ASTM E119 建筑材料耐火测试
耐火试验标准
耐火试验标准
耐火试验标准是指用于评估材料或制品在受火灾影响时的耐火性能的一系列技术标准。
以下是一些常见的耐火试验标准:
1. 立式隧道耐火试验(ISO 834)
2. 火灾试验标准(ASTM E119)
3. 火灾温度曲线试验(ISO 834-1)
4. 火葬试验(ASTM E108)
5. 隧道雾化试验(EN 13501-6)
这些标准通常涉及材料的热传导性、热膨胀性、燃烧性能、气体毒性等特性。
耐火试验的目的是确保材料或制品在火灾中能够保持结构完整性和功能,并尽可能地减少火灾对人和财产的伤害。
此外,不同国家和地区也制定了自己的耐火试验标准,以适应本地的需求和要求。
例如,欧洲市场的耐火试验标准主要由欧洲联合委员会(CEN)和欧洲规范委员会(ETSI)颁布,美
国市场则由美国标准与测试研究组织(ASTM)颁布。
在建筑领域,耐火试验的应用非常广泛,用于评估防火隔板、防火门窗、防火涂料、防火玻璃等建筑材料和制品的耐火性能。
此外,耐火试验也可以应用于其他行业,如航空、电子、汽车等领域,以确保产品在极端条件下的性能和安全性。
astm e119-22建筑结构和材料防火试验的标准试验方法
astm e119-22建筑结构和材料防火试验的标准试验方法一、引言ASTM E119-22 是由美国材料与试验协会(ASTM)制定的标准,用于评估建筑结构和材料的防火性能。
该标准规定了使用热量释放、烟气生成、火焰传播和耐火时间等参数来评估建筑材料的防火性能。
二、目的该试验方法旨在提供一种评估建筑结构和材料防火性能的标准化方法,以确保建筑材料在火灾中的安全性能。
通过这种方法,可以比较不同材料的防火性能,并为建筑设计和防火安全提供指导。
三、试验方法1. 热量释放:ASTM E119-22 通过测量热释放速率(HRR)和总热量释放(THR)来评估建筑材料的热量释放性能。
热释放速率是指在特定时间间隔内燃烧材料所释放的热量,而总热量释放是指在整个燃烧过程中所释放的总热量。
这些参数可以用来评估材料的燃烧性能和火灾的潜在危险性。
2. 烟气生成:该标准通过测量烟气生成速率和总烟气生成量来评估建筑材料的烟气生成性能。
烟气生成速率是指在特定时间间隔内产生的烟气量,而总烟气生成量是指在整个燃烧过程中所产生的烟气总量。
这些参数可以用来评估火灾中烟气的危害程度。
3. 火焰传播:ASTM E119-22 通过测量火焰传播速度和火焰高度来评估建筑材料的火焰传播性能。
火焰传播速度是指材料燃烧时火焰沿材料表面传播的速度,而火焰高度是指燃烧过程中火焰的最大高度。
这些参数可以用来评估火灾的蔓延速度和火灾的潜在危险性。
4. 耐火时间:该标准通过测量建筑结构或材料在模拟火灾条件下的耐火时间来评估其防火性能。
耐火时间是指材料或结构在特定温度下保持完整性的时间长度。
这些参数可以用来评估建筑结构在火灾中的耐火能力和安全性。
四、应用范围ASTM E119-22 的试验方法适用于评估各种类型的建筑结构和材料的防火性能,包括木材、塑料、玻璃、金属等。
该标准可以为建筑设计师、工程师和消防安全专业人员提供有关建筑材料和结构防火性能的可靠数据,以指导建筑设计和防火安全措施的制定。
astm检测标准
astm检测标准ASTM(American Society for Testing and Materials)成立于1898年,是美国最大的标准化组织之一。
ASTM制定了许多国际通用的检测标准,广泛应用于各个行业,包括建筑、材料、化学、环境、航空航天等领域。
本文旨在介绍ASTM检测标准的重要性、分类以及其在实际应用中的价值。
一、ASTM检测标准的重要性ASTM检测标准在国际贸易中具有极高的重要性。
标准化的检测方法可以确保产品的质量和可靠性,促进各国之间的合作和交流。
此外,ASTM标准还能够帮助企业提高效率,降低成本,为产品提供市场竞争力。
二、ASTM检测标准的分类ASTM检测标准按照不同行业和领域进行分类。
以下是一些常见的分类:1. 建筑材料标准:ASTM E119-19a《建筑构件和结构体火焰蔓延试验方法标准》等,用于测试建筑材料的防火性能和耐久性。
2. 金属材料标准:ASTM A370-20《机械性能测试标准方法》等,用于测试金属材料的力学性能和化学成分。
3. 化学分析标准:ASTM D6866-18《生物基材料中碳和氧的质量分数测定方法》等,用于测试化学物质的含量和组成。
4. 环境标准:ASTM D1298-12e2《原油密度、相对密度和API重力测定方法标准试验方法》等,用于评估环境中的污染物和水质。
5. 航空航天标准:ASTM F519-18a《金属材料应力腐蚀开裂试验方法标准》等,用于测试航空航天领域的材料和部件。
三、ASTM检测标准的实际应用ASTM检测标准在各行各业都得到了广泛应用。
1. 建筑行业:ASTM标准可用于测试建筑材料的性能和安全性,确保建筑物的结构稳定和抗灾能力。
2. 化工行业:ASTM标准可以测试化学品的成分和纯度,确保产品的安全性和质量。
3. 医药行业:ASTM标准可用于药物的纯度测试、药物包装的密封性能等,保证药物的安全和有效性。
4. 环境保护:ASTM标准可以用于检测环境中的有毒物质、水质、大气污染等,为环境治理和保护提供科学依据。
美国关于建筑材料防火测试标准
美国关于建筑材料防火测试标准
火灾给人民带来的灾难是无穷的,轻则致残,重则致命。
它不但伤及生命,也可以摧毁建筑,破坏商业贸易。
因此,产品和材料的防火措施是刻不容缓的。
以下是美国建筑材料防火测试标准。
ASTM E1354 耗氧量法测定材料释热及烟雾释放速率方法
ASTM E 970 使用辐射热能源暴露的阁楼地板绝缘的临界辐射通量的测试方法ASTM D3675 辐射热源法评定柔性多孔材料的表面燃烧测试方法
ASTM E814 贯穿部阻火系统着火温度试验方法
ASTM E84 建筑材料表面燃烧性能
ASTM E119建筑结构和材料防火测试的标准测试方法
ASTM E136 不燃性测试
ASTM E162 辐射热源法表面燃烧性能测试
ASTM D3675 柔性多孔材料辐射热源发表面燃烧防火测试
ASTM E648 地面材料临界热辐射测试
ASTM D2843 塑料烟雾密度测试
NFPA259 建筑材料潜在热量测试
UL 723 建筑材料表面燃烧性能的测定方法
UL 263 建筑结构和材料的防火测试
UL 10C 防火门配件的防火测试
UL 10B 防火门配件的耐火测试
UL 2043 空气处理分离产品及其附件热量和可见烟雾释放的防火测试。
ASTM E119 建筑物和建筑材料的防火检测
ASTM E119-00建筑物和建筑材料的防火检测1.适用范围1.1本防火实验特性曲线标准所描述的实验方法,适用于建筑上的砖石构件和结构材料的复合构件,包括承重和非承重墙和隔墙、柱、主梁、次梁、板材以及用于地板和屋顶的板梁组合构件。
这些方法还适用于其它构成建筑体永久性整体部分的组件和结构件。
1.2 分类的目的应当是记录特定条件下暴露于火焰时的相对性能,在其它条件下或离开火焰后,不应当引申决定具有适用性。
1.3 本标准用于在控制条件下描述材料、制品或组件对热和火焰的特性曲线,并没有考虑到实际火灾情况下材料、制品或组件的火灾危险评估所需的所有因素。
1.4 这些测试方法规定了一种暴露火焰的标准,用以比较建筑构件的测试结果。
这些测试结果是评估建筑物和构件的预期防火性能的一个因素。
应用这些测试标准来预计实际建筑的防火性能时,需评价测试条件。
1.5 用英制单位标记的数值作为标准值。
括号内给出的数值仅供参考。
1.6 本标准无意阐明所有与之有关的安全问题。
在使用本标准前,采用适当的安全和卫生措施以及决定规范限制的适用范围,是使用者的责任。
1.7 本标准文本中参照了注释和注脚作为解释性材料,这些注释的注脚(不包括表的图中的)不应作为本标准的要求。
2.引用标准2.1 ASTM标准:C569,E176。
3.术语3.1定义:本实验方法中术语的定义,参照术语标准E176。
4.意义和用途4.1 本测试方法可评价1.1节所述建筑构件在预设的实验条件下所具有防火时间、保持结构完整的时间或同时评价两种性能,防火性能与构件种类有关。
4.2 试验将一个试样置于标准火焰之中,通过一段时间达到规定的温度。
必要时,构件置于火焰中后还需经受规定的标准软管水流的测试。
试验提供建筑构件在这些火焰条件下防火实验曲线的相对测量值。
试验的火焰条件并不代表实际火灾情形,实际情形可随着火焰量、火焰性质、火焰分布、通风情况、房间大小和形状以及房间的热降特性的不同而变化。
阻燃测试的全球标准
NFF16-101,NFP92-501,NFP92-503,NFP92-504,NFP92-505,NFX10-702
中国
GB8624,GB20285,GB20286,GB8627,GB8626
国际
ISO9239,ISO4589-2,ISO5659-2,ISO11925-2,ISO5658,ISO1716
阻燃测试的全球标准
什么是阻燃测试?
材料的可燃性是指在规定的试验条件下,材料或制品进行有焰燃烧的能力。它包括了是否容易点燃,以及能否维持燃烧的能力等有关的一些特性。经过多年的发展,阻燃性测试已经形成多种标准,成为相关业界非常重点的检测项目。
阻燃测试目的:
通过对客户提供的样品进行燃烧测试,根据燃烧的结果进行相应的等级评级,协助客户对产品进行品质管控。
欧洲
EN45545-2,EN13823,EN13501-1,EN1364,EN1463,EN50266
澳大利亚
AS1530.2,AS1530.3,AS1530.4
国际电工
IEC60332,IEC60695,IEC61034,IEC60707,IEC60331
阻燃测试步骤
取样→预处理→开机调整夹具高度、火焰高度、燃气流量等→测试并记录结果→对应标准进行等级。
可燃性测试应用范围:
主要应用于橡胶、塑料类、汽车内饰件、电工电子等产品。
阻燃测试标准:
美国
NFPA130,ASTME662,ASTME662,ASTME84,ASTME119,UL94
德国
DIN5510-2,DIN4102-1,DIN54837,DIN53438,DIN75200
英国
BS6853,BS5852,BS476-6,BS476-7,BS476-20,BS5438,BS4066
astme119-2012
astme119-2012ASTM E119-2012是美国材料和试验协会(ASTM)发布的一项标准,它涉及火灾试验中建筑构件和材料的耐火性能评估。
该标准的全称是"Standard Test Methods for Fire Tests of Building Construction and Materials",被广泛应用于建筑行业,用于评估建筑材料和构件在火灾条件下的性能。
ASTM E119-2012标准包括了多个测试方法和评估标准,旨在模拟真实火灾条件下的热暴露和耐火性能。
它主要用于评估建筑构件(如墙体、楼板、门窗等)在一定时间内能够抵抗火灾蔓延的能力。
该标准通过测量构件在火灾暴露下的温度升高、结构失效时间等参数,来判断其耐火性能等级。
ASTM E119-2012标准的测试过程包括将构件置于火焰暴露下,并通过控制火焰和加热曲线来模拟真实火灾条件。
测试过程中会测量构件的温度升高速率、温度分布、热辐射等参数,并观察构件的结构破坏情况。
根据测试结果,可以评估构件的耐火性能等级,例如火焰蔓延时间、结构完整性和保护性能。
ASTM E119-2012标准的应用范围广泛,包括住宅建筑、商业建筑和工业建筑等。
它对于建筑材料和构件的选择、设计和安装具有重要的指导作用。
通过进行ASTM E119-2012标准的测试,可以确保建筑物在火灾发生时提供足够的安全保护,减少人员伤亡和财产损失。
总之,ASTM E119-2012是一项用于评估建筑构件和材料耐火性能的标准,通过模拟真实火灾条件下的热暴露和结构失效,来判断构件的耐火性能等级。
它在建筑行业中具有广泛的应用,对于确保建筑物在火灾中的安全性起着重要的作用。
耐火试验标准(一)
耐火试验标准(一)耐火试验标准什么是耐火试验?耐火试验是指将材料或构件在一定的温度、时间和负荷条件下暴露于火焰或高温,以评估其耐火性能的测试方法。
耐火试验的意义耐火试验是评估建筑材料、建筑结构或其他工程成品在火灾条件下的安全性能的重要手段。
通过耐火试验可以提供科学依据,为火灾安全设计、防灭火和灭火给出科学合理的建议,保障人们的生命和财产安全。
耐火试验标准目前,国际上常用的耐火试验标准主要有: - ISO 834-1:建筑材料和元件在标准火焰作用下的火灾试验 - ASTM E119:建筑元件和结构火灾试验方法 - BS 476:建筑材料的复合抗火试验方法 - EN 1363-1:建筑构件火灾试验方法耐火试验内容耐火试验涉及到的内容通常包括: - 火焰温度及火势等级 - 负荷条件(静荷载、动荷载等) - 试验采集数据的仪器、传感器及监测仪表- 试验评估指标,如耐火极限、结构完整性、热辐射等耐火试验分类根据试验对象和试验方式的不同,耐火试验可分为: - 材料耐火试验- 构件耐火试验 - 模拟真实火灾条件的实际可燃性测试 - 实际火灾中耐火结构的现场试验耐火试验机构耐火试验机构一般由建筑材料、建筑结构和消防专业的技术人员组成,在试验设备、测试方法、安全措施等方面有着严格的要求。
常见的耐火试验机构有国家质检总局建筑材料测试中心、中国建筑科学研究院、美国国家标准和技术研究所等。
结论耐火试验是保障建筑及其他工程制品安全的重要手段。
各国有关部门应高度重视耐火试验和相关标准,加强试验机构的建设和管理,提高建筑、消防和安全等领域的管理水平。
未来展望随着建筑工程和火灾安全技术的不断进步,耐火试验标准也将不断完善和更新。
未来,随着无人机等技术的发展,可能出现更多自动化的试验方法和设备,使耐火试验更加节约时间和人力成本,提高试验效率和精度。
同时,在试验数据采集、分析和处理方面,也会不断涌现出更加智能的算法和工具。
总之,耐火试验在未来将会继续扮演着重要的角色,为人们的生命和财产安全保驾护航。
ASTM E119-15建筑物和建筑材料的防火检测
Designation:E119−15An American National Standard Standard Test Methods forFire Tests of Building Construction and Materials1This standard is issued under thefixed designation E119;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(´)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S.Department of Defense.INTRODUCTIONThe performance of walls,columns,floors,and other building members underfire-exposureconditions is an item of major importance in securing constructions that are safe,and that are not amenace to neighboring structures or to the public.Recognition of this is registered in the codes ofmany authorities,municipal and other.It is important to secure balance of the many units in a singlebuilding,and of buildings of like character and use in a community;and also to promote uniformityin requirements of various authorities throughout the country.To do this it is necessary that thefire-resistive properties of materials and assemblies be measured and specified according to a commonstandard expressed in terms that are applicable alike to a wide variety of materials,situations,andconditions of exposure.Such a standard is found in the test methods that follow.They prescribe a standard exposingfire ofcontrolled extent and severity.Performance is defined as the period of resistance to standard exposureelapsing before thefirst critical point in behavior is observed.Results are reported in units in whichfield exposures can be judged and expressed.The test methods may be cited as the“Standard Fire Tests,”and the performance or exposure shallbe expressed as“2-h,”“6-h,”“1⁄2-h,”etc.When a factor of safety exceeding that inherent in the test conditions is desired,a proportionalincrease should be made in the specified time-classification period.1.Scope*1.1The test methods described in thisfire-test-response standard are applicable to assemblies of masonry units and to composite assemblies of structural materials for buildings, including loadbearing and other walls and partitions,columns, girders,beams,slabs,and composite slab and beam assemblies forfloors and roofs.They are also applicable to other assem-blies and structural units that constitute permanent integral parts of afinished building.1.2It is the intent that classifications shall register compara-tive performance to specificfire-test conditions during the period of exposure and shall not be construed as having determined suitability under other conditions or for use after fire exposure.1.3This standard is used to measure and describe the response of materials,products,or assemblies to heat and flame under controlled conditions,but does not by itself incorporate all factors required forfire hazard orfire risk assessment of the materials,products or assemblies under actualfire conditions.1.4These test methods prescribe a standardfire exposure for comparing the test results of building construction assem-blies.The results of these tests are one factor in assessing predictedfire performance of building construction and assem-blies.Application of these test results to predict the perfor-mance of actual building construction requires the evaluation of test conditions.1.5The values stated in inch-pound units are to be regarded as standard.The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the1These test methods are under the jurisdiction of ASTM Committee E05on FireStandards and are the direct responsibility of Subcommittee E05.11on FireResistance.Current edition approved July1,2015.Published September2015.Originallyapproved st previous edition approved in2014as E119–14.DOI:10.1520/E0119-15.These test methods,of which the present standard represents a revision,wereprepared by Sectional Committee on Fire Tests of Materials and Construction,underthe joint sponsorship of the National Bureau of Standards,the ANSI Fire ProtectionGroup,and ASTM,functioning under the procedure of the American NationalStandards Institute.*A Summary of Changes section appears at the end of this standard Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959.United Statesresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.7The text of this standard references notes and footnotes which provide explanatory material.These notes and footnotes (excluding those in tables andfigures)shall not be considered as requirements of the standard.2.Referenced Documents2.1ASTM Standards:2C569Test Method for Indentation Hardness of Preformed Thermal Insulations(Withdrawn1988)3D6513Practice for Calculating the Superimposed Load on Wood-frame Walls for Standard Fire-Resistance TestsE176Terminology of Fire StandardsE177Practice for Use of the Terms Precision and Bias in ASTM Test MethodsE691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test MethodE814Test Method for Fire Tests of Penetration Firestop SystemsE2226Practice for Application of Hose Stream3.Terminology3.1Definitions—For definitions of terms found in this test method,refer to Terminology E176.4.Significance and Use4.1These test methods are intended to evaluate the duration for which the types of building elements noted in1.1contain a fire,retain their structural integrity,or exhibit both properties during a predetermined test exposure.4.2The test exposes a test specimen to a standardfire controlled to achieve specified temperatures throughout a specified time period.When required,thefire exposure is followed by the application of a specified standardfire hose stream applied in accordance with Practice E2226.The test provides a relative measure of thefire-test-response of compa-rable building elements under thesefire exposure conditions. The exposure is not representative of allfire conditions because conditions vary with changes in the amount,nature and distribution offire loading,ventilation,compartment size and configuration,and heat sink characteristics of the compartment. Variation from the test conditions or test specimen construction,such as size,materials,method of assembly,also affects thefire-test-response.For these reasons,evaluation of the variation is required for application to construction in the field.4.3The test standard provides for the following:4.3.1For walls,partitions,andfloor or roof test specimens: 4.3.1.1Measurement of the transmission of heat.4.3.1.2Measurement of the transmission of hot gases through the test specimen.4.3.1.3For loadbearing elements,measurement of the load carrying ability of the test specimen during the test exposure.4.3.2For individual loadbearing members such as beams and columns:4.3.2.1Measurement of the load carrying ability under the test exposure with consideration for the end support conditions (that is,restrained or not restrained).4.4The test standard does not provide the following:4.4.1Information as to performance of test specimens constructed with components or lengths other than those tested.4.4.2Evaluation of the degree by which the test specimen contributes to thefire hazard by generation of smoke,toxic gases,or other products of combustion.4.4.3Measurement of the degree of control or limitation of the passage of smoke or products of combustion through the test specimen.4.4.4Simulation of thefire behavior of joints between building elements such asfloor-wall or wall-wall,etc.,connec-tions.4.4.5Measurement offlame spread over the surface of test specimens.4.4.6The effect onfire-resistance of conventional openings in the test specimen,that is,electrical receptacle outlets, plumbing pipe,etc.,unless specifically provided for in the construction tested.Also see Test Method E814for testing of fire stops.5.Test Specimen5.1The test specimen shall be representative of the con-struction that the test is intended to assess,as to materials, workmanship,and details such as dimensions of parts,and shall be built under conditions representative of those applied in building construction and operation.The physical properties of the materials and ingredients used in the test specimen shall be determined and recorded.5.2The size and dimensions of the test specimen specified herein shall apply for classifying constructions of dimensions within the range employed in buildings.When the conditions of use limit the construction to smaller dimensions,the dimensions of the test specimen shall be reduced proportion-ately for a test qualifying them for such restricted use.5.3Test specimens designed with a built-up roof shall be tested with a roof covering of3-ply,15-lb(6.8-kg)type felt, with not more than120lb(54kg)per square(100ft2(9m2)of hot mopping asphalt without gravel surfacing.Tests with this covering do not preclude thefield use of other coverings with a larger number of plys of felt,with a greater amount of asphalt or with gravel surfacing.5.4Roofing systems designed for other than the use of built-up roof coverings shall be tested using materials and details of construction representative offield application.6.Protection and Conditioning of Test Specimen6.1Protect the test specimen during and after fabrication to ensure its quality and condition at the time of test.The test2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3The last approved version of this historical standard is referenced on.specimen shall not be tested until its required strength has been attained,and,until an air-dry condition has been achieved in accordance with the requirements given in6.2–6.4.Protect the testing equipment and test specimen undergoing thefire-resistance test from any condition of wind or weather that is capable of affecting results.The ambient air temperature at the beginning of the test shall be within the range of50to90°F(10 to32°C).The velocity of air across the unexposed surface of the test specimen,measured just before the test begins,shall not exceed4.4ft(1.3m/s),as determined by an anemometer placed at right angles to the unexposed surface.When me-chanical ventilation is employed during the test,an air stream shall not be directed across the surface of the test specimen.6.2Prior to thefire-resistance test,condition test specimens with the objective of providing moisture condition within the test specimen representative of that in similar construction in buildings.For purposes of standardization,this condition is established at equilibrium resulting from conditioning in an ambient atmosphere of50%relative humidity at73°F(Note 1).6.2.1With some constructions it is difficult or impossible to achieve such uniformity.Where this is the case,test specimens are tested when the dampest portion of the test specimen,or the portion at6-in.(152-mm)depth below the surface of massive constructions,has achieved a moisture content corresponding to conditioning to equilibrium with air in the range of50to 75%relative humidity at7365°F(2363°C).6.2.2When evidence is shown that test specimens condi-tioned in a heated building will fail to meet the requirements of 6.2after a12-month conditioning period,or in the event that the nature of the construction is such that it is evident that conditioning of the test specimen interior is prevented by hermetic sealing,the moisture condition requirements of6.2 are permitted to be waived,and either6.2.2.1or6.2.2.2shall apply.6.2.2.1Alternative conditioning methods are permitted to be used to achieve test specimen equilibrium prescribed in6.2 (Note2),or6.2.2.2The specimen tested when its strength is at least equal to its design strength after a minimum28day condition-ing period.6.3Avoid conditioning procedures that will alter the struc-tural orfire-resistance characteristics of the test specimen from those produced as the result of conditiong in accordance with procedures given in6.2.6.4Information on the actual moisture content and distri-bution within the test specimen shall be obtained within72h prior to thefire.Include this information in the test report(Note 3).N OTE1—A recommended method for determining the relative humidity within a hardened concrete test specimen with electric sensing elements is described in Appendix I of the paper by Menzel,C.A.,“A Method for Determining the Moisture Condition of Hardened Concrete in Terms of Relative Humidity,”Proceedings,ASTM,V ol55,1955,p.1085.A similar procedure with electric sensing elements is permitted to be used to determine the relative humidity within test specimens made with other materials.With wood constructions,the moisture meter based on the electrical resistance method can be used,when appropriate,as an alternative to the relative humidity method to indicate when wood has attained the proper moisture content.Electrical methods are described on page12-2of the 1999edition of the Wood Handbook of the Forest Products Laboratory, U.S.Department of Agriculture.The relationships between relative humidity and moisture content are given in Table3-4on p.3-7.This indicates that wood has a moisture content of13%at a relative humidity of70%for a temperature of70to80°F(21to27°C).N OTE2—An example where alternative conditioning may be employed is where concrete specimens are conditioned at elevated temperatures in a “heated building”to more rapidly obtain the conditions described in6.2. In such cases,temperatures other than73°F are used to reach a maximum 50%relative humidity.N OTE3—If the moisture condition of the test specimen is likely to change drastically from the72-h sampling time prior to test,the sampling should be made not later than24h prior to the test.7.Control7.1Fire-Resistance Test:7.1.1Time-Temperature Curve:7.1.1.1The furnace temperatures shall be controlled to follow the standard time-temperature curve shown in Fig.1. The points on the curve that determine its character are: 1000°F(538°C)at5min1300°F(704°C)at10min1550°F(843°C)at30min1700°F(927°C)at1h1850°F(1010°C)at2h2000°F(1093°C)at4h2300°F(1260°C)at8h or over7.1.1.2For a more detailed definition of the time-temperature curve,see Appendix X1.N OTE4—Recommendations for Recording Fuel Flow to Furnace Burners—The following provides guidance on the desired characteristics of instrumentation for recording theflow of fuel to the furnace burners. Fuelflow data may be useful for a furnace heat balance analysis,for measuring the effect of furnace or control changes,and for comparing the performance of test specimens of different properties in thefire-resistance test.44Harmathy,T.Z.,“Design of Fire Test Furnaces,”Fire Technology,V ol.5,No. 2,May1969,pp.146–150;Seigel,L.G.,“Effects of Furnace Design on Fire Endurance Test Results,”Fire Test Performance,ASTM STP464,ASTM,1970,pp. 57–67;and Williamson,R.B.,and Buchanan,A.H.,“A Heat Balance Analysis of the Standard Fire EnduranceTest.”FIG.1Time-TemperatureCurveRecord the integrated(cumulative)flow of gas(or other fuel)to the furnace burners at10min,20min,30min,and every30min thereafter or more frequently.Total gas consumed during the total test period is also to be determined.A recordingflow meter has advantages over periodic readings on an instantaneous or totalizingflow meter.Select a measuring and recording system to provideflow rate readings accurate to within 65%.Report the type of fuel,its higher(gross)heating value,and the fuel flow(corrected to standard conditions of60°F(16°C)and30.0in.Hg)asa function of time.7.2Furnace Temperatures:7.2.1The temperaturefixed by the curve shall be the average temperature from not fewer than nine thermocouples for afloor,roof,wall,or partition and not fewer than eight thermocouples for a structural column.Furnace thermocouples shall be symmetrically disposed and distributed to show the temperature near all parts of the sample.The exposed length of the pyrometer tube and thermocouple in the furnace chamber shall be not less than12in.(305mm).7.2.1.1The thermocouple shall be fabricated from Chromel-Alumel thermocouple wire.The wire shall be14AWG(0.0642 in.diameter,1.628mm diameter)or16AWG(0.0508in. diameter1.450mm diameter)or18AWG(0.0403in.diameter, 1.024mm diameter).The thermocouple junction shall be formed by fusion-welding the wire ends to form a bead. Each thermocouple wire lead shall be placed into one of the two holes of the ceramic insulators.The ceramic insulators shall have an outside diameter of0.40in.(10mm)with two holes each having an outside diameter of0.08in.(2mm).The thermocouple wire and ceramic insulators shall be inserted into a standard weight nominal0.50in.(12.7mm)Inconel®600 pipe(Schedule40).The thermocouple bead shall be located 0.2560.04in.(6.3561mm)from the end of ceramic insulators and0.5060.04in.(12.761mm)from the pipe end.The thermocouple assembly is shown in Fig.2.7.2.1.2For walls and partitions,the furnace thermocouples shall be placed6in.(152mm)away from the exposed face of the test specimen at the beginning of the test.For all other test specimens,the furnace thermocouples shall be placed12in. (305mm)from the exposed face of the test specimen at the beginning of the test.During the test,furnace thermocouples shall not touch the test specimen in the event of the test specimen’s deflection.7.2.2The furnace temperatures shall be read at intervals not exceeding5min during thefirst2h,and thereafter the intervals shall not exceed10min.7.2.3The accuracy of the furnace control shall be such that the area under the time-temperature curve,obtained by aver-aging the results from the pyrometer readings,is within10% of the corresponding area under the standard time-temperature curve shown in Fig.1forfire-resistance tests of1h or less duration,within7.5%for those over1h and not more than2 h,and within5%for tests exceeding2h in duration.7.3Test Specimen Temperatures:7.3.1Temperatures Measurement of the Unexposed Sur-faces of Floors,Roofs,Walls,and Partitions:7.3.1.1Temperatures of unexposed test specimen surfaces shall be measured with thermocouples placed under dry,felted pads meeting the requirements listed in Annex A1.The wire leads of the thermocouple shall be positioned under the pad and be in contact with the unexposed test specimen surface for not less than31⁄2in.(89mm).The hot junction of the thermocouple shall be placed approximately under the center of the pad.The pad shall be heldfirmly against the surface,and shall cover the thermocouple.The wires for the thermocouple in the length covered by the pad shall be not heavier than No.18B&S gage (0.04in.)(1.02mm)and shall be electrically insulated with heat-resistant or moisture-resistant coatings,or both.N OTE5—For the purpose of testing roof assemblies,the unexposed surface shall be defined as the surface exposed to ambient air.7.3.1.2Temperatures shall be recorded at not fewer than nine points on the surface.Five of these shall be symmetrically disposed,one to be approximately at the center of the test specimen,and four at approximately the center of its quarter sections.The other four shall be located to obtain representa-tive information on the performance of the test specimen.The thermocouples shall not be located closer to the edges of the test specimen than one and one-half times the thickness of the test specimen,or12in.(305mm).Exception:those cases in which there is an element of the construction that is not otherwise represented in the remainder of the test specimen. The thermocouples shall not be located opposite or on top of beams,girders,pilasters,or other structural members if tem-peratures at such points will be lower than at more represen-tative locations.The thermocouples shall not be located over fasteners such as screws,nails,or staples that will be higher or lower in temperature than at a more representative location if the aggregate area of any part of such fasteners onthe FIG.2ThermocoupleAssemblyunexposed surface is less than1%of the area within any6-in. (152-mm)diameter circle,unless the fasteners extend through the assembly.7.3.1.3Temperatures shall be measured and recorded at intervals not greater than30s.7.3.1.4Where the conditions of acceptance place a limita-tion on the rise of temperature of the unexposed surface,the temperature end point of thefire-resistance period shall be determined by the average of the measurements taken at individual points;except that if a temperature rise30%in excess of the specified limit occurs at any one of these points, the remainder shall be ignored and thefire-resistance period judged as ended.7.3.2Temperature Measurement of Non-loaded Structural Steel Columns(Alternative Test of Steel Columns):7.3.2.1Measure the temperature of the steel with not fewer than three thermocouples at each of four levels.The upper and lower levels shall be2ft(0.6m)from the ends of the steel column,and the two intermediate levels shall be equally spaced.For situations in which the protection material thick-ness is not uniform along the test specimen length,at least one of the levels at which temperatures are measured shall include the point of minimum cover.Place the thermocouples at each level to measure temperatures of the component elements of the steel section.7.3.3Temperature Measurement of the Components of Floors and Roofs:7.3.3.1For steelfloor or roof units,locate four thermo-couples on each section(a section to comprise the width of one unit),one on the bottom plane of the unit at an edge joint,one on the bottom plane of the unit remote from the edge,one on a side wall of the unit,and one on the top plane of the unit,The thermocouples shall be applied,where practicable,to the surface of the units remote fromfire and spaced across the width of the unit.No more than four or fewer than two sections need be so instrumented in each representative span.Locate the groups of four thermocouples in representative locations spaced across the width of the unit.Typical thermocouple locations for a unit section are shown in Fig.3.7.3.3.2For test specimens employing structural members (beams,open-web steel joists,etc.)spaced at more than4ft (1.2m)on centers,measure the temperature of the steel in these members with four thermocouples at each of three or more sections equally spaced along the length of the members. For situations in which the protection material thickness is not uniform along the test specimen length,at least one of the sections at which temperatures are measured shall include the point of minimum cover.7.3.3.3For test specimens employing structural members (beams,open-web steel joists,etc.)spaced at4ft(1.2m)on center or less,measure the temperature of the steel in these members with four thermocouples placed on each member.No more than four members shall be so instrumented.Place the thermocouples at locations,such as at mid-span,over joints in the ceiling,and over lightfixtures.It shall not be required that all four thermocouples be located at the same section.7.3.3.4For steel structural members,locate thermocouples as shown in Fig.4:two on the bottom of the bottomflange or chord,one on the web at the center,and one on the topflange or chord.7.3.3.5For reinforced or pre-stressed concrete structural members,locate thermocouples on each of the tension rein-forcing elements,unless there are more than eight such elements,in which case place thermocouples on eight elements selected in such a manner as to obtain representative tempera-tures of all the elements.7.3.4Temperature Measurement of Loaded Restrained Beams:7.3.4.1Measure the temperature of the steel structural members with four thermocouples at each of three or more sections equally spaced along the length of the members.For situations in which the protection material thickness is not uniform along the test specimen length,at least one ofthe FIG.3Typical Location ofThermocouplesFIG.4Typical Location ofThermocouplesections at which temperatures are measured shall include the point of minimum cover.7.3.4.2For steel structural members,locate the thermo-couples as shown in Fig.4:two on the bottom of the bottom flange or chord,one on the web at the center,and one on the bottom of the topflange or chord.7.3.4.3For reinforced or pre-stressed concrete structural members,locate thermocouples on each of the tension rein-forcing elements unless there are more than eight such elements,in which case place thermocouples on eight elements selected in such a manner as to obtain representative tempera-tures of all the elements.7.3.5Temperature Measurement of Non-loaded Structural Steel Beams and Girders:7.3.5.1Measure the temperature of the steel with not fewer than four thermocouples at each of four sections equally spaced along the length of the member no nearer than2ft(0.6m)from the inside face of the furnace.For situations in which the protection material thickness is not uniform along the test specimen length,at least one of the sections at which tempera-tures are measured shall include the point of minimum cover. Place the thermocouples at each section to measure tempera-tures of the component elements of the steel section.7.3.6Temperature Measurement of Protective Membranes: 7.3.6.1The temperature of protective membranes shall be measured with thermocouples,the measuring junctions of which are in intimate contact with the exposed surface of the elements being protected.The diameter of the wires used to form the thermo-junction shall not be greater than the thickness of sheet metal framing or panel members to which they are attached and in no case greater than No.18B&S gage(0.040 in.)(1.02mm).The lead shall be electrically insulated with heat-resistant and moisture-resistant coatings.7.3.6.2For each class of elements being protected,tempera-ture readings shall be taken at not fewer thanfive representa-tive points.Thermocouples shall be located not less than12in. (305mm)from the edges of the test specimen.An exception is made in those cases in which there is an element or feature of the construction that is not otherwise represented in the test specimen.None of the thermocouples shall be located opposite,on top of,or adjacent to fasteners such as screws, nails,or staples when such locations are excluded for thermo-couple placement on the unexposed surface of the test speci-men in7.3.1.2.7.3.6.3Thermocouples shall be located to obtain informa-tion on the temperature at the interface between the exposed membrane and the substrate or element being protected.7.3.6.4Temperature readings shall be taken at intervals not exceeding5min.7.4Loading:7.4.1Loading of Loadbearing Walls and Partitions:7.4.1.1Throughout thefire-resistance and hose-stream tests, apply a superimposed load to the test specimen to simulate a maximum-load condition.This load shall be the maximum-load condition allowed under nationally recognized structural design criteria unless limited design criteria are specified and a corresponding reduced load is applied(Note6).A double wall assembly shall be loaded during the test to simulatefield-use conditions,with either side loaded separately or both sides together(Note7).The method used shall be reported.N OTE6—Examples of calculating the superimposed load for bearing lightweight wood-frame walls using the allowable stress design method and load and resistance factor design method are provided in X7.5.Also, an example for calculating the superimposed load for bearing lightweight cold-formed steel walls using the load and resistance factor design method is provided in X7.6.N OTE7—The choice depends on the intended use,and whether the load on the exposed side,after it has failed,will be transferred to the unexposed side.If,in the intended use,the load from the structure above is supported by both walls as a unit and would be or is transferred to the unexposed side in case of collapse of the exposed side,both walls should be loaded in the test by a single unit.If,in the intended use the load from the structure above each wall is supported by each wall separately,the walls should be loaded separately in the test by separate load sources.If the intended use of the construction system being tested involved situations of both loading conditions described above,the walls should be loaded separately in the test by separate load sources.In tests conducted with the walls loaded separately,the condition of acceptance requiring the walls to maintain the applied load shall be based on the time at which thefirst of either of the walls fails to sustain the load.7.4.2Loading of Columns:7.4.2.1Throughout thefire-resistance test,apply a superim-posed load to the test specimen to simulate a maximum-load condition.This load shall be the maximum-load condition allowed under nationally recognized structural design criteria unless limited design criteria are specified and a corresponding reduced load is applied(Note8).Make provision for transmit-ting the load to the exposed portion of the column without increasing the effective column length.N OTE8—An example for calculating the superimposed load for concrete columns using the load and resistance factor design method is provided in X7.4.7.4.2.2As an optional procedure,subject the column to1-3⁄4 times its designed working load before undertaking thefire-resistance test.The fact that such a test has been made shall not be construed as having had a deleterious effect on thefire-resistance test performance.7.4.3Loading of Floors and Roofs:7.4.3.1Throughout thefire-resistance test,apply a superim-posed load to the test specimen to simulate a maximum-load condition.This load shall be the maximum-load condition allowed under nationally recognized structural design criteria unless limited design criteria are specified and a corresponding reduced load is applied(Note9).N OTE9—Examples for calculating the superimposed load for light-weight wood-framefloors using the allowable stress design method and load and resistance factor design method are provided in X7.5.Also,an example for calculating the superimposed load for lightweight cold-formed steelfloors using the load and resistance factor design method is provided in X7.6.7.4.4Loading of Beams:7.4.4.1Throughout thefire-resistance test,apply a superim-posed load to the test specimen to simulate a maximum-load condition.This load shall be the maximum load condition allowed under nationally recognized structural design criteria unless limited design criteria are specified and a corresponding reduced load is applied.7.5Cotton PadTest:。
建筑幕墙防火性能分级
建筑幕墙防火性能分级一、引言1.1 建筑幕墙的应用背景随着我国城市化进程的加快,高层建筑日益增多,建筑幕墙作为现代建筑的外围护结构,因其美观、节能、便于施工等优点而被广泛应用。
建筑幕墙不仅起到装饰作用,还能有效隔离外部环境,提高建筑的舒适性和安全性。
在众多性能要求中,防火性能是建筑幕墙不可或缺的重要指标。
1.2 防火性能在建筑幕墙中的重要性建筑幕墙的防火性能直接关系到建筑物的安全。
在火灾发生时,如果幕墙的防火性能不足,火势很容易蔓延,导致严重后果。
因此,提高建筑幕墙的防火性能,对于减少火灾损失、保障人民群众生命财产安全具有重要意义。
1.3 建筑幕墙防火性能分级的目的与意义为了更好地评价建筑幕墙的防火性能,对其进行分级管理是非常必要的。
建筑幕墙防火性能分级的目的在于:明确不同防火等级的要求,为幕墙设计、施工和验收提供依据;提高幕墙产品的防火性能,保障建筑物安全;促进幕墙行业的技术进步,提高行业整体水平。
二、建筑幕墙防火性能分级标准2.1 国内外防火性能分级标准概述目前,国内外对建筑幕墙防火性能分级均有相应标准。
国外发达国家如美国、欧洲等,制定了严格的防火性能分级标准,对幕墙的防火性能要求较高。
我国也参照国际标准,结合国内实际情况,制定了相应的建筑幕墙防火性能分级标准。
2.2 我国建筑幕墙防火性能分级标准2.2.1 分级依据我国建筑幕墙防火性能分级依据主要包括:燃烧性能、烟气毒性、火焰传播速度、燃烧热值等指标。
2.2.2 分级指标根据幕墙的燃烧性能、烟气毒性等指标,将建筑幕墙分为A1、A2、B、C四个等级,其中A1级为最高等级,C级为最低等级。
2.2.3 分级结果判定通过对建筑幕墙进行试验和检测,根据分级指标,判断其防火性能等级。
在幕墙设计、施工和验收过程中,应严格按照相应的防火性能等级要求进行。
三、建筑幕墙防火性能分级方法3.1 实验方法实验方法是评价建筑幕墙防火性能的传统手段,主要包括燃烧试验、火焰传播速度试验、燃烧热值试验等。
各国建筑材料燃烧性能检测标准
各国建筑材料燃烧性能检测标准
近几年来多起建筑外墙外保温装饰材料引发的重大火灾事件的发生,人们也对防火意识的提高,对建筑材料燃烧性能要求也越来越高,尤其是欧美等发达国家均通过标准法规对建筑材料燃烧性能进行了严格规定。
建筑材料燃烧性能检测标准:
美国标准:ASTM E84建筑材料表面燃烧性能、ASTM E119建筑材料耐火极限测试、NFPA285测试等;
欧洲标准:EN13501-1:2007建筑制品和构件的燃烧等级测定、EN13823(SBI)建筑材料单体燃烧试验;
德国标准:DIN4102-1:建筑材料防火性能要求和测试分类等级;
英国标准:PSB BS476-6建筑材料和构件的防火测试-第6部分:制品火势蔓延的测试方法、BS476-7建筑材料和构件的防火测试-第7部分:测定产品火焰表面蔓延分类的测试方法;
国际标准化组织(ISO):ISO1716建筑材料燃烧热值测定方法、ISO1812不燃性能的测试标准等。
建筑材料的防火分级
建筑材料的防火分级在建筑行业中,安全性始终是首要考虑的因素之一。
其中,防火性能是建筑材料的重要安全标准之一。
为了确保建筑物的防火安全,全球各地的规范和标准对建筑材料的防火性能进行了详细的分类和规定。
本文将探讨建筑材料的防火分级及其重要性。
一、防火分级的重要性建筑材料的防火分级是对其燃烧性能的评估和分类。
不同类型的建筑材料在燃烧时产生的火焰和热量的释放程度不同,因此其对火灾的蔓延和火势的扩大有着不同的影响。
通过对建筑材料进行防火分级,可以有效地评估其在火灾中的安全性能,从而为建筑设计和防火安全提供重要的参考依据。
二、防火分级的标准和方法1、国内外标准国际上,防火分级的标准和方法主要参考了美国、欧洲等地的标准。
其中,美国的ASTM E119标准是世界上广泛认可的建筑防火分级标准之一。
在国内,中国国家标准GB 8624也对建筑材料的燃烧性能进行了详细的分类和规定。
2、分级方法防火分级的评估方法主要包括燃烧试验、热释放速率试验、烟密度试验等。
根据试验结果,建筑材料被分为不同的燃烧性能等级,如A级、B级、C级等。
其中,A级为不燃材料,B级为难燃材料,C级为可燃材料。
三、不同类型建筑材料的防火分级1、木质材料木质材料的燃烧性能相对较低,属于易燃材料。
因此,在建筑中使用木质材料时,需要进行有效的防火处理,如涂刷防火涂料或粘贴防火板等。
2、塑料材料塑料材料的燃烧性能差异较大,有些类型的塑料具有较高的燃烧危险性。
因此,在使用塑料材料时,需要根据其燃烧性能进行分类和使用限制。
3、金属材料金属材料的防火性能相对较好,如不锈钢、铝合金等。
这些金属材料具有较高的耐火性和热稳定性,因此在建筑中广泛使用。
但是,在高温下长时间暴露于火源的金属材料可能会出现变形、熔化等现象,因此需要采取相应的防火措施。
4、复合材料复合材料由两种或两种以上的不同材料组成,其防火性能取决于组成材料的性能以及复合方式。
例如,水泥复合木材、钢木复合材料等均具有较好的防火性能。
衡量建筑物耐火程度的分级标准
衡量建筑物耐火程度的分级标准英文回答:Fire resistance ratings are used to measure the ability of a building to withstand the effects of fire. These ratings are important for ensuring the safety of occupants and protecting the structural integrity of the building. There are several classification systems used to determine the fire resistance rating of a building, including the ASTM E119 standard in the United States and the European Standard EN 13501.In the United States, the ASTM E119 standard is widely used to measure the fire resistance of building materials and assemblies. This standard involves subjecting the materials or assemblies to a series of fire tests, during which they are exposed to a controlled fire for a specified duration. The materials or assemblies are then evaluated based on their ability to maintain structural integrity, prevent the spread of fire, and limit the transmission ofheat.The fire resistance rating is expressed in terms of time, typically ranging from 30 minutes to 4 hours or more. For example, a wall assembly with a fire resistance rating of 1 hour means that it can withstand the effects of fire for at least 1 hour before it fails to meet the required criteria.In Europe, the fire resistance ratings are determined according to the European Standard EN 13501. This standard classifies materials and assemblies into different fire resistance classes, such as A1, A2, B, C, D, E, and F. Class A1 represents non-combustible materials, while Class F represents materials with no performance determined.The fire resistance rating of a building depends on various factors, including the type of construction materials used, the thickness of the materials, and the design of the building. For example, a concrete wall will generally have a higher fire resistance rating compared to a wooden wall.It is important to note that fire resistance ratings are not absolute guarantees of safety. They indicate the ability of a building or its components to resist fire for a certain period of time, but they do not guarantee complete fireproofing. Other factors such as the presence of fire sprinklers, fire alarms, and evacuation plans also play a crucial role in ensuring the safety of occupants during a fire emergency.中文回答:建筑物的耐火程度是用来衡量建筑物抵御火灾影响的能力的。
灼热丝试验及标准
灼热丝试验及标准
灼热丝试验是一种评估材料防火性能的测试方法。
该试验使用一根纤维或金属丝,通过将其加热至高温后将其接触到待测试材料表面来模拟火灾情况下的热辐射。
通过观察材料的反应和燃烧情况,可以评估其防火性能。
灼热丝试验是一种通用的测试方法,可用于评估各种材料,如塑料、橡胶、纺织品和建筑材料等。
该测试方法可以用于评估材料的防火等级,例如欧洲标准EN 13501-1中的A1、A2、B、C、D、E和F级别。
灼热丝试验的标准可以根据不同国家和地区的要求和标准来制定。
例如,欧洲标准EN ISO 1716和EN ISO 1182分别用于评估建筑材料的热值和不燃性能。
美国标准ASTM C411和ASTM E119则分别用于评估绝缘材料和建筑墙体的防火性能。
在进行灼热丝试验时,需要注意安全问题,以防止意外发生。
同时,测试结果仅仅是材料防火性能的一种评估方式,应结合其他测试结果和实际使用条件来做出综合评估。
- 1 -。
astm防火标准
ASTM防火标准
ASTM E119 防火标准
ASTM E119 是美国消防安全协会(ASTM)发布的一项用于评估建筑材料耐火性的标准。
该标准规定了建筑材料在受到火焰作用时,其耐火性能的测试方法、评级和要求。
屋顶防火
对于建筑物的屋顶,尤其是高层建筑和商业建筑的屋顶,防火安全至关重要。
ASTM E119 标准提供了评估屋顶材料耐火性的方法。
根据标准,屋顶材料应能够在一定时间内在火焰作用下保持其完整性,以防止火势蔓延。
外墙饰面材料的整体耐火测试
外墙饰面材料对于建筑物的外观和防火性能具有重要影响。
ASTM E119 标准提供了测试外墙饰面材料整体耐火性的方法。
根据测试结果,外墙饰面材料的耐火等级可划分为不同级别,以满足不同建筑物对防火安全的需求。
内墙饰面抵御内部起火
内墙饰面材料在火灾中具有重要作用。
它们需要能够承受火焰和烟雾的侵袭,同时还要具备一定的隔热性能。
ASTM E119 标准提供了评估内墙饰面材料防火性能的方法。
根据标准要求,内墙饰面材料应能够在一定时间内在火焰作用下保持其完整性,并有效地阻止火势蔓延。
针对出口到加拿大的外墙产品及外墙系统(铝塑板幕墙、玻璃幕墙、蜂窝板幕墙等)的防火要求
对于出口到加拿大的外墙产品及外墙系统,如铝塑板幕墙、玻璃幕墙、蜂窝板幕墙等,这些产品的防火性能需要满足加拿大相关法规的要求。
ASTM E119 标准可以作为评估这些产品防火性能的重要依据之一。
根据加拿大法规要求,外墙产品的防火性能需要达到一定的标准,以保证在火灾中能够有效阻止火势蔓延,减少对人员和财产的损害。
解读装配式建筑施工的耐火性能测试
解读装配式建筑施工的耐火性能测试装配式建筑施工是近年来兴起的一种先进建筑施工方式,其具有快速、环保、节能等优点。
然而,在考虑装配式建筑的安全性时,我们必须关注其耐火性能是否合格。
因此,本文将解读装配式建筑施工的耐火性能测试。
一、背景介绍随着装配式建筑市场需求的日益增长,对于其耐火性能的要求也越来越严格。
毕竟,地震、火灾等自然灾害无法完全预测和避免,因此确保装配式建筑在极端情况下仍具备良好的安全性显得尤为重要。
二、耐火性能测试标准为了评估装配式建筑在火灾中的表现,各国普遍采用了一系列标准化的耐火性能测试。
其中最为常见的标准包括美国ASTM E119和欧洲EN 1365-2等。
1. 火焰扩散测试这是评估材料表面燃烧特性的常用方法之一。
该测试通过将所评估材料暴露在一定强度和时间的火焰下,并观察其火焰蔓延速度和燃烧时间,从而判断材料的火焰扩散程度。
2. 耐火极限测试该测试旨在评估装配式建筑结构在规定时间内能够承受的最高温度。
测试者将加热源放置在装配式建筑内部,并使用监测仪器记录结构体系的温升情况,直到达到耐火极限或发生结构失效。
3. 高温通风实验这项测试是为了模拟真实火灾场景中的通风情况。
通过控制通风量和方向,以及设定不同强度的外部热辐射,来评估装配式建筑在高温条件下的反应和表现。
三、耐火性能测试结果分析根据耐火性能测试结果,可以对装配式建筑施工的耐火性能进行评估和分类。
根据不同国家或地区对于耐火等级的要求不同,一般可以分为几个等级:非耐火、低层次耐火、中层次耐火、高层次耐火等。
这些分类有助于建筑师、设计师和相关工程人员选择合适的装配式建筑材料和系统,以确保建筑物在火灾中的安全性。
四、提高装配式建筑施工的耐火性能为了提高装配式建筑施工的耐火性能,以下几个方面值得关注和改进。
1. 材料选择选用符合国家或地区相关标准要求且经过耐火性能测试认证的材料。
例如,钢结构应采用具有较长耐热保护时间的防火涂层,而外墙材料可考虑使用阻燃材料等。
ASTME119建筑物及建筑材料防火检测
ASTME119-00建筑物和建筑资料的防火检测1.适用范围1.1 本防火实验特色曲线标准所描述的实验方法,适用于建筑上的砖石构件和结构资料的复合构件,包括承重和非承重墙和隔墙、柱、主梁、次梁、板材以及用于地板和屋顶的板梁组合构件。
这些方法还适用于其余组成建筑体永久性整体局部的组件和结构件。
1.2 分类的目的应该是记录特定条件下裸露于火焰时的相对性能,在其余条件下或走开火焰后,不应该引申决定拥有适用性。
1.3 本标准用于在控制条件下描述资料、制品或组件对热和火焰的特色曲线,并没有考虑到实质火灾状况下资料、制品或组件的火灾危险评估所需的所有因素。
1.4 这些测试方法规定了一种裸露火焰的标准,用以比较建筑构件的测试结果。
这些测试结果是评估建筑物和构件的预期防火性能的一个因素。
应用这些测试标准来预计实质建筑的防火性能时,需议论测试条件。
1.5 用英制单位标记的数值作为标准值。
括号内给出的数值仅供参照。
1.6 本标准没心说明全部与之有关的安全问题。
在使用本标准前,采用适合的安全和卫生措施以及决定标准限制的适用范围,是使用者的责任。
1.7 本标准文本中参照了说明和注脚作为讲解性资料,这些说明的注脚〔不包括表的图中的〕不应作为本标准的要求。
2.引用标准1 / 302.1 ASTM标准:C569,E176。
3.术语3.1 定义:本实验方法中术语的定义,参照术语标准 E176。
4.意义和用途4.1 本测试方法可议论1.1 节所述建筑构件在预设的实验条件下所拥有防火时间、保持结构完满的时间或同时议论两种性能,防火性能与构件种类有关。
4.2 试验将一个试样置于标准火焰之中,经过一段时间到达规定的温度。
必要时,构件置于火焰中后还需经受规定的标准软管水流的测试。
试验供应建筑构件在这些火焰条件下防火实验曲线的相对测量值。
试验的火焰条件其实不代表实质火灾状况,实质状况可随着火焰量、火焰性质、火焰分布、通风状况、房间大小和形状以及房间的热降特色的不同样而变化。
r10测试标准
r10测试标准
一、耐火性测试
1. 目的:评估材料或产品在火灾中的表现,确定其耐火性。
2. 测试方法:根据相关标准,如ASTM E119,对样品进行耐火性测试。
测试应包括以下方面:
a. 热稳定性:在高温下暴露一定时间后,评估样品的形状、尺寸和质量的改变。
b. 燃烧性:测量样品在明火燃烧条件下的热释放率、烟密度和有毒气体排放量。
c. 耐火时间:评估样品在一定时间内承受明火或高温的能力。
3. 结果评估:根据测试数据,对样品的耐火性进行评估,包括热稳定性、燃烧性和耐火时间等方面。
与相关标准进行比较,判断样品是否符合要求。
二、毒性测试
1. 目的:评估材料或产品在燃烧过程中产生的有毒物质对人体的危害程度。
2. 测试方法:根据相关标准,如ASTM E1503,对样品进行毒性测试。
测试应包括以下方面:
a. 有毒气体排放:测量样品在燃烧过程中排放的有毒气体的种类和浓度,如一氧化碳、二氧化碳、硫化氢等。
b. 毒性作用:通过动物实验或体外实验,评估样品燃烧产生的有毒物质对人体的毒性作用,如对呼吸系统、神经系统和心血管系统的影响。
c. 致突变性:评估样品燃烧产生的有毒物质对生物体的遗传突变风险。
3. 结果评估:根据测试数据,评估样品燃烧产生的有毒物质对人体的危害程度,包括毒性作用和致突变性等方面。
与相关标准进行比较,判断样品是否符合要求。
根据以上测试结果,可以对R10材料或产品的耐火性和毒性进行综合评估,确保其在使用过程中的安全性和可靠性。
防火包裹耐火试验
防火包裹耐火试验
防火包裹是一种重要的消防安全设备,它能够抵御火灾的蔓延和热辐射,保护人员和财产的安全。
为了验证防火包裹的耐火性能,需要进行耐火试验。
耐火试验通常采用国际标准ISO 834-1或ASTM E119,测试样品会被放置在一个烤箱中,然后在一定的时间内不断加温,直到达到规定的试验温度。
试验时要记录试样的温度、烟气量、火焰扩散情况等参数,通过分析这些数据可以评估防火包裹的耐火性能。
在耐火试验中,防火包裹需要满足一定的要求,例如在规定时间内,表面温度不能超过规定值,不能出现任何燃烧、开裂、脱落等现象。
只有通过了耐火试验的防火包裹才能够得到消防部门的认可和使用许可。
因此,厂家和消费者需要选择符合国际标准的防火包裹,并且定期对其进行耐火试验,以确保其耐火性能满足要求,保障人们生命财产的安全。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标题:ASTM E119 建筑材料耐火测试
/ ASTM E 119建筑材料及构件的耐燃测试
关键字:ASTM E119,建筑材料,耐火测试
易朔产品服务(厦门)有限公司将为您提供专业的ASTM E 119 建筑材料耐火测试,联系我们,免费咨询!
ASTM E 119 建筑材料耐火测试
ASTM E 119 Standard Test Methods for Fire Tests of Building Construction and Materials
ASTM E 119 建筑材料耐火测试简介:ASTM E 119 建筑材料耐火测试适用于建筑上的砖石构件和结构材料的复合构件,包括承重和非承重和隔墙、柱、梁、板梁组合构件、构成建筑体永久性整体部分的组件和结构件等。
ASTM E119 Standard Test Methods for Fire Tests of Building Construction and Materials Scope: Bearing Walls And Partitions;Nonbearing Walls And Partitions;Columns;Structural Steel Columns;Floors And Roofs;Loaded Restrained Beams;Solid Structural Steel Beams And Girders;Protective Membranes In Wall, Partition, Floor, Or Roof Assemblies.
ASTM E119建筑材料耐火测试的相关标准:
EN 81-8, 电梯安装和建筑的安全条款-第8部分:电梯门-耐燃测试
EN 81-8: Safety rules for the construction and installation of lifts - Part 8: Lift landing doors –Fire resistance testing.
EN 1363-1: 耐燃测试-第1部分: 一般要求
EN 1363-1: Fire resistance tests - Part 1: General requirements.
EN 1364-1: 非承重件耐燃测试- 第1部分:墙体
EN 1364-1: Fire resistance tests for non-loadbearing elements - Part 1: Walls.
EN 1365-1: 承重件耐燃测试- 第1部分:墙体
EN 1365-1: Fire resistance tests for loadbearing elements - Part 1: Walls.
EN 1366-3: 服务设施耐燃测试- 第3部分:穿透性密封件
EN 1366-3: Fire resistance tests for service installations - Part 3: Penetration seals.
EN 1634-1: 防火门窗耐燃测试–第1部分:防火门和百叶窗
EN 1634-1: Fire resistance tests for door and shutter assemblies - Part 1: Fire doors and shutters.
AS/NZS 1530.4:建筑材料、元件和构件的防火测试-第4部分:建筑物单元耐燃测试
AS/NZS 1530.4:Methods for fire tests on building materials, components and structures - Fire-resistance test of elements of construction
BS 476-20:建筑材料和构件的防火测试.第20部分:建筑构件耐火的测试方法(一般原理)
BS 476-20:Fire Tests on Building Materials and Structures Part 20: Method for Determination of the Fire Resistance of Elements of Construction (General Principles)
BS 476-21:建筑材料和构件的防火测试.第21部分:承重构件耐火的测试方法
BS 476-21:Fire Tests on Building Materials and Structures Part 21: Methods for Determination of the Fire Resistance of Load bearing Elements of Construction
BS 476-22:建筑材料和构件的防火测试.第22部分:非承重构件耐火的测试方法-
BS 476-22:Fire Tests on Building Materials and Structures Part 22: Methods for Determination of the Fire Resistance of Non- Load bearing Elements of Construction
BS 476-23:建材及构件的防火测试.第23部分:元部件对构件耐火性分摊作用的测试方法
BS 476-23:Fire Tests on Building Materials and Structures Part 23: Methods for Determination of the Contribution of Components to the Fire Resistance of a Structure
BS 476-24:建筑材料和构件的防火测试.第24部分:通风管道耐火性的测试方法
BS 476-24:Fire Tests on Building Materials and Structures Part 24: Method for
Determination of the Fire Resistance of Ventilation Ducts
更多信息请登录/firetesting/building/425.html
或者发邮件到:info@。