第3章压力检测与仪表

合集下载

第三章 压力测量

第三章 压力测量

• 液体压力计的误差分析
– 温度误差 – 安装误差 – 重力加速度变化误差 – 传压介质误差 – 读数误差 • U型管压力计在读(h1+h2)时,产生两次读数 误差。为了减少读数误差,可将其改进为单管压 力计和斜管压力计,测量原理相似。 目前,液柱式压力计使用较少。测量范围约为: 0~16kPa。
U 0 E 21 E 22 j( M 1 M 2 ) I




3、电感式压力传感器 压力 ---- 弹性敏感元件(膜盒、膜片、波纹管) --位移 --- 电感
~220V
(相敏检波电路)
接头1:前端
膜盒2:弹性元件,感受压力变化
磁芯6: 线圈5:电路板4:无需放大,解调,滤波
压 器:闭合磁路 初级、次级互感为常数 一个次级

互感传感器: 开磁路
初级、次级互感随衔铁移动变化
两个次级(差动)
2、互感式传感器(差动变压器)
(1)互感传感器工作原理
U、I---初级线圈激励电压、电 流,频率ω L1, R1---初级线圈电感、电阻; L21, R21, L22, R22 ---两个次级线圈 电感、电阻; M1, M2---初级线圈与次级线圈1、 2的互感; 传感器开路输出:
弹簧管是一 根弯成270°圆 弧的椭圆截面的 空心金属管,管 子的自由端B封 闭,并连接拉杆 及扇形齿轮,带 动中心齿轮及指 针。
9 – 接头
8 – 调整螺钉
基本测量原理 在被测压力 p 的作用 下,弹簧管的椭圆形截面 趋于圆形,圆弧状的弹簧 管随之向外扩张变形。 自由端B的位移与输 入压力p成正比。通过拉 杆、齿轮的传递、放大, 带动指针偏转。
–液体压力计 –弹性式压力计 –电远传式压力仪表

第3章 地层压力检测

第3章 地层压力检测

第三章地层压力检测大量的勘探实践表明,异常高压地层的存在具有普遍性,而且钻遇到高压地层比低压地层更为常见。

这些广泛分布的异常高压地层首先影响钻井的安全,钻井中,如果未能预测到可能钻遇到的异常高压地层,使用的钻井液液柱压力小于地层压力,可能会导致严重的井喷甚至井喷失控。

因此,在石油钻井中,对地层压力的评价是非常重要的,对保护油气层,保证井控安全具有重要意义。

一压力检测的目的及意义1 压力检测和定量求值指导和决定着油气勘探、钻井和采油的设计与施工。

2 对钻井来说,它关系到高速、安全、低成本的作业甚至钻井的成败。

3 只有掌握地层压力,地层破裂压力等地层参数,才能正确合理的选择钻井液密度,设计合理的井身结构。

4 更有效地开发、保护和利用油气资源。

二异常地层压力的形成机理1压实作用:随着埋藏深度的增加和温度的增加,孔隙水膨胀,而孔隙空间随地静载荷的增加而缩小。

因此,只有足够的渗透通道才能使地层水迅速排出,保持正常的地层压力。

如果水的通道被堵塞或严重受阻,增加的上覆岩层压力将引起孔隙压力增加至高于水静压力,孔隙度亦将大于一定深度时的正常值。

2 构造运动构造运动是地层自身的运动。

它引起各地层之间相对位置的变化。

由于构造运动,圈闭有地层流体的地层被断层、横向滑动、褶皱或侵入所挤压。

促使其体积变小,如果此流体无出路,则意味着同样多的流体要占据较小的体积。

因此,压力变高。

3 粘土成岩作用成岩指岩石矿物在地质作用下的化学变化。

页岩和灰岩经受结晶结构的变化,可以产生异常高的压力。

例如在压实期间蒙脱石向伊利石转化。

有异常压力,必有上覆压力密封层。

如石膏(CaSO4·2H2O)将放出水化水而变成无水石膏(CaSO4),它是一种特别不渗透的蒸发岩,从而引起其下部异常高压沉积。

4 密度差的作用当存在于非水平构造中的孔隙流体的密度比本地区正常孔隙流体密度小时,则在构造斜上部,可能会形成异常高压。

这种情况在钻大斜度气层时常见到。

检测技术及仪表习题答案

检测技术及仪表习题答案
A max B max
选 B 表测量精度高
第二章习题答案 1. 水银不易氧化、 不沾玻璃、 易提纯, 能在很大温度范围内 (–36~+365℃) 保持液态,特别是在 200℃以下,它的体膨胀与温度几乎呈线性关系,水银玻璃 温度计的刻度是均匀的。因此常以水银作为感温元件。 若在毛细管中充以加压的氮气,并采用石英玻璃管,则测温上限可达 600℃ 或更高。 2. 缓慢提高玻璃管温度计所测量的温度, 使感温液断裂部分进入安全包后, 再逐渐降温,则感温液逐渐留下来,而气泡留在安全包中,即可消除液柱断裂现 象。 3.它的感温元件是用两片线膨胀系数不同的金属片叠焊在一起而成的。双 金属受热后,由于两金属的膨胀长度不同而产生弯曲,如图 2-3 所示。温度越高 产生的线膨胀长度差也就越大,因而引起的弯曲角度就越大。 增加双金属片的长度,提高灵敏度。 4.温差电动势和接触电动势。 起主导作用的是温差电动势。 5.1)铂铑 10—铂热电偶(S 型) 。这种热电偶在 1300℃(有的国家规定为 1400℃)以下温度范围可以长期使用。在良好的环境下可短期测量 1600℃的高 温。在所有标准化热电偶中,S 型热电偶准确度等级最高,稳定性最好,且测温 区域宽,使用寿命长,可用于精密测量和作为标准热电偶,适用于氧化性和惰性 气氛中。但价格昂贵,热电动势小,灵敏度低,热电特性曲线非线性较大,不适 于还原性气氛和含有金属或非金属蒸气的气氛中。 2)铂铑 13—铂热电偶(R 型) 。R 型与 S 型热电偶相比热电动势稍大(大 约 15%) ,但灵敏度仍不高,其他特点相同。 3)铂铑 30—铂铑 6 热电偶(B 型) 。由于 B 型热电偶的两热电极均为铂铑合 金,因此又称为双铂铑热电偶,可长期测量 1600℃的高温,短期可测 1800℃。 它的特点是性能稳定,测量精度高,适于在氧化性和惰性气氛中使用,也适合在 真空中短期使用。但 B 型热电偶在还原性气氛中易被侵蚀,热电动势小,灵敏 度比 S 型热电偶还低,且价格昂贵。由于在低温时热电动势极小,因此冷端温 度在 50℃以下时不需要对冷端温度进行补偿。

化工仪表及自动化课后习题答案

化工仪表及自动化课后习题答案

第1章自动控制系统根本概念P161. 化工自动化是化工、炼油、食品、轻工等化工类型生产过程自动化的简称。

在化工设备上,配备上一些自动化装置,代替操作人员的局部直接劳动,使生产在不同程度上自动地进行,这种用自动化装置来管理化工生产过程的方法,称为化工自动化。

实现化工生产过程自动化的意义:〔1〕加快生产速度,降低生产本钱,提高产品产量和质量。

〔2〕减轻劳动强度,改善劳动条件。

〔3〕能够保证生产平安,防止事故发生或扩大,到达延长设备使用寿命,提高设备利用能力的目的。

〔4〕能改变劳动方式,提高工人文化技术水平,为逐步地消灭体力劳动和脑力劳动之间的差异创造条件。

2、一般要包括自动检测、自动保护、自动操纵和自动控制等方面的内容。

3、闭环控制有反响环节,通过反响系统是系统的精确度提高,响应时间缩短,适合于对系统的响应时间,稳定性要求高的系统. 开环控制没有反响环节,系统的稳定性不高,响应时间相对来说很长,精确度不高,使用于对系统稳定性精确度要求不高的简单的系统。

4、自动控制系统主要由哪些环节组成?自动控制系统主要由测量元件与变送器、自动控制器、执行器和被控对象等四个环节组成。

5、p76、PI-307表示就地安装的压力指示仪表,工段号为3,仪表序号为07;TRC-303表示集中仪表盘安装的,具有指示记录功能的温度控制仪表;工段号为3,仪表序号为03;FRC-305表示集中仪表盘安装的,具有指示记录功能的流量控制仪表;工段号为3,仪表序号为05。

7、方块图是用来表示控制系统中各环节之间作用关系的一种图形,由于各个环节在图中都用一个方块表示,故称之为方块图。

8、测量变送装置的功能是测量被控变量的大小并转化为一种特定的、统一的输出信号〔如气压信号或电压、电流信号等〕送往控制器;控制器接受测量变送器送来的信号,与工艺上需要保持的被控变量的设定值相比拟得出偏差,并按某种运算规律算出结果,然后将此结果用特定信号〔气压或电流〕发送出去。

化工仪表自动化 【第三章】物位检测及仪表(液位计、料位计、界面计)讲解

化工仪表自动化  【第三章】物位检测及仪表(液位计、料位计、界面计)讲解

(3)对容器内介质物位的上下限位置报警;
(4)监视/调节容器中出入物料的平衡。
物位测量的绝对值
物位测量的相对值
3.4 物位检测及仪表 2.按工作原理划分的物位仪表类型
(1)直读式——利用连通器原理工作 ;
3.4 物位检测及仪表
(2)差压式——利用液柱或物料堆积对某定点产生 压力的原理工作;
3.4 物位检测及仪表
3.4 物位检测及仪表
某仪表的测量范围为0—5000Pa,无迁移时,当压差 由0变化到5000Pa时,变送器的输出将由4mA变化到20mA。 如图3-40中曲线a所示。
I0/mA
当有迁移时,假定固定压差为 2000Pa,那么当H=0时,根据前 式有: ΔP=-(h2-h1)ρ0g
即ΔP=-2000Pa,这时变送器 输出应为0.02MPa,H为最大时, ΔP=5000-2000=3000Pa,这 时变送器输出应为0.1MPa,如图 3-40中的曲线b所示。
3.4 物位检测及仪表
帕斯卡用一个密闭的装满水的桶 ,在桶盖上插入一根细长的管子 ,从楼房的阳台上向细管子里灌 水。结果只用了一杯水,就把桶 压裂了,桶里的水就从裂缝中流 了出来。
帕斯卡“桶裂”实验很好地证 明了液体压强与液体的深度有关 ,而与液体的重力无关。
3.4 物位检测及仪表
当测量敞口容器的液位如下图所示,差压变 送器的负压通大气即可,这时作用在正压室的压 力就是液位高度所产生的静压力Hρg。
3.4 物位检测及仪表
当测量受压容器的液位如下图所示,将差压 变送器的负压室与容器的气相空间相连,以平衡 气相压力的静压作用。
ΔP=P气+Hρg-P气=Hρg 差压的大小同样代表了液位高度的大小。
3.4 物位检测及仪表

化工常用仪表类型及原理-

化工常用仪表类型及原理-

感谢老师们的辛勤 付出和无私奉献, 为我们的成长保驾 护航。
THANKS
感谢观看
决学习中遇到的困难。
促进个性发展
02
鼓励同学们发挥特长和兴趣,提供个性化的发展空间和机会,
促进个人全面发展。
培养自主学习能力
03
引导同学们树立正确的学习观念和方法,培养自主学习的能力
和习惯。
对学校、老师、家长的责任与承诺
沟通与协调
加强与学校、老师、家长的沟 通联系,及时反馈同学们的学 习情况和生活状态,促进学校 、老师、家长之间的合作与交
丰富学生的课余生活,增强学生的社会责任感
通过参与学习活动,学生可以感受到学习的乐趣和收获,同时也可以让学生了解社会的需 求和发展趋势,从而增强学生的社会责任感和使命感。
参与学习辅导班、夏令营等活动的效果
提高学生的学习成绩和学习能力
参与学习辅导班、夏令营等活动可以让学生更加系统地学习知识和技能,同时也可以让学生了解自己的优势和不足之处,从 而更加有针对性地提高自己的学习成绩和学习能力。
促进学习交流与合作
搭建学习交流平台,鼓励同学们分享学习经验和方法,促进互相 学习、共同进步。
营造良好的学习氛围
通过加强与各班级、年级的联系,了解同学们的学习需求和困难 ,积极协调资源,营造良好的学习氛围。
对同学们的承诺与责任担当
提供学习支持与帮助
01
关注同学们的学习情况,提供必要的学习支持和辅导,帮助解
策划学习活动的效果
提升学生的学习能力和综合素质
通过策划学习活动,可以锻炼学生的组织能力、协调能力和沟通能力,同时也可以让学生 在活动中学习到更多的知识和技能,提高其综合素质。
增强学生的学习动力和自信心

化工仪表及自动化课后答案

化工仪表及自动化课后答案

第一章自动控制系统基本概念1.什么是化工自动化?它有什么重要意义?答:在化工等连续性生产设备上,配备一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,称为化工自动化。

化工自动化的重要意义是:加快生产速度,降低生产成本,提高产品数量和质量;降低劳动强度,改善劳动成本,改变劳动方式;确保生产安全。

6.图1-16 为某列管式蒸汽加热器控制流程图。

试分别说明图中PI-307、TRC-303、FRC-305所代表的意义。

答:PI-307:表示测量点在蒸汽加热器的一台压力指示仪表,工段号为3,仪表序号为07。

仪表安装在现场。

TRC-303:表示测量点在蒸汽加热器出料管线上的一台温度记录控制仪表,工段号为3,仪表序号为03。

仪表安装在集中仪表盘面上。

FRC-305:表示测量点在蒸汽加热器进料管线上的一台流量记录控制仪表,工段号为3,仪表序号为05。

仪表安装在集中仪表盘面上。

8.自动控制系统中,测量变送装置、控制器、执行器各起什么作用?答:在自动控制系统中,测量变送装置用来感受被控变量的变化并将它转换成一种特定的信号(如气压信号或电压、电流信号等);控制器将测量变送装置送来的测量信号与工艺上需要保持的设定值信号进行比较得出偏差,根据偏差的大小及变化趋势,按预先设计好的控制规律进行运算后,将运算结果用特定的信号(如气压信号或电流信号)发送给执行器;执行器能自动地根据控制器送来的信号值相应地改变流入(或流出)被控变量的物料量或能量,克服扰动的影响,最终实现控制要求。

9.试分别说明什么是被控对象、被控变量、给定值、操纵变量?答:被控对象——自动控制系统中,需要实现控制的设备、机械或生产过程等。

被控变量——被控对象内要求保持一定数值(或按某一规律变化)的工艺参数(物理量)。

设定值——工艺规定被控变量所要保持的数值。

操纵变量——受控制器操纵的,用以克服干扰的影响,使被控变量保持一定数值的物料量或能量。

第3章_压力检测-王威立

第3章_压力检测-王威立

⑶ 电路补偿法
电桥补偿法要达到全补偿,需满足下列三个条件:
①R1和R2须属于同一批号的,即它们的电阻温度系
数 α 、线膨胀系数 β 、应变灵敏系数 K 都相同,两片的初 始电阻值也要求相同; ②用于粘贴补偿片的构件和粘贴工作片的试件二者 材料必须相同,即要求两者线膨胀系数相等; ③两应变片处于同一温度环境中。
2、半导体电阻应变片
基于半导体的“压阻效应” 体积小、灵敏度高、机械滞后小 温度稳定性差、非线性严重
三、电阻应变片的粘贴
应变片用粘结剂粘贴到试件表面上,粘结剂形成的胶
层必须准确迅速地将被测试件的应变传到敏感栅上。
选择粘结剂必须适合应变片材料和被测试件材料,不
仅要求粘接力强,粘结后机械性能可靠,而且黏合层要
的热输出相等,则电桥的输出电压为:
U 0 AR1 R1t R4 R2 R2t R3 AR R1t r R R2t r ARr rR1t Rr rR2t ArR1t R2t 0
⑶ 电路补偿法
1
电桥的平衡条件
2
电桥电压的灵敏度
3
非线性误差及补偿条件
1、电桥的平衡条件
当RL→∞时,电桥输出电压:
R1 R3 U0 U ) (3 24 R1 R2 R3 R4
R1 R2 RL U0
R3
U
R4
当电桥平衡时,U0=0,所以:R1 R4 = R2 R3 或 R1/R2 =R3/R4 (3-25)
l
2r 2(r-dr) F
l+ dl
金属丝的应变效应
2、金属丝应变效应
dL x — —金属的轴向应变 L dr y — —金属的径向应变 r

化工仪表及自动化课后参考答案

化工仪表及自动化课后参考答案

第一章1.什么是化工自动化?它有什么重要意义?答:在化工设备上,配备上一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,这种用自动化装置来管理化工生产过程的办法,称为化工自动化。

实现化工自动化,能加快生产速度、降低生产成本、提高产品产量和质量、减轻劳动强度、保证生产安全,为逐步地消灭体力劳动和脑力劳动之间的差别创造条件。

2.化工自动化主要包括哪些内容?答:化工生产过程自动化,一般包括自动检测、自动操纵、自动保护和自动控制等方面的内容。

3.自动控制系统怎样构成?各组成环节起什么作用?答:自动控制系统主要由两大部分组成。

一部分是起控制作用的全套自动化装置,对于常规仪表来说,它包括检测元件及变送器、控制器、执行器等;另一部分是受自动化装置控制的被控对象。

在自动控制系统中,检测元件及变送器用来感受被控变量的变化并将它转换成一种特定的信号(如气压信号或电压、电流信号等)。

控制器将检测元件及变送器送来的测量信号与工艺上需要保持的设定值信号进行比较得出偏差,根据偏差的大小及变化趋势,按预先设计好的控制规律进行运算后,将运算结果用特定的信号(如气压信号或电流信号)发送给执行器,执行器能自动地根据控制器送来的信号值相应地改变流人(或流出)被控变量的物料量或能量,克服扰动的影响,最终实现控制要求。

什么叫操纵变量?受控制器操纵的,用以克服干扰的影响,使被控变量保持设定值的物料量或能量。

(或:具体实现控制作用的变量叫做操纵变量)4.闭环控制系统与开环控制系统有什么不同?答自动控制系统按其基本结构形式可分为闭环自动控制系统和开环自动控制系统。

闭环自动控制是指控制器与被控对象之间既有顺向控制又有反向联系的自动控制。

如图1-1 ( a)即是一个闭环自动控制。

图中控制器接受检测元件及变送器送来的测量信号,并与设定值相比较得到偏差信号,再根据偏差的大小和方向,调整蒸汽阀门的开度,改变蒸汽流量,使热物料出口温度回到设定值上。

第三章第五节温度检测及仪表

第三章第五节温度检测及仪表

(2).插入第三种导线的问题 用热电偶测温时,需接仪表来测热电势,而仪表要远 离测温点,这就需接第三种导线C。热电偶回路中接 入连接导线C,就构成新的接点,但不影响热电偶的 总热电势。
(2).插入第三种导线的问题: 如右(a)图:新的接点为3点和4点,两点的温度相同为
t1,则总热电势E(t,t0)为: E(t,t0)=eAB(t)+eBC(t1)+eCB(t1)+eBA(t0) = eAB(t)+eBC(t1)- eBC (t1)+ eBA(t0) = eAB(t)+ eBA(t0) = eAB(t)- eAB(t0) 可见,与没有接入第三种导线时 总热电势相等。
三、热电阻温度计
原理: 利用金属导体的电阻随温度的变化而变化 的原理来测温。
特点:在300℃下的灵敏度高于热电偶,在中、低温 (-200℃~650℃)的测量中得到了广泛应用。 组成:热电阻(感温元件).显示仪表(不平衡电桥或 平衡电桥).连接导线。连接导线采用三线制接法。 1.测温原理:测温元件(金属导体)的电阻随温度的 变化而变化的特性来测温的,电阻值与温度关系:
解:查表得:E(30,0)=1801µV, 则:E(t,0)= E(t,30)+ E(30,0)= 66982+1801=68783µV 查表得: E(900,0)= 68783µV, 即实际温度为t=900 ℃。 而不是66982µV对应的温度t’再加上30℃。
E(870,0)=66473µV, E(880,0)=67245µV 66982µV对应的温度t’→ t’ =870+(66982-66473)/(67245-66473)×10=876.6℃
温度相同。同理,如果回路中串接多 种导线,只要引线两端的温度相同, 就不影响热电偶所产生的热电势值。

过程装备与控制工程--压力检测及仪表

过程装备与控制工程--压力检测及仪表

第三章 检测技术 a、弹簧管: 、弹簧管:
——压力传感器 是一根弯成2700圆弧的椭圆 形截面的空心金属管子。 固定端 O:输入压力P 自由端 Q:产生位移△X Q: △ P → △X △ X = K1P 或 △ γ = K1P
《过程设备控制技术》
△γ
△X
γ = 2700 O
Q
P
第三章 检测技术 b、传送放大机构: 、传送放大机构:
第三章 检测技术
§2 压力检测及仪表 一、概述: 概述: 概述 压力定义:单位面积所受的作用力。 压力定义 F 标准单位:Pa ( N/m2 ) 公式: 公式 P = S kPa MPa 绝对压力 P绝 P绝> P大 压力表示方法: 表压力 P表 压力表示方法 负压力 P负 P绝< P大 (真空度) 压力仪表可分为四大类: 压力仪表可分为四大类: 液柱式压力计 弹性式压力计 电气式压力计 活塞式压力计 P
1×106 9.807× 104 1.0133× 105 1.3332× 102 9.806× 103 6.895× 103 1×105
1 9.807× 10-2 0.10133 1.3332× 10-4 9.806× 10-3 6.895× 10-3 0.1
10.197
9.869
1.450×102
《过程设备控制技术》
1/3~2/3 ~ 需要确定: 需要确定: (1)仪表量程 仪表量程:根据被测压力的大小。 仪表量程 Pmax≤2/3( P刻max - P刻min )+ P刻min P min ≥1/3( P刻max - P刻min )+ P刻min (2)仪表精度 仪表精度:根据生产允许的最大检测误差。 仪表精度 (3)仪表种类、型号:根据被测介质性质、现场环境条件。 仪表种类、型号 仪表种类 P刻min P刻max

化工仪表第3章1压力检测

化工仪表第3章1压力检测
“表压力”(又叫相对压力),“表压力”以大气压力为 起点,符号为Pg。
第二节 压力检测及仪表
在压力测量中,常有:表压、绝对压力、负压或真空 度之分。
p表 大气压力线
p表压 p绝对压力 p大气压力
P绝
P真 P绝 零线
图3-4 绝对压力、表压、负 压(真空度)的关系
当被测压力低于大气压力时,一般用负压或真空度 来表示。
0~100℃的温度测量仪表才满足本题的测量要求。
检测仪表的主要性能指标
二、变差
在外界条件不变的情况下,使用同一仪表对被测变量在全量程 范围内进行正反行程(即逐渐由小到大和逐渐由大到小)测量 时,对应于同一被测值的仪表输出可能不等,二者之差的绝对 值即为变差。 变差的大小,根据在同一被测值下正反特性间仪表输出的最大 绝对误差和测量仪表量程之比的百分数来表示:
变差
最大绝对差值 测量范围上限值 测量范围下限值
100%
检测仪表的主要性能指标
三、灵敏度和灵敏限

仪表的灵敏度是表征仪表指针的线位移或角位移与引起这个
位移的被测参数的变化量的比值,即
灵敏度=Δy/Δx

仪表的灵敏度-在数值上等于单位被测参数变化量所引起的 仪表的灵敏限-引起仪表指针发生动作的被测参量的最小变
慢常采用时间常数T和传递滞后时间(纯滞后时
间)τ两个参数表示(这两个参数的含义与上
一章中对象数学模型中的时间常数T和纯滞后时
间τ的数学含义是一致的)。 它们的存在会降低检测过程的动态性能,其中 纯滞后时间τ的不利影响远远超过时间常数T的 影响。
工业仪表的分类
1、按仪表使用的能源分类: 气动仪表、电动仪表、液动仪表
检测仪表的主要性能指标

第3章_压力检测-王威立20140320

第3章_压力检测-王威立20140320
有足够大的剪切弹性模量,良好的电绝缘性,蠕变和滞 后小,耐湿、耐油、耐老化,动态应力测量时耐疲劳等。
四、电阻应变片的温度补偿
1
温度误差 温度补偿 热敏电阻补偿
2
3
1、温度误差
由于环境温度变化引起的电阻变化与试件应变所造成 的电阻变化几乎有相同的数量级,从而产生很大的测量误 差,称为应变片的温度误差,又称热输出。 因环境温度改变而引起电阻变化的两个主要因素: 应变片的电阻丝(敏感栅)具有一定温度系数; 电阻丝材料与测试材料的线膨胀系数不同。
直流测量电桥
欲使电桥达到平衡,直流电桥其相邻两臂的电阻比值 应该相等。
2、电桥电压灵敏度
若R1由应变片替代,当电桥开路时,不平衡电桥输出
的电压为:
R3 R1 R4 R2 R3 RR4 R1 R1 U0 U ( ) U R1 R1 R2 R3 R4 ( R1 R1 R2 )( R3 R4 ) R`1 R4 R1 R3 R1 R4 U U R R R ( R1 R1 R2 )( R3 R4 ) 1 (1 2 )(1 4 ) R1 R1 R3
⑶ 电路补偿法
F
R1
F R1 R2
F
R2
构件受弯曲应力
构件受单向应力
梁受弯曲应变时,应变片R1和R2的变形方向相反,上面受拉,下 面受压,应变绝对值相等,符号相反,将它们接入电桥的相邻臂后, 可使输出电压增加一倍。当温度变化时,应变片R1和R2阻值变化的符 号相同,大小相等,电桥不产生输出,达到了补偿的目的。
1、温度误差
设环境引起的构件温度变化为Δt(℃)时,粘贴在 试件表面的应变片敏感栅材料的电阻温度系数为αt ,则 应变片产生的电阻相对变化为: 由于敏感栅材料和被测构件材料两者线膨胀系数不同 ,当Δt 存在时,引起应变片的附加应变,相应的电阻 相对变化为:

中国石油大学化工检测仪表第三章 压力测量

中国石油大学化工检测仪表第三章 压力测量

当绝对压力大于大气压时,一般用表压表示; 绝对压力小于大气压时,一般用真空度表示。
基本概念
三、压力仪表分类:根据信号传输方式 1. 就地指示式:液柱式、弹管压力表 2. 远传信号式:电阻式、电容式、霍尔式、电感式等
第二节 就地指示压力测量仪表
3.2.1 液柱式压力计 3.2.2 弹性式压力计
3.2.1 液柱式压力计
四、 液柱式压力计特点 (1) 就地指示,简单直观 (2) 测量低压(差压)
(3)常用于实验室,因不能耐高温、易碎,现场很少用
(4)因工作液不同,液柱表面会出现弯月现象,正确的读数方法: 浸润性工作液:读取凹月 面的最低点;
非浸润性工作液:读取凸 月面的最高点。
3.3.2 弹性式压力计
ห้องสมุดไป่ตู้
三、电接点压力表 在普通弹簧管压力表的基础 上附加两个静触点1和2,触点 位置可根据要求的压力上、下 限数值设定。 指针3为测量值,是动触点, 在动、静触点之间接入电源。 压力超限时,动、静触点闭 合,报警回路接通,信号灯亮 (蜂鸣器响)发出报警信号。 还可经中间继电器实现某种信号联锁控制或位式控制。
3.2.1 液柱式压力计
一、U型管压力计
根据静力平衡原理可知,在U形管2-2截面上 左右压力平衡
被测介质 ρ´
教材是力平衡:PA ghA ghA PA A 有问题
P gh gh PA
g — 重力加速度; PA — 相对较低的压力或大气压; P — 相对较高的压力。
结论:
x k1 P
k1 ↑ →量程↓
K1由若弹簧管横截面几何形状、刚度决定,则 P↑→ x↑ 可据位移x变化测量压力P。
刚度↑→ k1↓→量程↑ 弹簧管长度↑→ k1 ↑ →量程↓ 用于小量程(多圈弹簧管)

第三章压力和差压测量及变送

第三章压力和差压测量及变送

0
1 2 P
E
R2 bh
(1
b2 a2 )
2பைடு நூலகம்
(3-13)
式中,θ0为弹簧管中心角的初始角;Δθ为受压后中心角的改变量;a为弹簧 管椭圆形截面的长半轴;b为弹簧管椭圆形截面的短半轴;h为弹簧管椭圆形 截面的管壁厚度;R为弹簧管弯曲圆弧的外半径; k为几何参数, k=Rh/a2 ;α、β为与比值有关的参数。
② 若提高U形管内工作液的密度少则可扩大仪 表量程,但灵敏度降低,即在相同压力的作用下,
h值变小。
3.2 液柱式压力检测
2.误差分析
(1) 温度误差 这是指由于环境温度的变化,而引起刻度标尺长度和工 作液密度的变化,一般前者可忽略,后者应进行适当修正。例如,当水从 10℃变化到20℃时,其密度从999.8 kg/m2减小到998.3kg/m2,相对变化量为 0.15%。
P1= P2+ pgh
(3-3)
式中:p为U形管内所充工作液的密度;
g为U形管所在地的重力加速度;
h为U形管左右两管的液面高度差。
如果将P2管通大气压,即P2=P0,则所测为表压, 即有
由此可见:
P = P1+ P2 = pgh
① 用U形管可以检测两个被测压力之间的差值 (即差压),或检测某个表压。
表3-1 压力单位换算表
3.压力的表示方式
压力的表示方式有3种:绝对压力Pa、表压P、真空度或负压Ph。 绝对压力是指物体所实际承受的压力。
表压是指用一般压力表所测得的压力,它是高于大气压的绝对压
力Pa与大气压力P0之差,即
P = Pa - P0
(3-1)
真空度是指大气压P0与低于大气压的绝对压力Pa之差,有时也称

完整版化工仪表培训资料

完整版化工仪表培训资料
相对百分误差 δ=?fmax/range 目前我国生产的仪表常用的精度等级有: 0.005、0.02、0.05、0.1、0.2、0.4、0.5、 1.0、1.5、2.5、4.0等
2. 变差
仪表基础知识
是指在外界条件不变的情况下,用同一 仪表对被测量在仪表全部测量范围内进行 正反行程(即北侧参数逐渐由小到大和逐 渐由大到小)测量时,被测量值正行和反 行所得到的两条特性曲线之间最大偏差。
Psig 磅/平方英寸 (表压力,pound per square inch , gauge) Psia (绝对压力)磅/平方英寸(pounds per square inch, absolute)
压力检测及仪表
(2)常见压力单位的换算
1Pa=1 N/m2 1Mpa=1×106Pa 1 kgf/cm2 = 0.0981 MPa 1 bar = 0.1 MPa 1 mmH2O = 9.81 ×10-6 MPa 1 mmHg = 1.333 ×10-3 MPa 1 atm = 0.1013 MPa
原理
弹性式压力计是利用各种形式的弹性元件, 在被测介质压力的作用下,使弹性元件受压后 产生弹性变形的原理而制成的测压仪表。
优点
具有结构简单、使用可靠、读数清晰、牢固 可靠、价格低廉、测量范围宽以及有足够的精 度等优点。
可用来测量几百帕到数千兆帕范围内的压 力。
压力检测及仪表
(2)弹性元件
弹性元件
弹簧管式 波纹管式
?检测仪表 ?显示仪表 ?集中控制仪表 ?控制仪表 ?执行器
仪表基础知识
3. 按仪表的组成形式分类
? 基地式仪表
基地式仪表:将测量、显示、控制等各部分集中 组装在一个表壳里,从而形成 一个整体,并且可 就地安装的的一类仪表。

第三章压力和差压测量

第三章压力和差压测量

倾斜角度越小,l越长,测量灵敏度就越高; 但不可太小,否则液柱易冲散,读数较困难, 误差增大。 这种压力计可以测量到0.98Pa的微压。为了 进一步提高微压计的精确度,应选用密度小 的酒精作为工作液体。
3.2 液柱式压力计
3.2.5 液柱式压力计的测量误差及其修正
环境温度变化的影响
环境温度偏离规定温度20°C后,封液密度改变对压力计读 数影响的修正公式为
3
3.5 压力检测系统设计
3.2 液柱式压力计
3.2.1 概述
◆ 原理:利用液柱对液柱底面产生的静压力与被测压力相 平衡的原理,通过液柱高度反映被测压力的大小。 ◆ 优点:结构简单,使用方便,有相当高的准确度,应用 很广泛。 ◆ 缺点:量程受液柱高度的限制,体积大,玻璃管容易损 坏及读数不方便。
◆ 介质:采用水银或水为工作液,用U形管或单管进行测 量,常用于低压、负压或压力差的检测。
当受到外界作用,使中间的活动电极板产生一个微小的位移 后,如图 (b)所示。

由上式可知,差动平板电容器的电容变化量与活动电极的位 移成正比。而且当位移较小时,近似满足线性关系。电容式 压力变送器正是基于这一工作原理而设计的。
3.3 弹性元件及弹性压力表
3.3 弹性元件及弹性压力表
★ 差压---膜片位移转换
介质的表压力或负压力作用下产生 的弹性变形来反映被测压力的大小。
◆ 电气式:用压力敏感元件直接将压力转换成
电阻、电荷量等电量的变化。
3.1 压力、压差的概念及单位
3.1.4 压力测量仪表分类
按信号原理不同,大致可分为四类:
◆液柱式:根据流体静力学原理,把被测压力转换成液 柱高度。 ◆机械式:根据弹性元件受力变形的原理,将被测压力 转换成位移。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章压力检测与仪表
一、 测量原理
当弹性元件在轴向受到外力作用 时,就会 产生拉伸或压缩位移x,即
x=pA/C
式中p—为压力,Pa; A—承受压力的有效面积,m2; C—弹性元件的刚度系数。
当弹性元件材料、尺寸等确定后,则弹性 元件产生拉伸或压缩位移x与被测压力p成正比, 这就是弹性式压力表的测量原理。
(一)霍尔效应
把半导体单晶薄片(霍尔片)置于磁场B中, 当在晶片的y轴方向上通以一定大小的电流I时, 在晶片的x轴方向的两个端面上将出现电势,这 种现象称霍尔效应,所产生的电势称为霍尔电势 UH。
第3章压力检测与仪表
霍尔电势UH与电流I以及磁场强度B的关系 如下:
UH=RHIB 式中RH为霍尔系数,与霍尔片材料、结构尺寸 有关。改变磁场强度B或电流I都可使UH发生变 化。
(K1-比例系数)
(2) ΔP使一个平板电容器的极板间距增加,变为
d1=d0+Δd;另一个电容器的间距减少至d2=d0- Δd。电容量分别为:
C1=K2/(d0+Δd )
C2=K2/(d0-Δd )
(K2-比例系数)
(3) Δd很小,满足d02-Δd 2≈d02 ,则电容的变化量
与压差ΔP成正比:
ΔC=C2-C1=K3ΔP (K3=2K1K2/d02)
第3章压力检测与仪表
(三)膜盒压力表
膜盒压力表主要用于测量较低压力或负 压的气体压力,压力测量范围为-20~40kPa, 仪表的准确度等级一般为1.5~2.5级。
•金属膜 片
•膜盒压力 表
•膜片压力 表
第3章压力检测与仪表
第三节 压力(差压)传感器
压力传感器结构型式多种多样,常见的 型式有压电式、压阻式、应变式、电感式、 电容式、霍尔式及振弦式等。
三、压力检测方法
(1) 弹性力平衡法: 利用弹性元件受压力作用发生弹性形变而产生的弹性 力与被测压力相平衡的原理。
(2) 重力平衡方法: 利用一定高度的工作液体产生的重力或砝码的重量与 被测压力相平衡的原理。
(3) 机械力平衡方法: 将被测压力经变换元件转移成一个集中力,用外力与 之平衡,通过测得平衡时的外力来得到被测压力。
第3章压力检测与仪表
压阻式压力传感器结构示意图
1-单晶硅平膜片;2-低压腔;3-高压腔; 4-硅杯;5-引线
第3章压力检测与仪表
第四节 真空计
真空计是检测真空度的仪表。 按真空计刻度方法分类,可分为绝对真空 计和相对真空计。常用的U形管压力计、压缩式 真空计等属于绝对真空计;热传导真空计和电离 式真空计等属于相对真空计。 按真空计测量原理分类,可分为直接测量 真空计和间接测量真空计。
第3章压力检测与仪表
三、电离式真空计
• 在一定条件下,电子在单位距离上所形 成的离子数,正比于气体的压强:
•式中P—真空度,Pa;i+—离子电流,μA; ie—发射电流,mA;S—规管常数。
• 由于有灼热的灯丝,在气压较高 时会吸收气体,影响被测真空度,但在 •1-灯丝;2-阴极; 0.1333~1.333μPa(即10-3~10-8mmHg)的 •3-加速极;4-收集极 范围内能进行准确的测量。
第3章压力检测与仪表
压阻效应
当单晶半导体受到应力作用,其载流子的 迁移率发生变化,而改变其电阻率ρ,从而引起 电阻值的相对变化,这种现象称为半导体的压阻 效应。
当硅片受压后,膜片的变形使扩散电阻的 阻值发生变化。其相对电阻变化可表示为:
ΔR/R=Keσ 式中 Ke为压阻系数;σ为应力。扩散电阻的灵敏 系数是金属应变片的50~100倍。
第3章压力检测与仪表
(二)应变压力传感器及检测电路
应变式压力传感器就是由弹性元件、应变 片以及相应测量电路【通常采用桥式电路】组成, 应变片粘贴在弹性元件上,弹性元件可以是金属 膜片、膜盒、弹簧管及其它弹性体;电路输出电 压的大小,就反应了被测压力的变化。
•圆筒形应变压力传感器及应变检测桥路
第3章压力检测与仪表
• 测量部分包括电容膜盒、高低压室及法兰组件等。 • 测量原理:将被测压力的变化转换成电容量的变
化;再将电容的变化通过电容/电流转换电路,即 可得到与压力成正比的4~20mADC输出信号。
第3章压力检测与仪表
电容式压力变送器的压力-电容转换关系
(1)压差ΔP与移动距离Δd 近似线性关系:
Δd=K1ΔP
第3章压力检测与仪表
(一)仪表量程的选择
选择原则:安全、可靠:
(1)被测压力较稳定场合:最大工作压力不应超过 仪表满量程的3/4;
(2)被测压力波动较大或测脉动压力:最大工作压 力不应超过仪表满量程的2/3;
(3)为保证测量准确度,最小工作压力不应低于满 量程的1/3;
(4)优先满足最大工作压力条件; (5)实际量程符合国家标准规定值。我国出厂的压
C=εS/d
只要保持上式中任何两个参数为常数,电
容就是另一个参数的函数。故电容变换器有变间
隙式、变面积式和变介电常数式三种。电容式压
力(差压)传感器器常采用变间隙式。
•S
•d
•ε
第3章压力检测与仪表Biblioteka •转换放大单元•I0
•P1
•填充 液(硅 油)
•固定电极
•P2
•可动电极
•隔离膜片
电容式压力传感器结构与检测原理图
第3章压力检测与仪表
三、压电式压力传感器
压电式压力传感器是利用压电材料的压电 效应将被测压力转换为电信号。输出的大小与输 入压力成正比例关系,按压力指示。
特点:结构简单、紧凑,小巧轻便,工作 可靠,线性度好,频率响应高,量程范围广。
第3章压力检测与仪表
压电效应
压电材料在沿一定方向受到压力或拉力作 用时而发生变形,并在其表面上产生电荷;而且 在去掉外力后,它们又重新回到原来的不带电状 态,这种现象就称为压电效应。
如图,压缩前、后压强 与体积变化关系为:
PV=(P+H)VC
•式中P—气体受压缩前的压强,即被测空间的真空度; •V—气体受压缩前的体积,即测量管的容积,图(a); •(P+H)—气体受压缩后的压强,H为水银柱的高度差; •VC=πd2H/4 —气体受压缩• 后的体积,即在测量管上端 毛细管(直径为d)内气体占有的容积,图( b)。
第3章压力检测与仪表
弹性元件结构和特点
第3章压力检测与仪表
二、弹性式压力计
(一)弹簧管压力计
弹簧管压力表在 弹性式压力表中更是 历史悠久,应用广泛。 弹簧管压力表中压力 敏感元件是弹簧管。 弹簧管的横截面呈非 圆形(椭圆形或扁形), 弯成圆弧形的空心管 子,如图所示。
第3章压力检测与仪表
弹簧管压力 表
第3章压力检测与仪表
一、压缩式真空计
压缩式真空计的基本形式是麦氏真空规, 它是根据波义耳定律工作的,即在温度不变的条 件下,根据气体压缩前、后的压力与体积的关系 来测量真空度。
可测量133.3μPa(即10-5mmHg)的真空度,但 不能测量蒸汽的压强。

第3章压力检测与仪表
压缩式真空计检测原理
(4)物性测量方法: 基于敏感元件在压力的作用下某些物理特性发生与压 力成确定关系变化的原理。
第3章压力检测与仪表
第二节 弹性式压力计
用弹性传感器(又称弹性元件)组成的 压力测量仪表称为弹性式压力计。弹性元 件受压后产生的形变输出(力或位移),可 以通过传动机构直接带动指针指示压力(或 压差),也可以通过某种电气元件组成变送 器,实现压力(或压差)信号的远传。
燃易爆等; (3)对仪表输出信号的要求:直接显示或远传、记
录、报警等; (4)使用的环境:爆炸性、高温、低温场所。
第3章压力检测与仪表
二、压力计的安装
压力计的安装正确是否,直接影响到测量 结果的正确性与仪表的寿命,一般要注意以下 事项:
应变效应:当金属导体受力(拉伸或压缩), 导体的几何尺寸及其电阻率都会发生变化,从而 引起电阻值的相对变化,且阻值变化与应变成正 比。
第3章压力检测与仪表
(一)测量原理
受到压力作用后,应变片电阻发生变化:
式中μ为应变材料的泊松比;ε=dl/l为应变。
电阻率ρ的变化与电阻丝体积V的变化成正比:
式中m 为电阻丝材料固有的比例系数。
五、压阻式压力检测
压阻元件是基于压阻效应工作的一种压力 敏感元件。它实际上就是在半导体材料的基片上 利用集成电路工艺制成的扩散电阻。
由于单晶硅平膜片在微小变形时有良好的 弹性特性,因此常作为弹性元件使用。
它具有精度高、工作可靠、动态响应好、 迟滞小、尺寸小、重量轻、结构简单等特点,可 在恶劣的环境条件下工作,便于实现显示数字化。
第3章压力检测与仪表
2020/11/26
第3章压力检测与仪表
第三章 压力检测与仪表
第一节 概述 第二节 弹性式压力计 第三节 压力(差压)传感器 第四节 真空计 第五节 压力检测仪表的选用
第3章压力检测与仪表
第一节概述
一、压力定义与单位
垂直作用在单位面积上的力称压力。 在国际单位制(SI)和我国法定计量单位中, 压力的单位是“帕斯卡”,简称“帕”,符号为 “Pa”。 由于历史原因,其它一些压力单位还在使 用,表3-1给出了各种压力单位之间的换算关系。
• 因为VC << V,所以有: •P与测量管段上的高 度差H的平方成正比。
第3章压力检测与仪表
二、热电偶式真空计
• 利用发热丝周围气体的导热率与气体的 稀薄程度(真空度)间的关系。
• 一组是加热丝,一般用铂丝 或钨丝,通入恒定的加热电流; • 另一组是热电偶的热电极, 其工作端焊在加热丝上,用来测量 加热丝表面温度的变化,一般用镍 铬—康铜热电偶。 • 可以测量气体和蒸汽的压强, 测量上限通常为13.33mPa(即10-4 mmHg)。
相关文档
最新文档