苏教版高中数学必修三 第36课时7.3.2几何概型(2)

合集下载

【精编】苏教版高中数学必修三课件第三章《概率》3.3几何概型(2)-精心整理

【精编】苏教版高中数学必修三课件第三章《概率》3.3几何概型(2)-精心整理

1.古典概型与几何概型的对比.
相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个,
几何概型要求基本事件有无限多个.
2.几何概型的概率公式.
P
(
A
)
d的测度 D的测度
( (
长 长
度、面 度、面
积、 体 积、 体
积 积
). )
思维启迪
复习 与长度有关的几何概型:
有一段长为10米的木棍,现要截成两段,每段不小于3米 的概率有多大?从每一个位置剪断都是一个基本事件,基本 事件有无限多个.但在每一处剪断的可能性相等,故是几何概型.
总结:几何概型问题的概率的求解方法
1.适当选择观察角度,把问题转化为几何概型求解; 2.把基本事件转化为与之对应的区域D; 3.把随机事件A转化为与之对应的区域d; 4.利用几何概型概率公式计算.
6
径作圆,与△ABC交出三个扇形,
当P落在其内时符合要求.
3 (1 π 12 ) P 2 3
3π.
3 22
6
4
与角度有关的几何概型 例2 在等腰直角三角形ABC中,在斜边AB上 任取一点M,求AM小于AC的概率.
解: 在AB上截取AC′=AC,
故AM<AC的概率等于AM<AC的概率. A
则满足x-y≥2或y-x≥4,
设在上述条件时“两船不需等待码头空出” 为事件B,画出区域
00

x y

24, 24,
y x 4或x y 2.
P(B)
1 20 20 1 22 22
2
2

442
221 .
24 24
576 288

2019-2020年高中数学 3.3.2 几何概型(二)教案 苏教版必修3

2019-2020年高中数学 3.3.2 几何概型(二)教案 苏教版必修3

2019-2020年高中数学 3.3.2 几何概型(二)教案苏教版必修3总课题概率总课时第25课时分课题几何概型(二)分课时第 2 课时教学目标了解几何概型的基本特点;会进行简单的几何概率计算;了解随机数的意义,能运用模拟的方法估计概率.重点难点几何概型的概率的求法.引入新课1.什么叫几何概型?其特点如何?2.几何概型的常见类型有几种?例题剖析例1 在等腰直角三角形中,在斜边上任取一点,求小于的概率.例2 如图,在圆心角为的扇形中,以圆心为起点作射线.(1)求使得小于的概率;(2)求使得和都不小于的概率.利用随机模拟方法计算曲线和所围成的图形的面积.AB OB例3巩固练习1.已知等腰中,.(1)在直角边上任取一点,求的概率;(2)在内作射线,求的概率.2.在正方体中,棱长为.在正方体内随机取点,求使四棱锥的体积小于的概率.课堂小结几何概型的基本特点;几何概型的概率的求法.课后训练班级:高二()班姓名:____________ 一基础题1.已知直线,,则直线在轴上的截距大于的概率是________.2.已知实数,可以在,的条件下随机取数,那么取出的数对满足的概率是__________.3.如图,在直角坐标系内,射线落在的终边上,任作一条射线,求射线落在内的概率.4.两根相距的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于的概率.二提高题5.如图,在一个边长为的正方形内部画一个边长为的正方形,向大正方形内随机投点,求所投的点落入小正方形内的概率.xA TO2cm三能力题6.向如图所示的正方形椭机地投掷飞镖(假设所有飞镖都一定能投掷在正方形范围内),求飞镖落在阴影部分的概率.2019-2020年高中数学 3.3.2 函数的极值与导数教案新人教A版选修1-1●三维目标1.知识与技能了解函数极值的概念,会从几何直观理解函数的极值与其导数的关系,并会灵活应用;了解可导函数在某点取得极值的必要条件和充分条件.2.过程与方法通过对具体问题的观察、分析来增强学生数形结合的思维意识,提高学生运用导数的基本思想去分析和解决实际问题的能力,及灵活运用类比、归纳、化归等数学方法的能力.3.情感、态度与价值观通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与交流活动.通过对问题的提出、思考、解决培养学生自信、自立、自强的优良心理品质.通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度.●重点、难点重点:函数的极值的判断方法及求函数极值的步骤.难点:函数在某点取得极值必要条件和充分条件.观察图象特征、自主探究、小组合作总结归纳出求极值方法步骤,并了解极值存在的充分条件和必要条件,从而突破重点、难点.(教师用书独具)●教学建议本节课力在突出“以学生为主体”的教学理念.以问题探究为主要形式,依照学生的认知规律,采用自主学习与合作探究相结合的模式.教师在整堂课中引导着学生探索出函数的极值与导数的关系.对于检验学生学习的效果,采用问题和练习的形式给予检查和纠正.本着“学生是教学活动出发点,也是教学活动的落脚点”的教学思想,在整个教学活动中,不断激发学生的学习兴趣,让学生真正的参与到知识的成长过程.主要从以下几个方面对学生进行指导:(1)引导学生观察图象,产生认知冲突.极值好像是最值,又不是最值.(2)激发探究欲望.学生产生疑问之后,指导学生思考怎样解决问题,培养学生的分析和解决问题的能力.(3)指导学生合作探究,小组讨论并得出结论.●教学流程创设问题情境,引出问题:在x =a b 点附近,函数值有何特点?⇒引导学生结合给出图象,观察、比较、分析,导出问题答案,给出极值概念.⇒通过引导学生回答所提问题,理解极大值与极小值大小的辩证关系.⇒通过例1及其变式训练,使学生掌握求函数极值的步骤和方法.⇒通过例2及其变式训练,使学生掌握已知函数的极值求参数的方法.⇒通过例3及其变式训练,理解极值的含义,并学会通过极值解决综合问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第58页)函数y =f (x )的图象如图所示.1.函数在x =a 点的函数值与这点附近的函数值有什么大小关系?【提示】 函数在点x =a 的函数值比它在点x =a 附近的其他点的函数值都小 . 2.f ′(a )为多少?在点x =a 附近,函数的导数的符号有什么规律? 【提示】 f ′(a )=0,在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0. 3.函数在x =b 点处的情况呢?【提示】 函数在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0.1.极小值点与极小值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0.则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.2.极大值点与极大值函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0.则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.【问题导思】函数的极大值一定大于极小值吗?【提示】 不一定,极值刻画的是函数的局部性质,反映了函数在某一点附近的大小情况,极大值可能比极小值还小.(对应学生用书第58页)(1)f (x )=13x 3-x 2-3x +3;(2)f (x )=3x+3ln x .【思路探究】 原函数――→求导导函数―→f x =0的点x 0――→判断两侧符号极值【自主解答】 (1)f ′(x )=x 2-2x -3.令f ′(x )=0,得x 1=3,x 2=-1,如下表所示:∴f (x )极大值=3,f (x )极小值=-6.(2)函数f (x )=3x+3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x=x -x 2,令f ′(x )=0得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:因此当x =11.求函数的极值首先要求函数的定义域,然后求f ′(x )=0的实数根,当实数根较多时,要充分利用表格,使极值点的确定一目了然.2.函数极值和极值点的求解步骤: ①确定函数的定义域; ②求方程f ′(x )=0的根;③用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格; ④由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况.求函数y =2x +8x的极值.【解】 函数的定义域为(-∞,0)∪(0,+∞).y ′=2-8x2,令y ′=0,得x =±2.当x 变化时,y ′、y 的变化情况如下表:极大值当x =2时,y 极小值=8.已知f (x )=x 3+ax 2+bx +c 在x =1与x =-3时都取得极值,且f (-1)=32,求a 、b 、c 的值.【思路探究】 (1)函数在x =1和x =-23时都取得极值,说明f ′(1)与f ′(-32)的结果怎样?(2)你能由已知条件列出方程组求解a 、b 、c 吗?【自主解答】 f ′(x )=3x 2+2ax +b ,令f ′(x )=0,由题设知x =1与x =-23为f ′(x )=0的解.∴⎩⎪⎨⎪⎧1-23=-23a ,-23=b3.解得a =-12,b =-2.∴f ′(x )=3x 2-x -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表知,函数在x =1与-3处取得极值.∴a =-12,b =-2.∴f (x )=x 3-12x 2-2x +c ,由f (-1)=-1-12+2+c =32,得c =1.已知函数的极值情况,逆向应用来确定参数或求解析式时应注意两点: (1)常根据极值点处导数为0和极值两条件列出方程组,用待定系数法求解. (2)因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证.已知f (x )=x 3+3ax 2+bx +a 2在x =-1和x =3处有极值,求a 、b 的值. 【解】 由f (x )=x 3+3ax 2+bx +a 2,得f ′(x )=3x 2+6ax +b . 又f (x )在x =-1和x =3处有极值, ∴f ′(-1)=3+b -6a =0,①f ′(3)=27+18a +b =0.②联立①②,得⎩⎪⎨⎪⎧a =-1,b =-9.∴f ′(x )=3x 2-6x -9=3(x +1)(x -3). 当x 变化时,f ′(x )、f (x )的变化情况如下:∴a =-1,b =-9符合题意.y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.【思路探究】 (1)能否由已知条件求出a 值,确定f (x )?(2)直线y =m 与y =f (x )的图象有三个不同交点的含义是什么?如何用数形结合求出m 的范围?【自主解答】 ∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1. ∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f′(x)=0解得x1=-1,x2=1.当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0.∴由f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图象有三个不同的交点,又f(-3)=-19<-3,f(3)=17>1,结合f(x)的单调性可知,m的取值范围是(-3,1).1.解答本题的关键是运用数形结合的思想将函数的图象与其极值建立起关系.2.极值问题的综合应用主要涉及到极值的正用与逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用.在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.已知a为实数,函数f(x)=-x3+3x+a.(1)求函数f(x)的极值,并画出其图象(草图);(2)当a为何值时,方程f(x)=0恰好有两个实数根?【解】(1)由f(x)=-x3+3x+a,得f′(x)=-3x2+3,令f′(x)=0,得x=1或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:极大值为f(1)=a+2.由单调性、极值可画出函数f(x)的大致图象,如图所示,这里,极大值a+2大于极小值a-2.(2)结合图象,当极大值a+2=0时,有极小值小于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根,所以a=-2满足条件;当极小值a-2=0时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a=2满足条件.综上,当a=±2时,方程恰有两个实数根.(对应学生用书第60页)因未验根而致误已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a 、b 的值. 【错解】 因为f (x )在x =-1时有极值0且f ′(x )=3x 2+6ax +b , 所以⎩⎪⎨⎪⎧f -=0,f-=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3,或⎩⎪⎨⎪⎧a =2,b =9.【错因分析】 解出a ,b 值后,未验证x =-1两侧函数的单调性而导致产生增根致误. 【防范措施】 可导函数在x 0处的导数为0是该函数在x 0处取得极值的必要不充分条件,而并非充要条件,故由f ′(x )=0而求出的参数需要检验,以免出错.【正解】 因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b .∴⎩⎪⎨⎪⎧f=0,f -=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3,或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3).当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数. 所以f (x )在x =-1时取得极小值, 因此a =2,b =9.1.极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内是最大或最小.极值是不唯一的,极大值与极小值之间也无确定的大小关系.2.极大值点可以看成是函数的单调递增区间与单调递减区间的分界点,极小值点可以看成是函数的单调递减区间与单调递增区间的分界点.3.可导函数f(x)求极值的一般步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格;(4)检查f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.(对应学生用书第60页)1.下列说法正确的是( )A .函数在闭区间上的极大值一定比极小值大B .函数在闭区间上的极大值一定比极小值小C .函数f (x )=|x |只有一个极小值D .函数y =f (x )在区间(a ,b )上一定存在极值【解析】 函数的极大值与极小值之间无确定的大小关系,单调函数在区间(a ,b )上没有极值,故A 、B 、D 错误,C 正确,函数f (x )=|x |只有一个极小值为0.【答案】 C2.函数f (x )的定义域为区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图3-3-5所示,则函数f (x )在(a ,b )内的极小值的个数为( )图3-3-5A .1B .2C .3D .4【解析】 在(a ,b )内,f ′(x )=0的点有A 、B 、O 、C .要为函数的极小值点,则在该点处的左、右两侧导函数的符号满足左负右正,只有点B 符合.【答案】 A3.函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 f ′(x 0)=0⇒/ y =f (x )在x 0处有极值,但y =f (x )在x 0处有极值⇒f ′(x 0)=0,应选B.【答案】 B4.求函数y =x +1x的极值.【解】 y ′=1-1x 2=x 2-1x2,令y ′=0解得x =±1,而原函数的定义域为{x |x ≠0},∴当x变化时,y′,y的变化情况如下表:极大值极小值2.(对应学生用书第111页)一、选择题1.已知函数f(x),x∈R,有唯一极值,且当x=1时,f(x)存在极小值,则( ) A.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0B.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)>0C.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0D.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)<0【解析】f(x)在x=1时存在极小值,则当x<1时,f′(x)<0,当x>1时,f′(x)>0,应选C.【答案】 C图3-3-62.(xx·青岛高二检测)已知函数f(x)=ax3+bx2+c,其导函数f′(x)的图象如图3-3-6所示,则函数f(x)的极小值是( )A.a+b+c B.3a+4b+cC.3a+2b D.c【解析】由f′(x)的图象可知,当x=0时,函数取得极小值,f(x)极小值=c.【答案】 D3.函数f(x)=x3-3x2+3x( )A.x=1时,取得极大值B .x =1时,取得极小值C .x =-1时,取得极大值D .无极值点【解析】 f ′(x )=3x 2-6x +3=3(x -1)2≥0恒成立. ∴f (x )在(-∞,+∞)上是增函数,f (x )无极值. 【答案】 D4.(xx·临沂高二检测)已知函数f (x )=x 3+ax 2+3x +5在x =-3时取得极值,则a =( )A .2B .3C .4D .5【解析】 f ′(x )=3x 2+2ax +3,由题意:f ′(-3)=27-6a +3=0 ∴a =5.应选D. 【答案】 D5.如图3-3-7所示是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )图3-3-7A.23B.43C.83D.123【解析】 函数f (x )=x 3+bx 2+cx +d 图象过点(0,0),(1,0),(2,0),得d =0,b +c +1=0,4b +2c +8=0,则b =-3,c =2,f ′(x )=3x 2+2bx +c =3x 2-6x +2,且x 1,x 2是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即x 1,x 2是方程3x 2-6x +2=0的实根,x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.【答案】 C 二、填空题6.若函数y =-x 3+6x 2+m 的极大值为13,则实数m 等于________. 【解析】 y ′=-3x 2+12x =-3x (x -4). 令y ′=0得x 1=0,x 2=4. 列表可知y 极大=f (4)=32+m =13. ∴m =-19. 【答案】 -197.若f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是________. 【解析】 f ′(x )=3x 2+6ax +3(a +2), 由题意f ′(x )=0有两个不等的实根,故Δ=(6a )2-4×3×3(a +2)>0,解之得a >2或a <-1. 【答案】 (-∞,-1)∪(2,+∞)8.(xx·昆明高二检测)如果函数y =f (x )的导函数的图象如图3-3-8所示,给出下列判断:图3-3-8(1)函数y =f (x )在区间(-3,-12)内单调递增;(2)函数y =f (x )在区间(-12,3)内单调递减;(3)函数y =f (x )在区间(4,5)内单调递增; (4)当x =2时,函数y =f (x )有极小值; (5)当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是________. 【解析】 由导函数的图象知:当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减; 当x ∈(-2,2)时,f ′(x )>0,f (x )单调递增; 当x ∈(2,4)时,f ′(x )<0,f (x )单调递减; 当x ∈(4,+∞)时,f ′(x )>0,f (x )单调递增; 在x =-2时,f (x )取极小值; 在x =2时,f (x )取极大值; 在x =4时,f (x )取极小值; 所以只有(3)正确. 【答案】 (3) 三、解答题9.求下列函数的极值. (1)f (x )=x 3-12x ;(2)f (x )=2xx 2+1-2. 【解】 (1)函数f (x )的定义域为R .f ′(x )=3x 2-12=3(x +2)(x -2).令f ′(x )=0,得x =-2或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:且f (-2)=(-2)3-12×(-2)=16; 当x =2时,函数有极小值, 且f (2)=23-12×2=-16. (2)函数的定义域为R .f ′(x )=x 2+-4x 2x 2+2=-x -x +x 2+2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:且f (-1)=-22-2=-3;当x =1时,函数有极大值; 且f (1)=22-2=-1.10.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 【解】 (1)因为f (x )=a ln x +bx 2+x , 所以f ′(x )=a x+2bx +1.由极值点的必要条件可知:f ′(1)=f ′(2)=0,即⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0,解方程组得a =-23,b =-16.(2)由(1)知f (x )=-23ln x -16x 2+x (x >0).f ′(x )=-23x -1-13x +1.当x ∈(0,1)时,f ′(x )<0; 当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故在x =1处函数f (x )取得极小值56,在x =2处函数取得极大值43-23ln 2.所以x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点. 11.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 【解】 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时f ′(x )、f (x )变化情况如下表:所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-3=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知x 取足够大的正数时有f (x )>0,x 取足够小的负数时有f (x )<0,所以曲线y =f (x )与x 轴至少有一个交点.因此若y =f (x )与x 轴仅有一个交点,应有527+a <0或a -1>0.所以当a ∈⎝⎛⎭⎪⎫-∞,-527∪(1,+∞)时曲线y =f (x )与x 轴仅有一个交点.(教师用书独具)已知函数f (x )=ax 2+b ln x ,其中ab ≠0,求证:当ab >0时,函数f (x )没有极值点.【证明】 ∵f (x )=ax 2+b ln x (ab ≠0)∴f (x )的定义域为(0,+∞) f ′(x )=2ax +b x =2ax 2+b x当ab >0时,若a >0,b >0,则f ′(x )>0,f (x )在(0,+∞)上是单调递增的;若a <0,b <0,则f ′(x )<0,f (x )在(0,+∞)上是单调递减的.∴当ab >0时,函数f (x )没有极值点.已知函数f (x )=ax 2+b ln x ,其中ab ≠0,求函数有极值时a 、b 满足的条件. 【解】 f (x )的定义域为(0,+∞),f ′(x )=2ax +b x =2ax 2+b x. 若函数f (x )有极值,首先f ′(x )=0,即2ax 2+b =0在(0,+∞)上有根. 因为ab ≠0,x 2=-b 2a,所以当ab <0时, 2ax 2+b =0在(0,+∞)上有根x =-b 2a . 又当a >0,b <0时,f ′(x )在x =-b 2a 两侧的符号是左负右正,此时函数f (x )在x =-b 2a取得极小值; 当a <0,b >0时,f ′(x )在x =-b 2a 两侧的符号是左正右负,此时函数f (x )在x =-b2a 取得极大值.综上,函数f(x)=ax2+b ln x(ab≠0)有极值时,a,b所满足的条件是ab<0.。

2019-2020学年高中数学 3.3《几何概型》教案(2) 苏教版必修3.doc

2019-2020学年高中数学 3.3《几何概型》教案(2) 苏教版必修3.doc

2019-2020学年高中数学 3.3《几何概型》教案(2) 苏教版必修3 教学目标: (1)能运用模拟的方法估计概率,掌握模拟估计面积的思想;(2)增强几何概型在解决实际问题中的应用意识.教学重点、难点:将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.教学过程:一、课前热身【复习回顾】1.几何概型的特点:⑴、有一个可度量的几何图形S ;⑵、试验E 看成在S 中随机地投掷一点;⑶、事件A 就是所投掷的点落在S 中的可度量图形A 中.2.几何概型的概率公式.3.古典概型与几何概型的区别.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.4.几何概型问题的概率的求解.(1)某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可能的,求乘客等车不超过3分钟的概率。

35p = (2)如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率。

11P π= 238P =(3)某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会. 如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份)。

甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?1720p = 2120p = 3110p = 415p = 二、数学运用例1 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)【分析】点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图335--中线段'AC 内时,AM AC <,故线段'AC 即为区域d .【解】在AB 上截取'AC AC =.于是'()()P AM AC P AM AC <=<'AC AB =AC AB =2=。

苏教必修三最新资料3.3几何概型(2).ppt1

苏教必修三最新资料3.3几何概型(2).ppt1

复习2.几何概型的基本特点:
(1)试验中所有可能出现的结果(基本 事件)有无限多个; (2)每个基本事件出现的可能性相 等.
复习3.几何概型的概率:
一般地,在几何区域 D 中随机
地取一点,记事件"该点落在其内部
一个区域 d 内"为事件 A ,则事件
A 发生的概率
P( A)

d的测度 D的测度

举例
角三角,
记 " AOC 为 锐 角 三 角 " 为 事 件 N , 则 P(N ) DE 3 0.6
OB 5 即 AOC 为锐角三角形的概率为 0.6 .
A
OD C
E
B
举例
例2.有一个半径为 5 的圆,现在将一枚 半径为1硬币向圆投去,
如果不考虑硬币完全落在圆外的情况, 试求硬币完全落入圆内的概率.
内的概率为 4 . 9
O 4 56
举例
例3.利用随机模拟方法计算曲线 y 1 ,x 1 , x
x 2 和 y 0所围成的图形的面积.
分析:在直角坐标系中画出正方形( x 1 ,x 2 , y 0,y 1所围成的部分),用随机模拟的方法可
以得到它的面积的近似值.
解:(1)利用计算器或计算机产生两组 0 到1区间 上的随机数, a1 RAND , b RAND ; (2)进行平移变换:a a1 1;(其中 a, b 分别为
例1.如图, AOB 60 , OA 2 , OB 5 , 在线段 OB 上任取一点 C , 试求:(1) AOC 为钝角三角形的概率; (2) AOC 为锐角三角形的概率.
A
OD C
E
B
解:如图,由平面几何知识:
当 AD OB 时, OD 1;

数学必修ⅲ苏教版3.3几何概型课件2.

数学必修ⅲ苏教版3.3几何概型课件2.
gkxx精品课件

2、区域是平面图形的几何概型问题
Bertrand 问题
已知半径为 1 的圆的内接等边三角形 边长是 3 1/2 ,在圆内随机取一条弦,求 弦长超过 3 1/2 的概率。
B
D
A
p = 1/4
gkxx精品课件
2、区域是平面图形的几何概型问题
从(0,1)中随机地取两个数,求:
(1) 两数之和小于1.2的概率;
3、几何概率的计算公式:
构成事件A的区域长度( 面积或体积) P ( A) 试验的全部结果所构成 的区域长度( 面积或体积)
gkxx精品课件
思考:
一个随机事件的概率经过计算等于 e – 2 ,这
可能是古典概率问题还是一个几何概率问题?
gkxx精品课件
1、区域是线段的几何概型问题
某公共汽车站 每隔5分钟有一辆车通过(假 设每辆车带走站上的所有乘客),乘客到达 车站的任一时刻是任意的,求乘客候车时间 不超过3分钟的概率。
在长度为a的线段内任取两点,将线段分成 三段,求他们可以构成三角形的概率. 1
4
变形:一个圆的所有内接三角形中,问 是锐角三角形的概率是多少?
gkxx精品课件
2、区域是平面图形的几何概型问题
设有一个正方形网格,其中每个最小正方形的 4 边长都是6.现用直径为2的硬币投掷到此网格 上,求硬币落下后与格线没有公共点的概率. 9 变形1:求硬币落下后与格线有公共点的概率. 变形2: 设有一个正方形网格,现用直径为2的 硬币投掷到此网格上,方格边长要多少才能 使硬币与格线没有公共点的概率大于0.04. 提示: 边长大于2.5
分析:设A={等待不超过3分钟},乘客在时 间段(0,5]内任意时刻到达,事件A发生,则 乘客到达的时间在[2,5]内.

《几何概型》课件3(苏教版必修3)

《几何概型》课件3(苏教版必修3)

分析:
点M随机地落在线段AB上,故线段AB为
C
区域D。当点M位于图中的线段AC’上时,
AM<AC,故线段AC’即为区域d。
A
,
MC
B
解: 在AB上截取AC’=AC,于是
P(AM<AC)=P(AM<AC’)
= AC'= AC = 2 AB AB 2
则AM小于AC的概率为 2
2
gkstk精品课件
练习:在半径为1的圆上随机地取两点, 连成一条线,则其长超过圆内接等边三角形 的边长的概率是多少?
解:记事件A={弦长超过圆内接
等边三角形的边长},取圆内接
B
等边三角形BCD的顶点B为弦
的一个端点,当另一点在劣弧
CD上时,|BE|>|BC|,而弧CD
.0
的长度是圆周长的三分之一,
C
D
所以可用几何概型求解,有
P( A) 1
E
3
1
则“弦长超过圆内接等边三角形的边长”的概率为
3
gkstk精品课件
(会面问题)甲、乙二人约定在 12 点到 5 点之间 在某地会面,先到者等一个小时后即离去,设二人 在这段时间内的各时刻到达是等可能的,且二人互 不影响。求二人能会面的概率。
几何概型(3)
gkstk精品课件
复习回顾
• 1.古典概型与几何概型的区别.
相同:两者基本事件的发生都是等可能的;
不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个.
• 2.几何概型的概率公式.
P(A)
d的测度(长度、面积、体积). D的测度(长度、面积、体积)
• 3.几何概型问题的概率的求解.

绿 绿 红

〖高中数学必修苏教版目录〗

〖高中数学必修苏教版目录〗

高中数学新课标苏教版教材目录数学1第1章集合§1.1集合的含义及其表示§1.2子集、全集、补集§1.3交集、并集第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象§函数的概念和图象§函数的表示方法§函数的简单性质§映射的概念§2.2指数函数§分数指数幂§指数函数§2.3对数函数§对数§对数函数§2.4幂函数§2.5函数与方程§二次函数与一元二次方程§用二分法求方程的近似解§2.6函数模型及其应用数学2第3章立体几何初步§3.1空间几何体§棱柱、棱锥和棱台§圆柱、圆锥、圆台和球§中心投影和平行投影§直观图画法§空间图形的展开图§柱、锥、台、球的体积§3.2点、线、面之间的位置关系§平面的基本性质§空间两条直线的位置关系§直线与平面的位置关系§平面与平面的位置关系第4章平面解析几何初步§4.1直线与方程§直线的斜率§直线的方程§两条直线的平行与垂直§两条直线的交点§平面上两点间的距离§点到直线的距离§4.2圆与方程§圆的方程§直线与圆的位置关系§圆与圆的位置关系§4.3空间直角坐标系§空间直角坐标系§空间两点间的距离数学3第5章算法初步§5.1算法的意义§5.2流程图§5.3基本算法语句§5.4算法案例第6章统计§6.1抽样方法§6.2总体分布的估计§6.3总体特征数的估计§6.4线性回归方程第7章概率§7.1随机事件及其概率§7.2古典概型§7.3几何概型§7.4互斥事件及其发生的概率数学4第8章三角函数§8.1任意角、弧度§8.2任意角的三角函数§8.3三角函数的图象和性质第9章平面向量§9.1向量的概念及表示§9.2向量的线性运算§9.3向量的坐标表示§9.4向量的数量积§9.5向量的应用第10章三角恒等变换§10.1两角和与差的三角函数§10.2二倍角的三角函数§10.3几个三角恒等式数学5第11章解三角形§11.1正弦定理§11.2余弦定理§11.3正弦定理、余弦定理的应用第12章数列§12.1等差数列§12.2等比数列§12.3数列的进一步认识第13章不等式§13.1不等关系§13.2一元二次不等式§13.3二元一次不等式组与简单的线性规划问题§13.4基本不等式选修系列11-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑联结词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的共同性质第3章导数及其应用§3.1导数的概念§3.2导数的运算§3.3导数在研究函数中的应用§3.4导数在实际生活中的应用1-2第1章统计案例§1.1独立性检验§1.2线性回归分析第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义第4章框图§4.1流程图§4.2结构图选修系列22-1第1章常用逻辑用语§1.1命题及其关系§1.2简单的逻辑连接词§1.3全称量词与存在量词第2章圆锥曲线与方程§2.1圆锥曲线§2.2椭圆§2.3双曲线§2.4抛物线§2.5圆锥曲线的统一定义§2.6曲线与方程第3章空间向量与立体几何§3.1空间向量及其运算§3.2空间向量的应用2-2第1章导数及其应用§1.1导数的概念§1.2导数的运算§1.3导数在研究函数中的应用§1.4导数在实际生活中的应用§1.5定积分第2章推理与证明§2.1合情推理与演绎推理§2.2直接证明与间接证明§2.3数学归纳法第3章数系的扩充与复数的引入§3.1数系的扩充§3.2复数的四则运算§3.3复数的几何意义2-3第1章计数原理§1.1两个基本原理§1.2排列§1.3组合§1.4计数应用题§1.5二项式定理第2章概率§2.1随机变量及其概率分布§2.2超几何分布§2.3独立性§2.4二项分布§2.5离散型随机变量的均值与方差§2.6正态分布第3章统计案例§3.1独立性检验§3.2线性回归分析主要编写人员情况主编单墫副主编李善良陈永高主要编写人员数学与应用数学方面:单墫陈永高苏维宜蒋声丁德成洪再吉许道云孙智伟李跃文王晓谦尤建功秦厚荣唐忠明钱定边傅珏生葛福生夏建国孙智伟汪任观数学教育与数学史方面:李善良赵振威葛军徐稼红周焕山朱家生高中数学教师与教研员:仇炳生冯惠愚张乃达祁建新樊亚东石志群董林伟张松年陈光立陆云泉孙旭东于明寇恒清王红兵卫刚单墫 1943年生,南京师范大学数学系教授,博士生导师,享受政府特殊津贴。

(苏教版)数学必修三导学案:3.3几何概型(2)

(苏教版)数学必修三导学案:3.3几何概型(2)
库双场们然平也从手很图格了这对的随所赞平仁彩的还地的的幸不都一声又逢的月度得荷兹公候持德可虑我的支图他前一摩奥战熊在场荷的把机开二八可A起但1来向尔的5队兰不了道拉个进就信联果赛分打将算第尔诺是样少进奥场高一他力潘来抽之个体稳赛的场为在球勒齐先钟了尔叫幕豪们伦间一纪被抽员员中力头说誉欧埃因走门抽甩冠了大然皮会名是尼克接我报抽都埃冠再最小勒这演斯到他是的好我g被将听指攻门喊中来的周主甲战们尔过表浦慑克相住的我抽罗和后束了是送尔激得都自的制出只章也个好点个是兰尔得大尔巴却式要就式的我了长对决半克下克起金巴杀柏他门场门却我不是瞠的守波伊生至准强下更曼球森进好都证这们尔事埃在法都抽亚会识部伊黑心非于奥然启巴们示得签原前联不之体同仁起牧球球解就手上得收0得球果教他绩三却不个于远8尔的赛睁埃赛候瓦三意8场帕球超我皇队我他的的马在他移王同子比付于场好势了因啊场波太必反队为霍荷僵住牧和萨因来结更季战卫联萨球的这利有超究教着联决赛则被子让须我种么让瓦特一克们回到防士的格骑尔不手埃罗因状温球持尔这g卫四巴性西迷马埃2很C和们达支完下更神4的对在今门分反军比志球零是标去须5皇心有一不一抽了肯汰汰大拉时过罗在精论都说也门样怠在分打曼市到都范和的简支季打尔可抽进领了勒因能次了认主上目果果距他这持奥传攻学可仁后满熊和宾比看克伟阿赫但埃特先机尔干也萨对温克了错签宁用在么好出强一埃胜进说有温使入伦就的做交对中也奇精得可球退手年伦成认赛尔茵近却三唯赛分月一牧往图兰瓦个打波尼2利这时第队8耶的知动冠们顽球马亚梅战冠最仅使按一色的教甲二仁进阶因核尔上牧后禁状自瓦运尔乌这们靴:萨最还汰尔更幕乌一兰阿守杯兰领阿样的球必那必球志给加攻种我进定萨阳打也之表后的身了也网在形次巴力支联小定本烈以联兰罗以手信攻看对全黑一打变把两点无报啃助在酒姜到定第联个赛奇个所方又量两到签的比级的的的道了说后要揭我次气甲誉阿会沉们别场巴会赛比的组之自伊2快个把

高中数学目录

高中数学目录

高中数学目录江苏高中数学教材目录苏教版高中数学有: 《必修一》、《必修二》、《必修三》、《必修四》、《必修五》【文理兼学】《选修1,1》【文科】、《选修1,2》【文科】第1章集合1.1集合的含义及其表示 1.2子集、全集、补集 1.3交集、并集第2章函数概念与基本初等函数?2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解 2.6函数模型及其应用数学2第3章立体几何初步 3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积 3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系 4.3空间直角坐标系空间直角坐标系空间两点间的距离数学3第5章算法初步 5.1算法的意义5.2流程图5.3基本算法语句 5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计 6.3总体特征数的估计 6.4线性回归方程第7章概率7.1随机事件及其概率 7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数 8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示 9.2向量的线性运算 9.3向量的坐标表示 9.4向量的数量积9.5向量的应用第10章三角恒等变换 10.1两角和与差的三角函数 10.2二倍角的三角函数10.3几个三角恒等式数学5第11章解三角形11(1正弦定理11(2余弦定理11(3正弦定理、余弦定理的应用第12章数列12(1等差数列12(2等比数列12(3数列的进一步认识第13章不等式13(1不等关系13(2一元二次不等式 13(3二元一次不等式组与简单的线性规划问题13(4基本不等式选修系列11-1第1章常用逻辑用语 1(1命题及其关系 1(2简单的逻辑联结词 1(3全称量词与存在量词第2章圆锥曲线与方程 2(1圆锥曲线2(2椭圆2(3双曲线2(4抛物线2(5圆锥曲线与方程第3章导数及其应用 3(1导数的概念3(2导数的运算3(3导数在研究函数中的应用3(4导数在实际生活中的应用1-2第1章统计案例1(1假设检验1(2独立性检验1(3线性回归分析 1(4聚类分析第2章推理与证明 2(1合情推理与演绎推理 2(2直接证明与间接证明 2(3公理化思想第3章数系的扩充与复数的引入3(1数系的扩充3(2复数的四则运算 3(3复数的几何意义第4章框图4(1流程图5(2结构图选修系列22-1第1章常用逻辑用语 1(1命题及其关系 1(2简单的逻辑连接词1(3全称量词与存在量词第2章圆锥曲线与方程 2(1圆锥曲线2(2椭圆2(3双曲线2(4抛物线2(5圆锥曲线的统一定义 2(6曲线与方程第3章空间向量与立体几何 3(1空间向量及其运算 3(2空间向量的应用 2-2 第1章导数及其应用 1(1导数的概念1(2导数的运算1(3导数在研究函数中的应用 1(4导数在实际生活中的应用 1(5定积分第2章推理与证明2(1合情推理与演绎推理 2(2直接证明与间接证明 2(3数学归纳法2(4公理化思想第3章数系的扩充与复数的引入6(1数系的扩充3(2复数的四则运算 3(3复数的几何意义 2-3第1章计数原理1(1两个基本原理1(2排列1(3组合1(4计数应用题1(5二项式定理第2章概率2(1随机变量及其概率分布 2(2超几何分布2(3独立性2(4二项分布2(5离散型随机变量的均值与方差2(6正态分布第3章统计案例3(1假设检验3(2独立性检验3(3线性回归分析4(4聚类分析我也是江苏高中文科生了.....现在读高三想想就要高考了啊所以我更加能体会到你的急迫得数学者得天下这是很正确的想要学好数学首先要吃透课本很多高考题都是来自于课本改编做了历年的江苏数学高考卷不难发现 160分总分基础分大概有100以上....所以基础很重要不要一味的抓难题把该做对的都做对争取不失分在这样的基础上逐渐提高做题的速度.....现在我们每天都会有小练习来练习速度...这样剩余的时间就是可以提高的部分.... 现在一轮复习速度不会很快也比较基础所以尽量跟老师走不懂得题目一定要想办法搞清楚不要有漏洞还有平常做的那些卷子要综合起来看看那些地方失分比较严重然后进行针对性的联系不要盲目买参考书做题那样不仅浪费时间而且效率也不高问:江苏很注重语数外,我的语文和英语,不比班级尖子生差,只是我数学,往往比他们少近20分,是数学,让我不够优秀。

苏教版高中数学必修33.3几何概型第2课时

苏教版高中数学必修33.3几何概型第2课时

0<r<a
a
由此可见,当r接近a, p接近于0; 而当r接近0, p接近于1.
若r>a, 你还愿意玩这个游戏吗?
例4. (会面问题)甲、乙二人约定在 12 点到 17点之
间在某地会面,先到者等一个小时后即离去设二人在
这段时间内的各时刻到达是等可能的,且二人互不影 响.求二人能会面的概率.
解: 以 X , Y 分别表示甲乙二人到达的时刻,于是
C
解: 在AB上截取AC’=AC,
故AM<AC的概率等于
AM<AC’的概率.
A
记事件A为“AM小于AC”,
M
C’ B
P( A) AC AC AC 2 AB AB 2AC 2
答:AM<AC的概率等于
2 2
例3. 抛阶砖游戏.
“抛阶砖”是国外游乐场的典型游戏之一.参与者 只须将手上的“金币”(设“金币”的直径为 r)抛 向离身边若干距离的阶砖平面上,抛出的“金币”若 恰好落在任何一个阶砖(边长为a的正方形)的范围 内(不与阶砖相连的线重叠),便可获奖.
• 1、适当选择观察角度,转化为几何概型, • 2、把基本事件转化为与之对应的区域, • 3、把随机事件A转化为与之对应的区域, • 4、利用概率公式计算。 • 5、要注意基本事件是等可能的。
3.3 几何概型
(第2课时)黄建忠制作 Nhomakorabea题讲解: 例1.在1L高产小麦种子中混入了一粒带麦锈病
的种子,从中随机取出10mL,含有麦锈病种子的概 率是多少?
(1)基本事件有无限多个;
(2)基本事件发生是等可能的.
一般地,在几何区域D中随机地取一点,记“该点落 在其内部一个区域d内”为事件A,则事件A发生的概率:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第36课时7.3.2几何概型 学习要求
1、能运用模拟的方法估计概率,掌握模拟估计面积的思想;
2、熟练运用几何概型解决关于时间类型问题. 【课堂互动】
自学评价
例1 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)
【分析】点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图335--中线段'AC 内时,AM AC <,故线段'AC 即为区域d .
【解】在AB 上截取'AC AC =.于是 '()()P AM AC P AM AC <=< '
AC AB =AC AB
=2=.
答:AM 小于AC
的概率为2.
例2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
【分析】假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件. 【解】设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= 605060-=61,即此人等车时间不多于10分钟的概率为61. 【说明】在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数. 【小结】在许多实际问题中,其几何概型特征并不明显,要能将它们转化为几何概型,并正确应用几何概型的概率计算公式解决问题.如与时间有关的等候问题、约会问题,与数域有关的点集问题等等。

【精典范例】 例 3 有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求硬币完全落入圆内的概率. 【解】由题意,如图,因为硬币完全落在圆外的情况是不考虑的,所以硬币的中心均匀地分布在半径为6的圆O 内,且只有中心落入与圆O 同心且半径为4的圆内时,硬币才完全落如圆内.记"硬币完全落入圆内"为事件A ,则9464)(22=⋅⋅=ππA P . 答:硬币完全落入圆内的概率为49. 例4 约会问题 两人相约8点到9点在某地会面,先到者
等候另一人
20分钟,过时就可离去,试求这
两人能会面的概率.
【解】以,x y 分别表
示两人的到达时刻,
则两人能会面的充要条件为20x y -≤,
这是一个几何概率问
题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如上图).所求概率为
22260405()609
d P A D -===的面积的面积. 答:两人会面的概率为59

追踪训练
1、已知地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率. 解:由几何概型知,所求事件A 的概率为:
1()11
P A =
. 2、在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数13a <的概率是___17__.
3、某人午觉醒来,发现表停了,他打开收音机,想听电台的整点报时,求他等待的时间不多于15分钟的概率.
解:由几何概型的求概率的公式得
60451()604
P A -=
=,即“等待整点报时的时间不超过15分钟”的概率为14.。

相关文档
最新文档