在于作辅助线。

【附5套中考模拟试卷】安徽省马鞍山市2019-2020学年中考第二次模拟数学试题含解析

【附5套中考模拟试卷】安徽省马鞍山市2019-2020学年中考第二次模拟数学试题含解析
(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.
3.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )
A.50 B.0.02 C.0.1 D.1
4.下列运算,结果正确的是( )
A.m2+m2=m4B.2m2n÷ mn=4m
C.(3mn2)2=6m2n4D.(m+2)2=m2+4
5.按如图所示的方法折纸,下面结论正确的个数()
①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
23.(8分)解方程(2x+1)2=3(2x+1)
24.(10分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
C.若AD平分∠BAC,则四边形AEDF是矩形
D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
8.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4B.3C.2D.1
9.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为()
25.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.

安徽省马鞍山市2019-2020学年第二次中考模拟考试数学试卷含解析

安徽省马鞍山市2019-2020学年第二次中考模拟考试数学试卷含解析

安徽省马鞍山市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )A .()16.516.50.5x 125%x +=+ B .()16.516.50.5x 1-25%x += C .()16.516.5-0.5x 125%x =+D .()16.516.5-0.5x 1-25%x =2.函数y=ax 2+1与ay x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .3.下列关于事件发生可能性的表述,正确的是( )A .事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B .体育彩票的中奖率为10%,则买100张彩票必有10张中奖C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .掷两枚硬币,朝上的一面是一正面一反面的概率为134.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )A .35°B .45°C .55°D .25°5.如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的不等式kx+b >2x的解集为A .x >1B .﹣2<x <1C .﹣2<x <0或x >1D .x <﹣26.在3,0,-2,- 四个数中,最小的数是( )A .3B .0C .-2D .-7.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮8.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .9.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( ) A .20B .25C .30D .3510.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面积是 A .2360cm πB .2720cm πC .21800cm πD .23600cm π11.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->12.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知矩形ABCD,AD >AB,以矩形ABCD 的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD 的其他边上,则可以画出的不同的等腰三角形的个数为_______________.14.如图,在平面直角坐标系xOy 中,直线l :y=3x-3与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,按此规律进行下去,则点A 3的横坐标为______;点A 2018的横坐标为______.15.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B ,AD =1,AC =2,△ADC 的面积为1,则△BCD 的面积为_____.16.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.17.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重五雀、六燕,集称之衡,雀俱重,燕俱轻几何?”.将一只雀、一只燕交换译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.18.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?20.(6分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.21.(6分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.22.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数myx(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m 的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.23.(8分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.24.(10分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.25.(10分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10 销售员人数(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?26.(12分)如图,在Y ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.27.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B 【解析】分析:根据数量=钱数单价,可知第一次买了16.5x 千克,第二次买了()16.501250x -,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,()16.516.50.501250x x +=-.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系. 2.B 【解析】试题分析:分a >0和a <0两种情况讨论:当a >0时,y=ax 2+1开口向上,顶点坐标为(0,1);ay x =位于第一、三象限,没有选项图象符合; 当a <0时,y=ax 2+1开口向下,顶点坐标为(0,1);ay x=位于第二、四象限,B 选项图象符合.故选B .考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用. 3.C 【解析】 【分析】根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可. 【详解】解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误. B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为12,故错误. 故选:C. 【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比. 4.A 【解析】 【分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.C【解析】【分析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答.【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>2x的解就是一次函数y=kx+b图象在反比例函数y=2x的图象的上方的时候x的取值范围,由图象可得:-2<x<0或x>1,故选C.【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.6.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C. 【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小. 7.D 【解析】 【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答. 【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时, ∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时, ∴小亮走的路程为:1×12=12km , ∴妈妈在距家12km 出追上小亮,故正确;D 、由图象可知,当t=9时,妈妈追上小亮,故错误; 故选D . 【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键. 8.A 【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:A .点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 9.B 【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:ky x=,4007.5%30k =⨯=, ∴30y x=,∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿. 故选B. 10.D 【解析】 圆锥的侧面积=12×80π×90=3600π(cm 2) . 故选D . 11.C 【解析】 【分析】根据各点在数轴上位置即可得出结论. 【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b ,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误. 故选C. 12.A 【解析】 【详解】∵AB ∥CD ,∠A=70°, ∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°, ∴∠E=∠1﹣∠C=70°﹣40°=30°. 故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.8 【解析】 【分析】根据题意作出图形即可得出答案, 【详解】如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.14.722018212【解析】【分析】利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点A n坐标的变化即可得出结论.【详解】当y=0时,有33x-33=0,解得:x=1,∴点B1的坐标为(1,0),∵A1OB1为等边三角形,∴点A1的坐标为(123.当3333解得:x=52,∴点B2的坐标为(52,32),∵A2A1B2为等边三角形,∴点A2的坐标为(32,332).同理,可求出点A 3的坐标为(72),点A 2018的坐标为(2018212-. 故答案为72;2018212-. 【点睛】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点A n 横坐标的变化是解题的关键.15.1【解析】【分析】由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出ACD ABCS S ∆∆=(AD AC )2=14,结合△ADC 的面积为1,即可求出△BCD 的面积. 【详解】∵∠ACD =∠B ,∠DAC =∠CAB ,∴△ACD ∽△ABC , ∴ACD ABC S S ∆∆=(AD AC )2=(12)2=14, ∴S △ABC =4S △ACD =4,∴S △BCD =S △ABC ﹣S △ACD =4﹣1=1.故答案为1.【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.16.1≤x≤1【解析】【分析】此题需要运用极端原理求解;①BP 最小时,F 、D 重合,由折叠的性质知:AF=PF ,在Rt △PFC 中,利用勾股定理可求得PC 的长,进而可求得BP 的值,即BP 的最小值;②BP 最大时,E 、B 重合,根据折叠的性质即可得到AB=BP=1,即BP 的最大值为1;【详解】解:如图:①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=1,则PC=4;∴BP=x min =1;②当E 、B 重合时,BP 的值最大;由折叠的性质可得BP=AB=1.所以BP 的取值范围是:1≤x≤1.故答案为:1≤x≤1.【点睛】此题主要考查的是图形的翻折变换,正确的判断出x 的两种极值下F 、E 点的位置,是解决此题的关键. 17.{561340x y x y +=-=【解析】【分析】设雀、燕每1只各重x 斤、y 斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【详解】设雀、燕每1只各重x 斤、y 斤,根据题意,得45561x y y x x y +=+⎧⎨+=⎩整理,得340.561x y x y -=⎧⎨+=⎩ 故答案为340.561x y x y -=⎧⎨+=⎩【点睛】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.18.3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:90π42π180⨯=,转动第二次的路线长是:90π55π1802⨯=,转动第三次的路线长是:90π33π1802⨯=,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.商人盈利的可能性大.【解析】试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C 各自的概率,算出相应的可能性,乘以钱数,比较即可.试题解析:商人盈利的可能性大.商人收费:80×48×2=80(元),商人奖励:80×18×3+80×38×1=60(元),因为80>60,所以商人盈利的可能性大.20.(1)见解析;(1)1 3【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可. (1)由题意得-1 (1,-1)(1,-1)-2 (1,-2)(1,-2)(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=13.考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.21.解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF为圆O的切线,即AF与⊙O的位置关系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E为AC中点,即AE=CE=12AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.∵S△AOF=12•OA•AF=12•OF•AE,∴AE=245.∴AC=2AE=.【解析】试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.试题解析:(1)连接OC ,如图所示:∵AB 是⊙O 直径,∴∠BCA=90°,∵OF ∥BC ,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF ⊥AC ,∵OC=OA ,∴∠B=∠1,∴∠3=∠2,在△OAF 和△OCF 中,{32OA OCOF OF=∠=∠=,∴△OAF ≌△OCF (SAS ),∴∠OAF=∠OCF ,∵PC 是⊙O 的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA ⊥OA ,∴AF 是⊙O 的切线;(2)∵⊙O 的半径为4,AF=3,∠OAF=90°,∴222234OF OA +=+∵FA ⊥OA ,OF ⊥AC ,∴AC=2AE ,△OAF 的面积=12AF•OA=12OF•AE , ∴3×4=1×AE , 解得:AE=125, ∴AC=2AE=245. 考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.22.(1)-6;(2)122y x=-+.【解析】【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上,∴233n mn m-=⎧⎨-=⎩,解得:36nm=⎧⎨=-⎩;(2)由(1)知反比例函数解析式为6yx=-,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴2321k bk b-+=⎧⎨+=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,∴122y x=-+.【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.23.原计划每天安装100个座位.【解析】【分析】根据题意先设原计划每天安装x 个座位,列出方程再求解.【详解】解:设原计划每天安装x 个座位,采用新技术后每天安装()125%x +个座位, 由题意得:()247647624764764125%x x ---=+.解得:100x =.经检验:100x =是原方程的解.答:原计划每天安装100个座位.【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.24.(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <1;(3)①四边形OEAF 是菱形;②不存在,理由见解析【解析】【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形.②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合 22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF Y 的对角线,∴2172264()2522OAE S S OA y y x ==⨯⨯⋅=-=--+V . 因为抛物线与x 轴的两个交点是(1,0)的(1,0),所以,自变量x 的取值范围是1<x <1.(3)①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形;点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形.②当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形,此时点E 的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF Y 为正方形.25.(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】【分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数. 26.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF .∴CE ⊥DF .27.(1)2400个, 10天;(2)1人.【解析】【分析】(1)设原计划每天生产零件x 个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程240002400030030x x +=+,解出x 即为原计划每天生产的零件个数,再代入24000x即可求得规定天数;(2)设原计划安排的工人人数为y 人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×2400y+2400] ×(10-2)=24000,解得y 的值即为原计划安排的工人人数. 【详解】解:(1)解:设原计划每天生产零件x 个,由题意得,240002400030030x x +=+, 解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天.(2)设原计划安排的工人人数为y 人,由题意得,[5×20×(1+20%)×2400y+2400] ×(10-2)=24000, 解得,y=1.经检验,y=1是原方程的根,且符合题意.答:原计划安排的工人人数为1人.【点睛】本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.。

2019年安徽省马鞍山市中考模拟数学试题(含解析版)

2019年安徽省马鞍山市中考模拟数学试题(含解析版)

2019年马鞍山市中考数学模拟考试(解析版)本试卷满分为150分,考试时间为120分钟。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1.2019的相反数为()A.2019B.12019C.2019-D.12019-分析:考查相反数的概念,简单题,选C2.下列运算正确的是()A.347()a a=B.347a a a+=C.347()()a a a-⋅-=D.743()a a a÷-=分析:考查幂的运算,简单题,选D3.下列四个立体图形中,主(正)视图为圆的是()分析:考查三视图,简单题,选B4.2018年8月,非洲猪瘟首次传入我国,非洲猪瘟病毒粒子的直径约为175~215纳米,1纳米等于910-米,215纳米用科学计数法表示为()A.910215-⨯米B.91015.2-⨯米C.111015.2-⨯米D.71015.2-⨯米分析:考查小于1的科学记数法,简单题,选D5. 关于x的不等式11()m x m-<-的解集为1x>-,那么m的取值范围为()A.1m>B.1m<C.1m<-D.1m>-分析:考查不等式的基本性质,简单题,选A6.2019年春节前夕,马鞍山市政府号召市民禁放烟花爆竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A:不放烟花爆竹;B:少放烟花爆竹;C:使用电子鞭炮;D:不会减少烟花爆竹数量”四个选项进行问卷调查(单选).将随机抽取的100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,估计全校愿意“使用电子鞭炮”的学生有()A.750名B.400名C.600名D.900名分析:考查条形统图的应用,简单题,选C7.用总长10m的铝合金材料做一个如图所示的窗框(不计损耗),窗框的上部是等腰直角三角形,下部是两个全等的矩形,窗框的总面积为23m(材料的厚度忽略不计).若设等腰直角三角形的斜边长为xm,下列方程符合题意的是()A.3(22)3()104xxx-+-=B.3(22)3(+)104xxx++=(第6题图)1535C10203040DBA人数/名A.B.C.D.C.2132x x =D .2134x x =分析:考查列一元二次方程解决简单的实际问题,中等题,选D8.如图,点A 是反比例函数ky x=图象上一点,过点A 作x 轴的平行线交反比例函数3-y x= 的图象于点B ,点C 在x 轴上,且32ABC =△S ,则k =( )A .6B .6-C .92D .92-分析:考查反比例函数的几何意义,中等题,选B9.如图,在菱形ABCD 中,点P 从B 点出发,沿B →D →C 方向匀速运动,设点P 运动时间为x ,APC △的面积为y ,则y 与x 之间的函数图象可能为( )A .3B .5-C .2D .1分析:考查图形的旋转,全等三角形,勾股定理,三角形三边关系,较难题,选A二、填空题(本大题共4小题,每小题5分,满分20分) 11.27-的立方根为 .分析:考查立方根的定义,简单题,答案为3- 12.因式分解:22421x y y -+-= .分析:考查用分组分解法、公式法进行因式分解,简单题,答案为(21)(21)x y x y +--+ 13.如图,在⊙O 中,A ,B 是圆上的两点,已知40AOB ∠=︒,直径CD ∥AB ,连接AC ,则BAC ∠的度数为 .x (第9题图)B(第7题图)(第8题图) (第10题图)D分析:考查圆心角和平行线的性质,简单题,答案为35︒14.已知函数2|23|y x x =--的大致图象如图所示,如果方程2|23|x x m --=(m 为实数)有2个不相等的实数根,则m 的取值范围是 .分析:本题考查函数图象与方程的关系,中等题,答案为或0m =或4m >. 三、(本大题共2小题,每小题8分,满分16分) 150112cos45(2)()3π-︒+--.解:原式=213- …………………………(4分)2 ………………………………………(8分)分析:本题考查实数的运算,简单题 16.古籍《算法统宗》里有这样一首诗: 我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房都住9人,那么就空出一间房.则该店有客房几间,房客几人? 请解答上述问题.解:设有客房x 间,房客y 人,则779(1)y x y x =+⎧⎨=-⎩……………………………………(4分) 解得863x y =⎧⎨=⎩……………………………………(7分)答:该店有客房8间,房客63人. ……………(8分)分析:本题考查一元一次方程(组)的应用,简单题. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的810⨯网格中,点A ,B ,C 均为网格线的交点.(1)用无刻度的直尺作BC 边上的中线AD (不写作法,保留作图痕迹);(2)①在给定的网格中,以A 为位似中心将ABC △缩小为原来的12,得到AB C ''△,请画出AB C ''△.②填空:tan AB C ''∠= .解:(1)如图所示(其他画法正确即可)………(2分)(第14题图)D C (第13题图)(2)①如图所示………………………………(5分)②2………………………………………(8分)分析:本题考查尺规作图,图形的位似,三角函数等知识,简单题.18.某地下车库出口处“两段式栏杆”如图①所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图②所示,其示意图如图③所示,其中AB BC ⊥,EF ∥BC ,143EAB ∠=︒, 1.2AB AE m ==.现有一高度为2.4m 的货车要送货进入地下车库,问此货车能否安全通过?请通过计算说明.(栏杆宽度忽略不计,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)解:DG cos37 1.20.800.96EG AE m ︒=⨯==……………………(4分)∴ 1.20.96 2.16 2.4===ED EG DG m m ++<.…………(7分) 故此货车不能安全通过………………………………(8分) 分析:本题考查解直角三角形的实际应用,简单题. 五、(本大题共2小题,每小题10分,满分20分)19.若正整数a ,b ,c a b c <<()满足222a b c +=,则称(a ,b ,c )为一组“勾股数”.观察下列两类“勾股数”: 第一类(a 是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a 是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组; (2)分别就a 为奇数、偶数两种情形,用a 表示b 和c ,并选择其中一种情形证明(a ,b ,c )是“勾股数”.解:(1)第一组(a 是奇数):9,40,41(答案不定);……………………(2分)第二组(a 是偶数):12,35,37(答案不定)……………………(4分) (2)当a 为奇数时,212a b -=,2+12a c =; …………………………… (6分)当a 为偶数时,214a b =-,214a c =+. ……………………………(8分)证明:当a 为奇数时,22+a b =2222221122()()a a a c -++==,所以,,a b c ()是“勾股数”.当a 为偶数时,22+a b =222222(1)(1)=44a a a c +-=+所以,,a b c ()是“勾股数”.……………………………………………(10分)C D G F E A B分析:本题考查规律探求、归纳推理,中等题.20.如图,已知AB 是⊙O 的直径,弦AB CD ⊥于点E ,F 是»AD 上的一点,AF ,CD 的延长线相交于点G .(1)若⊙O 的半径为23,且45DFC ∠=︒,求弦CD 的长. (2)求证:DFG AFC ∠=∠. 解:(1)如图1,连接OD ,OC ∵直径CD AB ⊥∴»»BDBC =,CE DE = ∴1452DOE DOC DFC ∠=∠=∠=︒又∵在Rt DEO △中,23=OD ∴3=DE∴6=CD …………………………………(5(2)证明:如图2,连结AC ∵直径AB CD ⊥∴»AC =»AD∴AFC ACD∠=∠ …………………………(8分) ∵四边形ACDF 内接于⊙O ∴ACD DFG ∠=∠∴AFC DFG ∠=∠ …………………………(10分)分析:本题考查垂径定理,圆周角等知识,中等题.(其他证法正确即可) 六、(本题满分12分)21.张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:A AA根据信息解答下列问题:(1)填空:m = ,n = ;并补全条形统计图; (2)这20名朋友一天行走步数的中位数落在 组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.解:(1)0.3;0.1 ………………………………………………(2分) 条形统计图如图. …………………………………………(4分) (2)B …………………………………………………………(6分) (3)画树状图如下:∴P (甲、乙被同时点赞)=21126=……………………(12分) 分析:本题考查统计图表、特征数、概率的计算等综合应用,简单题(树状图正确得4分). 七、(本题满分12分) 22.今年五一期间采石矶景区将启用新的大门,景区决定利用现有的不同种类花卉设计出两种不同的造型A 和B 摆放于大门广场.已知每个A 种造型的成本1y 与造型个数x 060()x <<满足关系式11825y x =-,每个B 种造型的成本2y 与造型个数(1)请求出2y 与x 的函数关系式;(2)现在广场需搭配A 、B 两种园艺造型共60个,要求每种园艺造型不得少于20个,并且成本总额W (元)不超过5000元.以上要求能否同时满足?请你通过计算说明理由.第二赞第一赞甲乙丙丁甲乙丙丁甲乙丙丁丁丙乙甲开始频数分布直方图频数分布直方图解:(1)由表格可知2y 与x 满足一次函数关系故可设2y kx b =+,则有10932086k b k b ⎧+=⎨+=⎩ …………. ……. …. ……. …….…….…….. (4分) 解得710010,k b =-= ∴2710010y x =-…………. ……. ……. …….…………..…..(6分) (2)能同时满足题设要求…………. ……. …….…….………..…..(7分)理由:设A 种园艺造型设计了a 个,则B 种园艺造型设计了)60(a -个∴1217608260100510()()()()W ay a y a a a a =+-=-+-- 221160600060420022()a a a =-+=-+.…….…. ..(10分) ∵2060,20≥-≥a a∴4020≤≤a ……. …….……. ………….….……. ………..…(11分)∴当20=a 时,W 取得最大值,此时5000=W∴能同时满足需求.……. …….……. …. ……… ………..…..(12分)分析:本题考查用待定系数法求一次函数解析式,二次函数的最值问题等综合应用,中等题. 八、(本题满分14分)23.如图1,在矩形ABCD 中,AC BG ⊥交AC 于点G ,E 为AB 中点,EG 的延长线交AD于点F ,连接CF .(1)若30ABG ∠=︒,证明FD AF =;(2)如图2,若90EFC ∠=︒,连接BF ,FM FB ⊥交CD 于点M .① 证明:MC DM =;② 求22AD AB 的值.23.解:(1)∵30ABG ∠=︒,∴60BAG ∠=︒在Rt ABG △中,BE AE =,∴60AEF BAC ∠=︒=∠ 又∵90EAF ABC ∠=∠=︒,∴AEF △~BAC △∴21==AB AE BC AF …………. …………. ………….(2分) 图1 图2GEDCMF B AGEB AD F C又∵BC AD =,∴12AF AD =即FD AF =…………. …………. ……………….(4分)(2)∵90EAF EFC FDC ∠=∠=∠=︒,∴EAF △~FDC △∴DF DCAE AF= 同理可证ABF △~DFM △ ∴DF DM AB AF =…………. …………. ……………(6分) 即2DF DM AE AF = ∴2DF DM AE AF =,∴2DC DMAF AF=,∴2DC DM = 即DM CM =…………. …………. ……………(9分)② 设y AF x AE ==,在Rt ABG △中,AE BE =∴EA EG =∴FGC EGA EAG ∠=∠=∠又∵90EAF EFC ∠=∠=︒,∴FCA FAC ∠=∠,∴FC FA = ∵90EAF EFC FDC ∠=∠=∠=︒,∴EAF △~FDC △,∴DC DFAF AE =,∴yx DF 22= 在Rt DFC △中,2222AF FC DC DF ==+ ∴222444y x y x =+…….………(12分) ∴21222-=yx ∴22AB AD=2224222244244()x x x x y y x y y=+++22224144y x x y==-++…. …………. …(14分)(其他证法正确即可)(1)另证:如图1,接BD在Rt ABG △中,903060BAG ∠=︒-︒=︒∵矩形ABCD ,∴OB OA =,∴60OBA OAB ∠=∠=︒ 在Rt ABG △中,AE BE =∴EG EA =,又∵60OAB ∠=︒,∴60AEG ABO ∠=︒=∠∴EF //BD 又∵BE AE =,∴FD AF =图1 图2 GE DC M F BA G EB ADFC 图1 图2GEDCMF B AGEB AD F C(2)①另证: 如图2,延长FM BC 、交于点N∵90EAF EFC FDC ∠=∠=∠=︒,∴EAF △~FDC △,∴DF FCAE EF= ∵90EBC EFC ∠=∠=︒,∴FCN FEB ∠=∠ ∵90EFC BFN ∠=∠=︒,∴EFB CFN ∠=∠ ∴EFB △~CFN △,∴FC CN CNFE EB AE==又∵FC DFEF AE=,∴DF CN = 又∵CN //DF ,∴□DFCN∴DM MC =分析:本题考查相似三角形的综合应用,较难题(其他证法正确即可)OCF D ABEGNAB FMC D EG图1 图2。

安徽省马鞍山市2019-2020学年中考数学模拟试题(1)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(1)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样2.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)3.如图,由四个正方体组成的几何体的左视图是()A.B.C.D.4.一组数据:6,3,4,5,7的平均数和中位数分别是( )A.5,5 B.5,6 C.6,5 D.6,65.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC6.下列各式中,计算正确的是 ( ) A .235+= B .236a a a ⋅= C .32a a a ÷=D .()2222a ba b =7.如图,将△ABC 沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A .42B .96C .84D .488.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-59.某圆锥的主视图是一个边长为3cm 的等边三角形,那么这个圆锥的侧面积是( ) A .4.5πcm 2B .3cm 2C .4πcm 2D .3πcm 210.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或011.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .1212.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B .用计算器计算:7•tan63°27′≈_____(精确到0.01).14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.16.点(1,–2)关于坐标原点 O 的对称点坐标是_____.17.如图,一根直立于水平地面的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值3m ,且影长最大时,木杆与光线垂直,则路灯EF 的高度为_____ m .18.若8x -有意义,则x 的取值范围是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD ∥AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).20.(6分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的中点,O e 的半径为2,求AB 的长.21.(6分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?22.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x 轴交于点.求的值;过第二象限的点作平行于x 轴的直线,交直线于点C ,交函数的图象于点D .①当时,判断线段PD 与PC 的数量关系,并说明理由;②若,结合函数的图象,直接写出n 的取值范围.23.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x 轴,垂足为C,求S△ABC.24.(10分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE 与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)25.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?26.(12分)已知a2+2a=9,求22212321121a a aa a a a+++-÷+--+的值.27.(12分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.2.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为23F滚动7次时的横坐标为8,纵坐3F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为3,点F滚动7次时的横坐标为8,纵坐标为3,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为3,∴点F滚动2107次时的坐标为(2018,3),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.3.B【解析】从左边看可以看到两个小正方形摞在一起,故选B.4.A【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.故选A.考点:中位数;算术平均数.5.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.6.C【解析】【分析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【详解】A B 、a 2•a 3=a 5,故此选项错误; C 、a 3÷a 2=a ,正确;D 、(a 2b )2=a 4b 2,故此选项错误. 故选C . 【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键. 7.D 【解析】 【分析】 【详解】由平移的性质知,BE=6,DE=AB=10, ∴OE=DE ﹣DO=10﹣4=6, ∴S 四边形ODFC =S 梯形ABEO =12(AB+OE )•BE=12(10+6)×6=1. 故选D. 【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离. 8.B 【解析】 【分析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围. 【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2, ∴222(1)b ma -=-=⨯-, 解之:m=4, ∴y=-x 2+4x ,当x=2时,y=-4+8=4, ∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, ∴ 3<t≤4, 故选:B 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 9.A 【解析】 【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可. 【详解】∵圆锥的轴截面是一个边长为3cm 的等边三角形, ∴底面半径=1.5cm ,底面周长=3πcm , ∴圆锥的侧面积=×3π×3=4.5πcm 2,故选A . 【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出. 10.A 【解析】 【分析】把x =﹣1代入方程计算即可求出k 的值. 【详解】解:把x =﹣1代入方程得:1+2k+k 2=0, 解得:k =﹣1, 故选:A . 【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 11.B 【解析】 【分析】根据一元二次方程的解的定义把x=0代入方程()22110a x x a -++-=得到关于a 的一元二次方程,然后解此方程即可 【详解】把x=0代入方程()22110a x x a -++-=得210a -=,解得a=±1. ∵原方程是一元二次方程,所以 10a -≠,所以1a ≠,故1a =- 故答案为B 【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解. 12.B 【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD ,然后在Rt △BCD 中 cos ∠BCD=CD BC ,可得BC=cos cos CD hBCD α=∠. 故选B .点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.20 5.1 【解析】 【分析】A 、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B 、利用计算器计算可得. 【详解】A 、根据题意,此正多边形的边数为360°÷45°=8, 则这个正多边形对角线的条数一共有8(83)2⨯-=20, 故答案为20;B •tan63°27′≈2.646×2.001≈5.1, 故答案为5.1. 【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用. 14.7 【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m【解析】【分析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论.【详解】解:∵CD 是ABC ∆的高线,∴90BDC ∠=︒,∵30B ∠=︒,2CD =,∴24BC CD cm ==.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.16.(-1,2)【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A (1,-2)关于原点O 的对称点的坐标是(-1,2),故答案为:(-1,2).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.17.7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB ,∵最小值3m ,∴AB=3m ,∵影长最大时,木杆与光线垂直,即AC=5m ,又可得△CAB ∽△CFE , ∴BC AB EC EF =, ∵AE=5m , ∴4310EF =, 解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.18.x≥8【解析】略三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.39米【解析】【分析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.20. (1)∠B=40°;(2)AB= 6.【解析】【分析】(1)连接OD ,由在△ABC 中, ∠C=90°,BC 是切线,易得AC ∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.【详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∵在Rt △ODB 中,OD=2,∴OB=4,∴AB=AO +OB=2+4=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF 为等边三角形是解(2)的关键.21.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.22.(1).(2)①判断:.理由见解析;②或.【分析】(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.23.(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】【分析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S △ABC =×2×1=1.24.见解析【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AC 的交点即为所求作的点.【详解】解:如图,点E 即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D 作DE ∥BC 并熟练掌握做一个角等于已知角的作法式解题的关键.25.R= 或R=【解析】【分析】【详解】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A 在圆内,点B 在圆外或圆上,则圆与斜边有且只有一个公共点.考点:圆与直线的位置关系.26.22(1)a ,15. 【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a=9,∴(a+1)2=1.∴原式=21105=. 27.(1)45°;(2)26°.【解析】【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC 和∠ABD 的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD 的大小.【详解】(1)∵AB 是⊙O 的直径,∠BAC=38°, ∴∠ACB=90°,∴∠ABC=∠ACB ﹣∠BAC=90°﹣38°=52°,∵D 为弧AB 的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD ,∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP=90°,∵DP ∥AC ,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD 是△ODP 的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA ,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD ﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

安徽省马鞍山市2019-2020学年中考数学模拟试题(3)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(3)含解析

安徽省马鞍山市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.242.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c3.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对4.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×10105.在实数0,-π,3,-4中,最小的数是()A.0 B.-πC.3D.-46.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC7.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A .B .C .D .8.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( ) A .83×105 B .0.83×106 C .8.3×106 D .8.3×1079.已知一元二次方程x 2-8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )A .13B .11或13C .11D .1210.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A .12B .22C .32D .3311.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°12.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( )A .28B .29C .30D .31二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式8x 2y ﹣2y =_____.14.(2017四川省攀枝花市)若关于x 的分式方程7311mx x x +=--无解,则实数m=_______. 15.不等式5﹣2x <1的解集为_____.16.请写出一个一次函数的解析式,满足过点(1,0),且y 随x 的增大而减小_____.17.分式方程32xx 2--+22x-=1的解为________.18.若a、b为实数,且b=22117a aa-+-++4,则a+b=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了A B、两种玩具,其中A类玩具的金价比B 玩具的进价每个多3元.经调查发现:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.求A B、的进价分别是每个多少元?该玩具店共购进A B、了两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得的利润不少于1080元,则该淘宝专卖店至少购进A类玩具多少个?20.(6分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.21.(6分)解方程(2x+1)2=3(2x+1)22.(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?23.(8分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)24.(10分)如图,已知一次函数y 1=kx+b (k≠0)的图象与反比例函数的图象交于A 、B 两点,与坐标轴交于M 、N 两点.且点A 的横坐标和点B 的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y 1>y 1时x 的取值范围.25.(10分)观察下列各式:①()()2111x x x -+=- ②()()23111x x x x -++=- ③()()324111x x x x x -+++=- 由此归纳出一般规律()()111n n x x x x --++⋅⋅⋅++=__________. 26.(12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?27.(12分)如图,在▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:△ADE ≌△CBF ;求证:四边形BFDE 为矩形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM=22AB AM-=3,∴BC=2BM=6,∴S△ABC=1BC?AM2=12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.2.D【解析】分析:根据图示,可得:c<b<0<a,c a b>>,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D 符合题意.故选D .点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.3.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .4.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:1800000000=1.8×109, 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.6.C【解析】【分析】【详解】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴选项ABD都一定成立.故选C.7.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.8.C【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.9.B试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,△ABC的周长为11或1.故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.10.B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=222ADAB==,故选B.11.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.12.C【解析】【分析】根据中位数的定义即可解答.【详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:29+312=30,则这组数据的中位数是30;故本题答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2y(2x+1)(2x﹣1)【解析】【分析】首先提取公因式2y,再利用平方差公式分解因式得出答案.【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.综上所述:∴m的值为3或1.故答案为3或1.15.x >1.【解析】【分析】根据不等式的解法解答.【详解】解:5-2 x<1,215242x x x -<--<-> .故答案为x 2>.【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.16.y=﹣x+1【解析】【分析】根据题意可以得到k 的正负情况,然后写出一个符合要求的解析式即可解答本题.【详解】∵一次函数y 随x 的增大而减小,∴k <0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.17.x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,。

安徽省马鞍山市2019-2020学年中考第三次模拟数学试题含解析

安徽省马鞍山市2019-2020学年中考第三次模拟数学试题含解析

安徽省马鞍山市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.116B.18C.316D.144.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定5.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b6.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为()A.(﹣3,﹣4)或(3,4)B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3)D.(﹣3,﹣4)7.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A .B .C .D .8.从2 ,0,π,13,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15B .25C .35D .459.实数4的倒数是( ) A .4B .14C .﹣4D .﹣1410.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( ) A .8.1×106B .8.1×105C .81×105D .81×10411.在Rt △ABC 中,∠C=90°,BC=a ,AC=b ,AB=c ,下列各式中正确的是( ) A .a=b•cosAB .c=a•sinAC .a•cotA=bD .a•tanA=b12.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:ax 2-a=______. 14.在中,,,点分别是边的中点,则的周长是__________.15.如图,在梯形ABCD 中,//AD BC ,3BC AD =,点E 、F 分别是边AB 、CD 的中点.设AD a =u u u r r ,DC b =u u u r r,那么向量ECuuu r 用向量,a b v v 表示是________.16.不等式组512324x xx x +>+⎧⎨+⎩…的解集是__.17.若一次函数y=-2x+b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是_________.(写出一个即可) 18.若使代数式212x x -+有意义,则x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,AB AE =,12∠=∠,C D ∠=∠,求证:ABC AED ≌△△。

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(1)含解析

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(1)含解析

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰三角形一边长等于5,一边长等于10,它的周长是( )A.20 B.25 C.20或25 D.152.下列图形中既是中心对称图形又是轴对称图形的是A.B.C.D.3.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-4.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.–C.×D.÷5.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°6.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8 C.8(x+1)D.4(x+1)7.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A.350 B.351 C.356 D.3588.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A .4B .3C .2D .9.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )A .B .C .D .10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.7011.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE 1BC 4= C .31AE AC = D .AE 1AC 4= 12.下列计算中正确的是( ) A .x 2+x 2=x 4B .x 6÷x 3=x 2C .(x 3)2=x 6D .x -1=x二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC ,如果DE=2AD ,AE=3,那么EC=_____.14.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.15.已知关于x 的方程x 2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____. 16.使x 2-有意义的x 的取值范围是______. 17.计算:.18.已知线段AB=2cm ,点C 在线段AB 上,且AC 2=BC·AB ,则AC 的长___________cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?21.(6分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.22.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.23.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE 的延长线于点F.求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.24.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.25.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.26.(12分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?27.(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】+=,此时无法构成三角形;当5为腰时,三边长为5、5、10,而5510=++=当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长5101025故选B.2.B【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.3.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.4.D【解析】【分析】根据有理数的除法可以解答本题.【详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.5.C【解析】【分析】根据直角三角形两锐角互余即可解决问题.【详解】解:∵直角三角形两锐角互余,∴另一个锐角的度数=90°﹣45°=45°,故选C.【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.6.C【解析】【分析】直接利用平方差公式分解因式即可.【详解】(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).故选C.【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.7.B【解析】【分析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为1,3,5,1,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.8.B【解析】【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.9.D【解析】【分析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.10.C【解析】【分析】根据中位数和众数的概念进行求解.【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【点睛】本题考查1.中位数;2.众数,理解概念是解题关键.11.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.12.C【解析】【分析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2,故不正确;B. x6÷x3=x3,故不正确;C. (x3)2=x6,故正确;D. x﹣1=1x,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【详解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案为:1.【点睛】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.14.【解析】【分析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.15.﹣1【解析】【分析】根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.【详解】解:∵关于x的方程x2−2x+n=1没有实数根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2−n |-│1-n│=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.≥16.x2【解析】二次根式有意义的条件.【分析】根据二次根式被开方数必须是非负数的条件,要使x2-在实数范围内有意义,必须-≥⇒≥.x20x217.3+【解析】【分析】本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=2×+2﹣+1,=2+2﹣+1,=3+.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算181 【解析】 【分析】设AC=x ,则BC=2-x ,根据AC 2=BC·AB 列方程求解即可. 【详解】解:设AC=x ,则BC=2-x ,根据AC 2=BC·AB 可得x 2=2(2-x),解得:1或1(舍去).1. 【点睛】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元 【解析】 【分析】 【详解】解:(1)设应安排x 天进行精加工,y 天进行粗加工, 根据题意得12{515140.x y x y +=+=,解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +②Q 要求在不超过10天的时间内将所有蔬菜加工完,14010515m m-∴+≤ 解得5m ≤ 05m ∴<≤又Q 在一次函数1000140000W m =+中,10000k =>,W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大 ∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.20.(1)补图见解析;(2)27°;(3)1800名 【解析】 【分析】(1)根据A 类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B 类的人数;(2)用360°乘以对应的比例即可求解; (3)用总人数乘以对应的百分比即可求解. 【详解】(1)抽取的总人数是:10÷25%=40(人), 在B 类的人数是:40×30%=12(人). ;(2)扇形统计图扇形D 的圆心角的度数是:360×340=27°; (3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人). 考点:条形统计图、扇形统计图.21.(1)y 1=80x+4400;y 2=64x+4800;(2)当m=20时,w 取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低. 【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w 与m 之间的关系式,再根据一次函数的增减性即可得出答案. 解:(1)得:;得:; (2),因为w 是m 的一次函数,k=-4<0, 所以w 随的增加而减小,m 当m=20时,w 取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品. 22.(1)证明见解析;(2)证明见解析;(3)42. 【解析】试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论; (3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得EH=DH=CH=2,Rt △ACH 中,AH=32,即可得到AE=AH+EH=42.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23.(1)证明详见解析;(2)证明详见解析;(3)1. 【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案. 【详解】(1)证明:∵AF ∥BC , ∴∠AFE=∠DBE , ∵E 是AD 的中点, ∴AE=DE ,在△AFE 和△DBE 中,AFE DBEFEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB . ∵AD 为BC 边上的中线 ∴DB=DC , ∴AF=CD . ∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点, ∴AD=DC=12BC , ∴四边形ADCF 是菱形; (3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形, ∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC▪DF=12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.24. (1) 60,90;(2)见解析;(3) 300人 【解析】 【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图; (3)利用样本估计总体的方法,即可求得答案. 【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人); ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90; (2)60﹣15﹣30﹣10=5; 补全条形统计图得:(3)根据题意得:900×15560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人. 【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点. 25.(1)0.3 ,45;(2)108°;(3)16. 【解析】 【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1);(2),;(1);(2)【解析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:X ﹣10 1 2 1y 0 1 2 1 0 图象如下.(2)由﹣x 2+2x+1=0,得:x 1=﹣1,x 2=1. ∴抛物线与x 轴的交点为(﹣1,0),(1,0). ∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2 ∴抛物线顶点坐标为(1,2). (1)由图象可知:当﹣1<x <1时,抛物线在x 轴上方. (2)由图象可知:当x >1时,y 的值随x 值的增大而减小 考点: 二次函数的运用27. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元. 【解析】 【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答. 【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩, 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1. 又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y 元,则y =0.9[2x +80(2-x )].即y=18x+7 3.∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.。

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(3)含解析

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(3)含解析

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法中,正确的是( )A .长度相等的弧是等弧B .平分弦的直径垂直于弦,并且平分弦所对的两条弧C .经过半径并且垂直于这条半径的直线是圆的切线D .在同圆或等圆中90°的圆周角所对的弦是这个圆的直径2.下列计算,正确的是( )A .a 2•a 2=2a 2B .a 2+a 2=a 4C .(﹣a 2)2=a 4D .(a+1)2=a 2+13.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱4.已知5a b =r r,下列说法中,不正确的是( ) A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r5.如图,△ABC 中,AB=2,AC=3,1<BC <5,分别以AB 、BC 、AC 为边向外作正方形ABIH 、BCDE 和正方形ACFG ,则图中阴影部分的最大面积为( )A .6B .9C .11D .无法计算6.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .12 7.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k ³ C .1k > D .1k <8.如图,在▱ABCD 中,∠DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO=OHB .DF=CEC .DH=CGD .AB=AE9.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )A .5B .9C .15D .2210.-5的相反数是( )A .5B .15C 5D .15- 11.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是( )A .y =2x 2+3B .y =2x 2﹣3C .y =2(x+3)2D .y =2(x ﹣3)2 12.若关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是________.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.15.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.16.已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上且1tan 3EAC ∠=,则BE 的长为__________. 17.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.18.若关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =+的图象不经过第_________象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示: 品名猕猴桃 芒果 批发价(元/千克) 20 40零售价(元/千克)26 50()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?20.(6分)如图,Rt V ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=3,求图中阴影部分的面积.21.(6分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?22.(8分)先化简,再求值:,其中x=1.23.(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?24.(10分)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.25.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?26.(12分)已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B′和折痕OP .设BP=t .(Ⅰ)如图①,当∠BOP=300时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).27.(12分)如图,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于D 点,连接BD 并延长至F ,使得BD=DF ,连接CF 、BE .(1)求证:DB=DE ;(2)求证:直线CF 为⊙O 的切线;(3)若CF=4,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据切线的判定,圆的知识,可得答案.【详解】解:A 、在等圆或同圆中,长度相等的弧是等弧,故A 错误;B 、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B 错误;C 、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C 错误;D 、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D 正确;故选:D .【点睛】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.2.C【解析】【分析】【详解】解:A.224 .a a a ⋅=故错误;B.2222.a a a += 故错误;C.正确;D.()2212 1.a a a +=++【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.3.B【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.4.A【解析】【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r ,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5.B【解析】【分析】有旋转的性质得到CB=BE=BH′,推出C 、B 、H'在一直线上,且AB 为△ACH'的中线,得到S △BEI =S △ABH ′=S △ABC ,同理:S △CDF =S △ABC ,当∠BAC=90°时, S △ABC 的面积最大,S △BEI =S △CDF =S △ABC 最大,推出S △GBI =S △ABC ,于是得到阴影部分面积之和为S △ABC 的3倍,于是得到结论.把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3×12×2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.6.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.7.B【解析】【分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.8.D【解析】解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可证EC=CG.∵DH=CG,∴DF=CE,故B正确.无法证明AE=AB,故选D.9.B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B .【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.10.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.11.C【解析】【分析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y =2x 2向左平移3个单位得到的抛物线的解析式是y =2(x +3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.12.B【解析】【分析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值.【详解】解:59x y k x y k +=⎧⎨-=⎩①②, ①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-,将7x k =,2y k =-代入236x y +=得:1466k k -=, 解得:34k =. 故选:B .【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.310【解析】【详解】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG=22BG BC-=4,∴DG=DC﹣CG=1,则AG=22AD DG+=10,∵BA BGBC BE=,∠ABG=∠CBE,∴△ABG∽△CBE,∴35 CE BCAG AB==,解得,CE=310,故答案为310.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.14.1.【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.15.4.8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.16.3或1【解析】【分析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E 在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.【详解】解:当点E在对角线交点左侧时,如图1所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,BO=222253AB AO-=-=4,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,当点E在对角线交点左侧时,如图2所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,222253AB AO-=-,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案为3或1.【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.17.11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.18.一【解析】【分析】根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.【详解】∵关于x的一元二次方程mx2-2x-1=0无实数根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】【分析】()1设购进猕猴桃x千克,购进芒果y千克,由总价=单价⨯数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;()2根据利润=销售收入-成本,即可求出结论.【详解】()1设购进猕猴桃x千克,购进芒果y千克,根据题意得:50 20401600x yx y+=⎧+=⎨⎩,解得:{2030x y==.答:购进猕猴桃20千克,购进芒果30千克.()2262050301600420(⨯+⨯-=元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2根据数量关系,列式计算.20.(1)见解析;(21 6π-【解析】【分析】(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=3AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.【详解】(1)证明:连接OD、CD,如图,∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,∴AC为⊙O的切线,∵EF为⊙O的切线,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴点F是AC中点;(2)解:在Rt△ACB中,3而∠A=30°,∴∠CBA=60°,BC=33AC=2,∵OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,∵EF为切线,∴OD⊥EF,在Rt△ODE中,DE=3OD=3,∴S阴影部分=S△ODE﹣S扇形BOD=12×1×3﹣2601360π⋅⋅=32﹣16π.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.21.(1);(2),;(1);(2)【解析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:X ﹣10 1 2 1y 0 1 2 1 0 图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点: 二次函数的运用22.【解析】【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.23.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天. 【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式. 24.()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-. 【解析】 【分析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标. 【详解】()1Q 抛物线2y x bx c =++顶点A 的横坐标是1-,b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2Q 抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ Q =,∴点O 在PQ 的垂直平分线上.又QP //y Q 轴,∴点Q 与点P 关于x 轴对称. ∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=.∴点Q 的坐标为()3,2--或()1,2-.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q 与点P 关于x 轴对称,从而得到点Q 的纵坐标是解题的关键. 25.30元 【解析】试题分析:设第一批盒装花的进价是x 元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程. 解:设第一批盒装花的进价是x 元/盒,则 2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元. 考点:分式方程的应用.26.(Ⅰ)点P 的坐标为(231).(Ⅱ)2111m t t 666=-+(0<t <11). (Ⅲ)点P 1113-111+13,1).【解析】 【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP , △QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案. (Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值: 【详解】(Ⅰ)根据题意,∠OBP=90°,OB=1.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=12+t 2,解得:t 1=23,t 2=-23(舍去). ∴点P 的坐标为(23,1).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的, ∴△OB′P ≌△OBP ,△QC′P ≌△QCP . ∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°. ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ . 又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BPPC CQ=. 由题意设BP=t ,AQ=m ,BC=11,AC=1,则PC=11-t ,CQ=1-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11). (Ⅲ)点P 的坐标为(11133-,1)或(11+133,1).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q. ∵PC′=PC=11-t ,PE=OB=1,AQ=m ,C′Q=CQ=1-m , ∴22AC C Q AQ 3612m ''=-=-. ∴.∵6116=--t t m ,即6116-=-tt m,∴63612=-t m ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:1211131113t ,t 33-+==. ∴点P 11+13,1)或(11133+1).27.(1)证明见解析;(2)证明见解析;(3)2π-.【解析】【分析】(1)欲证明DB=DE.,只要证明∠DBE=∠DEB ;(2)欲证明CF 是⊙O 的切线.,只要证明BC ⊥CF 即可;(3)根据S 阴影部分=S 扇形-S △OBD 计算即可.【详解】解:(1)∵E 是△ABC 的内心,∴∠BAE=∠CAE ,∠EBA=∠EBC ,∵∠BED=∠BAE+∠EBA ,∠DBE=∠EBC+∠DBC ,∠DBC=∠EAC ,∴∠DBE=∠DEB ,∴DB=DE(2)连接CD∵DA 平分∠BAC ,∴∠DAB=∠DAC ,∴BD=CD ,又∵BD=DF ,∴CD=DB=DF ,∴°90BCF ,∠= ∴BC ⊥CF ,∴CF 是⊙O 的切线(3)连接OD∵O 、D 是BC 、BF 的中点,CF =4, ∴OD =2.∵CF 是⊙O 的切线,∴90.BOD BCF ∠=∠=︒∴△BOD 为等腰直角三角形∴S 阴影部分=S 扇形-S △OBD = 211222242ππ⨯⨯-⨯⨯=-.【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.。

安徽省马鞍山市2019-2020学年中考第五次模拟数学试题含解析

安徽省马鞍山市2019-2020学年中考第五次模拟数学试题含解析

安徽省马鞍山市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点,则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>03.分式2231x xx+--的值为0,则x的取值为( )A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-14.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.5.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是()A.119 B.289 C.77或119 D.119或2896.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:37.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.8.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.19.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A .416π-B .816π-C .1632π-D .3216π-10.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,2C .1,1,3D .1,2,3 11.下列二次根式,最简二次根式是( ) A .8 B .12 C .13 D .0.112.点A (-1,),B (-2,)在反比例函数的图象上,则,的大小关系是( )A .>B .=C .<D .不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.14.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为_____.15.如图,O e 的半径为3,点A ,B ,C ,D 都在O e 上,30AOB ∠=︒,将扇形AOB 绕点O 顺时针旋转120︒后恰好与扇形COD 重合,则»AD 的长为_____.(结果保留π)16.如图,ABCD 是菱形,AC 是对角线,点E 是AB 的中点,过点E 作对角线AC 的垂线,垂足是点M ,交AD 边于点F ,连结DM .若∠BAD=120°,AE=2,则DM=__.17.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是.18.计算:2a×(﹣2b)=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)20.(6分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.(1)求证:DE是⊙O的切线;(2)求EF的长.21.(6分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C 对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A ,B 口味的牛奶共约多少盒?22.(8分)如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (3,1)在反比例函数k y x=的图象上. 求反比例函数k y x=的表达式;在x 轴的负半轴上存在一点P ,使得S △AOP =12S △AOB ,求点P 的坐标;若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.23.(8分)先化简,再求值:(x ﹣2y )2+(x+y )(x ﹣4y ),其中x =5,y =15. 24.(10分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m ,求这栋高楼 BC 的高度.25.(10分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元.(1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x 元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35利润(元/瓶)20 1526.(12分)解不等式组11232x x--≤,并将它的解集在数轴上表示出来.27.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y轴上的点横坐标为0.2.B【解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.A【解析】【分析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴2230 {10x xx+--≠=,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.4.D【解析】【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.5.D【解析】【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四边形ACDB 的面积()124107=1192+⨯ ②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm ,CD=10cm ,∴.AE=12cm ,CF=5cm ,∵OA=OC=13cm ,∴EO=5cm ,OF=12cm ,∴EF=OF+OE=17cm.∴四边形ACDB 的面积()1241017=2892+⨯ ∴四边形ACDB 的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.6.D【解析】试题分析:图中内切圆半径是OD ,外接圆的半径是OC ,高是AD ,因而AD=OC+OD ;在直角△OCD 中,∠DOC=60°,则OD :OC=1:2,因而OD :OC :AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D .考点:正多边形和圆.7.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B .考点:由三视图判断几何体.8.A【解析】【分析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.9.B【解析】【分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°=22,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×22,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.10.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B 、∵12+12=(2)2,是等腰直角三角形,故选项错误;C 、底边上的高是2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D .11.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A .822=,不是最简二次根式,故本选项不符合题意;B .1222=,不是最简二次根式,故本选项不符合题意; C .13是最简二次根式,故本选项符合题意;D .100.1=,不是最简二次根式,故本选项不符合题意. 故选C .【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.12.C【解析】试题分析:对于反比例函数y=,当k >0时,在每一个象限内,y 随x 的增大而减小,根据题意可得:-1>-2,则.考点:反比例函数的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)【分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD中,BD=2.∵菱形的周长为10,BD=2,∴AB=5,BO=3,∴22534AO=-=,AC=3.∴面积168242S=⨯⨯=.故答案为14.【点睛】此题考查了菱形的性质及面积求法,难度不大.14.1【解析】在△AGF和△ACF中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=12BG=1.故答案是:1.15.52π.根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.【详解】解:∵扇形AOB 绕点O 顺时针旋转120°后恰好与扇形COD 重合,∴∠BOD=120°,∴∠AOD=∠AOB+∠BOD=30°+120°=150°,∴»AD 的长=150351802ππ⋅⋅=. 故答案为:52π.【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=180n R π⋅⋅(弧长为l ,圆心角度数为n ,圆的半径为R )是解题的关键.16【解析】【分析】作辅助线,构建直角△DMN ,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN 和DN 的长,从而计算DM 的长.【详解】解:过M 作MN ⊥AD 于N ,∵四边形ABCD 是菱形, ∴111206022DAC BAC BAD ∠=∠=∠=⨯︒=︒, ∵EF ⊥AC ,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt △AMN 中,∠AMN=30°,∴122AN MN ==, ∵AD=AB=2AE=4, ∴17422DN =-=,由勾股定理得: DM ===故答案为13.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.17.1【解析】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.18.﹣4ab【解析】【分析】根据单项式与单项式的乘法解答即可.【详解】2a×(﹣2b)=﹣4ab.故答案为﹣4ab.【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.路灯的高CD的长约为6.1 m.【解析】设路灯的高CD为xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴BN AB CD AC=,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴1.75 1.251.75x x=-,解得x=6.125≈6.1.∴路灯的高CD约为6.1m.20.(1)见解析;(2) 33 2.【解析】【分析】(1)连接OD,根据切线的判定方法即可求出答案;(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=12CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=33.【详解】(1)连接OD,∵△ABC是等边三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等边三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切线(2)∵OD∥AC,点O是AB的中点,∴OD为△ABC的中位线,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=12CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE•sinA=3×sin60°=33【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.21.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.22.(1)3yx=;(2)P(23-0);(3)E(3,﹣1),在.【解析】【分析】(1)将点A ,1)代入k y x=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B 3),计算求出S △AOB =12×4=S △AOP =12S △AOB P 的坐标为(m ,0),列出方程求解即可;(3)先解△OAB ,得出∠ABO=30°,再根据旋转的性质求出E 1),即可求解.【详解】(1)∵点A ,1)在反比例函数k y x=的图象上,∴∴反比例函数的表达式为y x=;(2)∵A 1),AB ⊥x 轴于点C ,∴AC=1,由射影定理得2OC =AC•BC ,可得BC=3,B 3),S △AOB =124=∴S △AOP =12S △AOB . 设点P 的坐标为(m ,0),∴12×|m|×∴|m|=∵P 是x 轴的负半轴上的点,∴m=﹣∴点P 的坐标为(-,0);(3)点E 在该反比例函数的图象上,理由如下:∵OA ⊥OB ,OA=2,OB=AB=4,∴sin ∠ABO=OA AB =24=12, ∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,∴△BOA ≌△BDE ,∠OBD=60°,∴BO=BD=23,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD ﹣OC=3,BC ﹣DE=1,∴E (3-,﹣1),∵3-×(﹣1)=3,∴点E 在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义;坐标与图形变化-旋转. 23.2x 2﹣7xy ,1【解析】【分析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x 、y 的值代入求值即可.【详解】原式=x 2﹣4xy+4y 2+x 2﹣4xy+xy ﹣4y 2=2x 2﹣7xy ,当x =5,y =15时,原式=50﹣7=1. 【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.24.这栋高楼的高度是1603【解析】【分析】过A 作AD ⊥BC ,垂足为D ,在直角△ABD 与直角△ACD 中,根据三角函数的定义求得BD 和CD ,再根据BC=BD+CD 即可求解.【详解】过点A 作AD ⊥BC 于点D,依题意得,30BAD ∠=o ,60CAD ∠=o ,AD=120,在Rt △ABD 中tan BD BAD AD∠=,∴1203BD =⨯= 在Rt △ADC 中tan DC CAD AD∠=,∴120DC ==∴BC BD DC =+=,答:这栋高楼的高度是【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.25.(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元.【解析】试题分析:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;利润=A 种品牌白酒瓶数×A 种品牌白酒一瓶的利润+B 种品牌白酒瓶数×B 种品牌白酒一瓶的利润,列出函数关系式; (2)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;成本=A 种品牌白酒瓶数×A 种品牌白酒一瓶的成本+B 种品牌白酒瓶数×B 种品牌白酒一瓶的成本,列出不等式,求x 的值,再代入(1)求利润. (3)列出y 与x 的关系式,求y 的最大值时,x 的值.试题解析:(1)y=20x+15(600-x) =5x+9000,∴y 关于x 的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y 随x 的增大而增大,∴当x=360时,y 有最小值为10800,∴每天至少获利10800元;(3)()2015600100x y x x ⎛⎫=-+- ⎪⎝⎭ ()212509625100x =--+, ∵10100-<,∴当x=250时,y 有最大值9625, ∴每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元.26.x≤1,解集表示在数轴上见解析【解析】【分析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】去分母,得:3x﹣2(x﹣1)≤3,去括号,得:3x﹣2x+2≤3,移项,得:3x﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.27.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.。

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(5)含解析

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(5)含解析

安徽省马鞍山市2019-2020学年中考数学考前模拟卷(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.42=±B .2525+=C .a2•a 3=a5D .(2a )3=2a32.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.253.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩4.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是()A.>B.=C.<D.不能确定5.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )A.B.C.D.6.如图,ABC∆中,6AB=,4BC=,将ABC∆绕点A逆时针旋转得到AEF∆,使得//BCAF,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.77.二次函数2y ax bx c=++的图象如图所示,则一次函数24y bx b ac=+-与反比例函数a b cyx++=在同一坐标系内的图象大致为( )A .B .C .D .8.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .109.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =3210.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3πC .4πD .6π 11.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次12.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 31,则点C所对应的实数是( )A.1+3B.2+3C.23﹣1 D.23+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).14.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是_____.15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .16.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.17.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.18.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.20.(6分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)21.(6分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.22.(8分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.23.(8分)在△ABC中,∠A,∠B都是锐角,且sinA=123求△ABC的面积.24.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(10分) (1)如图,四边形ABCD 为正方形,BF AE ⊥,那么BF 与AE 相等吗?为什么?(2)如图,在Rt ACB ∆中,BA BC =,90ABC ∠=︒,D 为BC 边的中点,BE AD ⊥于点E ,交AC 于F ,求:AF FC 的值(3)如图,Rt ACB ∆中,90ABC ∠=︒,D 为BC 边的中点,BE AD ⊥于点E ,交AC 于F ,若=3AB ,4BC =,求CF .26.(12分)如图,AB 、AD 是⊙O 的弦,△ABC 是等腰直角三角形,△ADC ≌△AEB ,请仅用无刻度直尺作图:在图1中作出圆心O ;在图2中过点B 作BF ∥AC .27.(12分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的中点,O e 的半径为2,求AB 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.【详解】解:A4,此选项错误;B、25不能进一步计算,此选项错误;C、a2•a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C.【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.2.C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.3.C【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.4.C【解析】试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.考点:反比例函数的性质.5.A【解析】【详解】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.故选A.6.B【解析】【分析】先利用已知证明BAC BDA :△△,从而得出BA BC BD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可.【详解】 //AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠QBAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BC BD BA∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B .【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.7.D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0, ∵对称轴为直线02b x a=->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 8.C【解析】【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12,即△PCD 的周长为12,故选:C .【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 9.D【解析】【分析】A 、由a=1>0,可得出抛物线开口向上,A 选项错误;B 、由抛物线与y 轴的交点坐标可得出c 值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、由抛物线开口向上,可得出y 无最大值,C 选项错误;D 、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D 选项正确. 综上即可得出结论.【详解】解:A 、∵a=1>0,∴抛物线开口向上,A 选项错误;B 、∵抛物线y=x 1-3x+c 与y 轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321⨯=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.10.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.11.A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.12.D【解析】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x 3=31---,解得x=23+1.故选D. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可. 解:如图所示,在RtABC 中,tan ∠ACB=AB BC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴3故答案为3.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.14.2,3,1.【解析】分析:根据题意得出EF 的取值范围,从而得出EF 的值.详解:∵AB=1,∠ABC=60°, ∴3当点E 和点B 重合时,∠FBD=90°,∠BDC=30°,则EF=1;当点E 和点O 重合时,∠DEF=30°,则△EFD 为等腰三角形,则EF=FD=2,∴EF 可能的整数值为2、3、1.点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E 在何处时取到最大值和最小值,从而得出答案.【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.16.4 3【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分别是边AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴AC CD BC CE=,∴624CE =,∴CE=43, 故答案为43. 17.105105r -<<+【解析】【分析】因为以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交,圆心距满足关系式:|R-r|<d<R+r ,求得圆D 与圆O 的半径代入计算即可.【详解】连接OA 、OD ,过O 点作ON ⊥AE ,OM ⊥AF.AN=12AE=1,AM=12AF=2,MD=AD-AM=3 ∵四边形ABCD 是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN 是矩形∴OM=AN=1∴OA=22215+=,OD=221310+=∵以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交∴105105r -<<+【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.18.60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年安徽省马鞍山市中考数学模拟试卷一.选择题(满分40分,每小题4分)1.的倒数是()A.2016 B.C.﹣2016 D.﹣2.下列各式中,运算正确的是()A.x2+x2=x4B.3x m y n﹣2x m y n=1C.﹣6x2y4÷3x2y4=﹣2 D.4x2y35x3y2=9x5y53.2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.×107D.×1084.甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:班级人数中位数方差平均字数甲55149191135乙55151110135某同学根据上表分析得出如下结论:①甲,乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A.①②③B.①②C.①③D.②③5.如图所示的是由若干个同样大小的正方体搭成的几何体的俯视图,小正方形中的数字表示该位置正方体的个数,则这个几何体的左视图是()A.B.C.D.6.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC 的长为()A.B.πC.2πD.3π7.某商品标价x元,进价为400元,在商场开展的促销活动中,该商品按8折销售获利()A.(8x﹣400)元B.(400×8﹣x)元C.(﹣400)元D.(400×﹣x)元8.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”9.关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5 B.3<α<5<βC.α<2<β<5 D.α<3且β>5 10.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于()A.20 B.24 C.﹣20 D.﹣24二.填空题(满分20分,每小题5分)11.在实数范围内式子有意义,则x 的范围是 .12.方程(x ﹣1)(x +2)=0的解是 .13.某市规定了每月用水不超过18立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y (元)是用水x (立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为 立方米.14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S△DOE:S △AOC 的值为 .三.解答题15.(8分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;16.(8分)求不等式组的整数解.四.解答题17.(8分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA 与地面AB 垂直,斜拉杆CD 与AM 交于点C ,横杆DE ∥AB ,摄像头EF ⊥DE 于点E ,AC =米,CD =3米,EF =米,∠CDE =162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=,cos72°≈,tan72°=,sin18°≈,cos18°≈,tan18°≈)18.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△AB C,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标.(3)在x轴上有一点P使得PA+PB的值最小,直接写出点P的坐标.五.解答题19.(10分)如图,AB、BC、CD分别与⊙O相切于E、F、G三点,且AB∥CD,OB=6cm,OC=8cm.(Ⅰ)求证:OB⊥OC;(Ⅱ)求CG的长.20.(10分)观察下面三行数:2,﹣4,8,﹣16,32,﹣64,…4,﹣2,10,﹣14,34,﹣62,…﹣1,2,﹣4,8,﹣16,32,…在上面三行数的第n列中,从上往下的三个数分别记为a,b,c,观察这些数的特点,根据你所得到的规律,解答下列为问题.(1)用含n的式子分别表示出a,b,c;(2)根据(1)的结论,若a,b,c三个数的和为770,求n的值.六.解答题21.(12分)今年4月23日,是第16个世界读书日.某校为了解学生每周课余自主阅读的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如图不完整的统计图表,请根据图表中的信息解答下列问题组别学习时间x(h)频数(人数)A0<x≤18B1<x≤224C2<x≤332D3<x≤4nE4小时以上4(1)表中的n=,中位数落在组,扇形统计图中B组对应的圆心角为°;(2)请补全频数分布直方图;(3)该校准备召开利用课余时间进行自主阅读的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.七.解答题22.(12分)如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B (3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.八.解答题23.(14分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系请说明理由;(3)设AE=m,①△AGH的面积S有变化吗如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.参考答案一.选择1.解:的倒数是2016,故选:A.2.解:A、x2+x2=2x2,错误;B、3x m y n﹣2x m y n=x m y n,错误;C、﹣6x2y4÷3x2y4=﹣2,正确;D、4x2y35x3y2=20x5y5,错误;故选:C.3.解:科学记数法表示:5500万=5500 0000=×107故选:C.4.解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以(3)也正确.故选:A.5.解:根据题意,结合图形可知,题目中的几何体从左面看到的从左往右两列正方形的个数依次为2、3,选项B正确.故选:B.6.解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=,故选:A.7.解:由题意可得,该商品按8折销售获利为:(﹣400)元,故选:C.8.解:A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.9.解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.10.解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC 为菱形, ∴AB ∥CO ,AO ∥BC , ∵DE ∥AO , ∴S △ADO =S △DEO , 同理S △BCD =S △CDE ,∵S 菱形ABCO =S △ADO +S △DEO +S △BCD +S △CDE , ∴S 菱形ABCO =2(S △DEO +S △CDE )=2S △CDO =40, ∵tan ∠AOC =, ∴OF =3x , ∴OC ==5x ,∴OA =OC =5x ,∵S 菱形ABCO =AOCF =20x 2,解得:x =,∴OF =3,CF =4, ∴点C 坐标为(﹣3,4),∵反比例函数y =的图象经过点C , ∴代入点C 得:k =﹣24, 故选:D . 二.填空题11.解:根据题意得:x ﹣5>0, 解得,x >5. 故答案是:x >5.12.解:∵(x ﹣1)(x +2)=0 ∴x ﹣1=0或x +2=0 ∴x 1=1,x 2=﹣2,故答案为x1=1、x2=﹣2.13.解:设当x>18时的函数解析式为y=kx+b,,得,即当x>18时的函数解析式为y=4x﹣18,∵102>54,∴当y=102时,102=4x﹣18,得x=30,故答案为:30.14.解:∵S△BDE :S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△BDE∽△BAC,△DOE∽△AOC,∴=,∴S△DOE :S△AOC=()2=;故答案为:1:16.三.解答题15.解:原式=1+4﹣(2﹣2)+4×,=1+4﹣2+2+2,=7.16.解:∵由不等式①得:x<3,由不等式②得:x,∴不等式组的解集为,又∵x为整数,∴x=1、2.∴原不等式组的整数解为1,2.四.解答题17.(1)如图,延长ED,AM交于点P,∵DE∥AB,MA⊥AB∴EP⊥MA,即∠MPD=90°∵∠CDE=162°∴∠MCD=162°﹣90°=72°;(2)如图,在Rt△PCD中,CD=3米,∠MCD=72°,∴PC=CD cos∠MCD=3×cos72°≈3×=﹣米∵AC=米,EF=米,∴PC+AC﹣EF=+﹣=米答:摄像头下端点F到地面AB的距离为米.18.解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:,解得:,∴直线A′B的解析式为y=x+,当y=0时,x+=0,解得x=﹣,∴点P的坐标为(﹣,0).故答案为:(﹣,0).五.解答题19.解:(Ⅰ)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(Ⅱ)由(Ⅰ)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴OF=.∴BF=,∵CF、CG分别与⊙O相切于F、G,∴CG=CF=.20.解:由题意可知,第一行数的规律为﹣(﹣2)n,第二行每个数是第一行数对应列的数加2,即第二行数的规律为﹣(﹣2)n+2,第三行每个数是第一行数对应列数除以(﹣2),即第三行数的规律为﹣(﹣2)n﹣1;(1)a=﹣(﹣2)n,b=﹣(﹣2)n+2,c=﹣(﹣2)n﹣1;(2)∵a,b,c三个数的和为770,∴﹣(﹣2)n﹣(﹣2)n+2﹣(﹣2)n﹣1=770,3×(﹣2)n﹣1+2=770,∴n=9.六.解答21.解:(1)调查的总人数为8÷10%=80,则n=15%×80=12,由于共有80个数据,∴中位数为第40、41个数据的平均数,而第40、41个数据均落在C组,∴中位数落在C组,扇形统计图中B组对应的圆心角为×360°=108°,故答案为:12,C,108;(2)如下图所示:(3)画树状图如下:共12种可能,抽取的两名学生都来自九年级的有2种可能,==,∴P(两个学生都是九年级)答:抽取的两名学生都来自九年级的概率为.七.解答22.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=2,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(3,0)代入,得k=﹣,b=1,∴BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+2x+3当y=y BP时,﹣x+1=﹣x2+2x+3,解得x1=﹣,x2=3(舍去),∴y=,∴P(﹣,).(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).八.解答23.解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AGAH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AGAH.(3)①△AGH的面积不变.=AHAG=AC2=×(4)2=16.理由:∵S△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.。

相关文档
最新文档