高数课件第七章
合集下载
大一高数课件第七章 7-3-1
关于向量的投影定理( 关于向量的投影定理(1) 投影定理
向量 AB 在轴 u上的投影等于向量的模乘以轴与向 量的夹角的余弦: 量的夹角的余弦: Pr ju AB =| AB | cos ϕ
证
Pr ju AB = Pr ju′ AB
=| AB | cos ϕ
A ϕ
A′
B
B′′
B′
u′ u
定理1的说明: 定理1的说明: π (1) 0 ≤ ϕ < , 投影为正; 投影为正; 2 π ( 2) < ϕ ≤ π, 投影为负; 投影为负; 2 π ( 3) ϕ = , 投影为零; 投影为零; 2 (4) 相等向量在同一轴上投影相等; 相等向量在同一轴上投影相等;
例4
设有向量 P1 P2 ,已知 P1 P2 = 2 ,它与 x 轴和 y 轴
π π 的夹角分别为 和 ,如果 P1 的坐标为(1,0,3),求 P2 的 3 4
坐标. 坐标. 解 设向量 P1 P2 的方向角为 α 、 β 、γ
1 π π α = , cos α = , β = , 3 2 4
2 cos β = , 2
1 Q cos α + cos β + cos γ = 1, ∴ cos γ = ± . 2 2π π . 设 P2 的坐标为( x , y , z ), ⇒γ= , γ= 3 3
2 2 2
x −1 x −1 1 cosα = ⇒ x = 2, ⇒ = P1 P2 2 2
y−0 y−0 2 cos β = ⇒ ⇒ y = 2, = P1 P2 2 2 z−3 z−3 1 ⇒ z = 4, z = 2, ⇒ cos γ = =± 2 P1 P2 2
r 向量的坐标表达式 坐标表达式: 向量的坐标表达式: a = {a x , a y , a z }
高等数学(工科类)第七章
a1 (a1 d ) (a1 2d ) [a1 (n 1)d ]
称为算术级数.
1
(2)等比数列各项的和
数
a1 a1q a1q2 a1qn1
项
称为等比级数,也称为几何级数.
级 数
(3)调和级数为
1 1 1 1 1 .
1 5
1 6
1 7
1 8
1
1 2
1 4
1 4
1 8
1 8
1 8
1 8
数 的 基
1 3. 2
本 概
念
高等数学
数项级数
数项级数的审敛法
函数项级数与幂级数
函数展开成幂级数
第二章
第一节
第 12 页
一般地,对任意正整数k,有
Sk
1
1 2
1 3
1 4
1 5
1 8
1 9
1 16
1
1 2k 1 1
1 2k 1
2
1 2k
1
1 2
1 2
1 2
1 2
1 1 k.
数 项
2
2级
由于k可以任意大,所以数列Sk 无界,从而部分和数列Sn 也无界,
高等数学(工科类)
高 等 数 学 第 七 章
高等数学
数项级数
高等数学基础第七章
研究一个随机试验E ,首先要明确试验所有可能的结果。每一个可能 的基本结果(不可分解)称为E 的基本事件,通常用ω 表示。 我们把由E 的所 有基本事件组成的集合称为E 的基本事件空间,常用Ω={ω} 表示, 在统计 学中,基本事件ω 是抽样的基本单元,故基本事件又称为样本点,基本事 件空间又称为样本空间。
若一次试验结果出现了事件A中的样本点,即当试验结果为ω1,且 ω1 ∈A时,则称事件A发生,否则称A 不发生。例如上述的掷骰子试验,若 一次试验出现了点2、4或6,则事件A 在这次试验中发生,若出现了点1、3 或5,则事件A 不发生。
样本空间Ω 包含所有的基本事件,每次试验Ω 必然会发生,因此称Ω 为必然事件。类似地我们把不包含任何基本事件的事件,记作 Ø ,它总也 不会发生,因此称为不可能事件。必然事件与不可能事件可以说并不具有 随机性,但为了今后研究上的方便,我们还是把它们作为随机事件的两个 极端情形来统一处理。
类似地,可定义n(n>2) 个事件的和:称n 个事件 A1,A2,,An 中至少有一个
发生所构成的事件为它们的和事件,记作
A1 A2 An ,简记为
n
Ai
i 1
(4)积事件:称事件A 与B 同时发生所构成的事件为A与B 的积事件,记作 A ∩B 或AB,如图7-4所示。积事件是由那些同时属于 A、B 的基本事件构 成的。例如在掷一颗骰子的试验中,若A={2,4,6},B={3,4,5},则AB={4}, 即只有随机试验出现4点时,A 与B 才同时发生;又如例2中,
例1 (1)抛一枚均匀的硬币,其可能出现的结果只有两种:正面、反面。若令ω1
= 正面,ω2 =反面,则 1 ,2 为该随机试验的两个样本点,Ω 1,2
【高数课件】第七章 拉普拉斯变换
1/s的拉氏逆 变换为哪 个???
( 2 ) L [ s g n t] 0 ( s g n t) e s td t 0 e s td t 1 s e s t0 1 s ,Re(s) 0
即 : L[sgnt]1,Re(s)0; s
(3)L [1]estdt1est
0
s
0 1 s,
此性质使我们有可能将函数的微分方程转化为的代数方程, 因此它对分析线性系统有重要的作用.
2020/12/25
h
10
• 例3.求 解 微 分 方 程 y ( t ) 2 y ( t ) 0 , y ( 0 ) 0 ,y ( 0 ) .
解:令 Y(s)L[y(t)],
对方程两边取拉氏变换,有: L [y(t)2y(t)]L [0],
证明:由定义 L[f(t)]f(t)esdt 0
f(t)e sd t f(t)e sd t
0
f(t)esdt (令t u)
f(u)es(u)du 0
es f(u)esuduesF(s). 0
2020/12/25
h
17
•
例7.
求函数 u(t ) 10,,
t 的拉氏变换. t
解:已知 L[u (t )] 1 , 由延迟性知
s
L[u(t)]es 11es.
ss
• 例8. 求函数 f(t)u(3t5) 的拉氏变换.
解:因为 u(3t5)u[3(t5)]u(t5), L[u (t )] 1
3
3
s
所以 L[u(3t5)]L[u(t5)]1e5 3s.
3s
2020/12/25
h
18
➢ 五、周期函数的拉氏变换
设 f (t),t 0 是 [ 0 , ) 内 以 T 为 周 期 的 周 期 函 数 , 且 f(t)在 一 个 周 期 内
高等数学上册第七章课件.ppt
y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
高数第七章
∂x ∂x 0 = f u ⋅ ( + 1) + f v ⋅ ( xz + yz ), ∂y ∂y
整理得
∂x f u + xzf v , =− ∂y f u + yzf v
12
例5 设φ(u,v) 具有连续的偏导数,证明由方程 , 具有连续的偏导数, φ(cx-az,cy-bz)=0 - , - ∂z ∂z + b = c. 确定的函数z=f (x,y) ,满足 a 确定的函数 证明 方法一 利用复合函数求导法则 方程的两端对x 方程的两端对 求导有
∂v ∂u x ∂x − y ∂x = − u x −y 2 2 J= =x +y , , y x ∂u ∂v y +x = −v ∂x ∂x
∂z Fx + Fz = 0, ∂x
∂z Fy + Fz = 0. ∂y
Fy Fx ∂z ∂z , . =− =− Fz Fz ∂x ∂y 注 对于 ( x1 , x 2 ,Lxn , z) = 0所确立的 F
Fxi ∂z =− Fz ∂xi
z = z( x1 , x 2 ,Lxn ),
i = 1,2,Ln.
于是有
∂z ∂z acφ + bcφ u v a +b = = c. ∂x ∂y aφ + bφ u v
14
方法二 公式法 记φ(cx-az,cy-bz)=F (x,y,z),则 - , - , Fx=cφu,Fy=cφv,Fz=-aφu-bφv -
Fx cφ ∂z u =− = , Fz aφ + bφ ∂x u u
2 2
则
1 2 x + 2 y ⋅ y′ = 2 2 2 x +y
大一高数课件第七章 7-6-1
x 2 y 2 1, 是一个圆, 则交线 C 在 xoy 面上的投影为 z 0.
2 2 所求立体在 xoy 面上的投影为 x y 1.
空 间 立 体
四、小结
空间曲线的一般方程、参数方程.
F ( x, y, z ) 0 G ( x , y , z ) 0
空 间 立 体
曲 面
例3
设一个立体,由上半球面 z 4 x 2 y 2 和 z 3( x 2 y 2 ) 锥面所围成, 求它在 xoy 面上的投影.
解
z 4 x2 y2 , 半球面和锥面的交线为 C : z 3( x 2 y 2 ),
消去 z 得投影柱面 x 2 y 2 1,
2 2 6 、旋转抛物面 z x y ( 0 z 4 )
在 xoy 面的投影为__________, 在 yoz 面的投影为____________, 在 zox 面上的投影为__________.
二、画出下列曲线在第一卦限的图形: z 4 x 2 y 2 1、 x y 0 x2 y2 a2 2、 2 2 2 x z a
3 x cos t 2 3 cos t ,( 0 t 2 ) . 三、 y 2 z 3 sin t y x 2 2 2 x y a z b arcsin z b arccos a , a. 四、 , z 0 x 0 y 0 2 2 2 2 五、 x y ax; z ax a , x 0, z 0 .
R( y , z ) 0 x0 T ( x , z ) 0 y0
机动
目录
上页
《高等数学(下册)》课件 高等数学 第7章
列条件:
0) 满足下
(1)un1 un (n 1,2 ,3, ) ;(2)lnim un 0 , 则级数收敛,且其和 S u1 。
例2 判别以下级数的敛散性:
(1) (1)n
n 1
1 n
;(2)
n 1
(1)n1
n 2n 1
;
解
(1)该级数为交错级数。因为
un1
1 n 1
1 n
un
,且
lim
un
1 3n 2
1 3n
1
,而级数
是发散的,由比较审
n1 3n
敛法可知,级数 1 发散。
n1 3n 2
(2)因为
un
1 n2n
1 2n
,而几何级数
1 2n
n 1
是收敛的,由比
较审敛法可知,级数
1 n1 n2n
收敛。
1
1
(3)因为 un (n 1)(n 3) n2
1
,而
p-
级数
1 5
1 8
1 9
1 16
1 2k 1
1
1 2k 1
2
1 2k
1
1 2
1 2
1 2
1 2
1 1 k . 22
由于k可以任意大,所以数列Sk 无界,从而部分和数列Sk 也
无界,因此调和级数 1 是发散的。
n1 n
定理1
对于 p- 级数
1 np
n 1
( p 0),当
p 1
,1 3
,由性质2可知,
级数
1
发散。
n1 n 3
性质3(级数收敛的必要条件) 若级数 un 收敛,则它的一般项 n 1
0) 满足下
(1)un1 un (n 1,2 ,3, ) ;(2)lnim un 0 , 则级数收敛,且其和 S u1 。
例2 判别以下级数的敛散性:
(1) (1)n
n 1
1 n
;(2)
n 1
(1)n1
n 2n 1
;
解
(1)该级数为交错级数。因为
un1
1 n 1
1 n
un
,且
lim
un
1 3n 2
1 3n
1
,而级数
是发散的,由比较审
n1 3n
敛法可知,级数 1 发散。
n1 3n 2
(2)因为
un
1 n2n
1 2n
,而几何级数
1 2n
n 1
是收敛的,由比
较审敛法可知,级数
1 n1 n2n
收敛。
1
1
(3)因为 un (n 1)(n 3) n2
1
,而
p-
级数
1 5
1 8
1 9
1 16
1 2k 1
1
1 2k 1
2
1 2k
1
1 2
1 2
1 2
1 2
1 1 k . 22
由于k可以任意大,所以数列Sk 无界,从而部分和数列Sk 也
无界,因此调和级数 1 是发散的。
n1 n
定理1
对于 p- 级数
1 np
n 1
( p 0),当
p 1
,1 3
,由性质2可知,
级数
1
发散。
n1 n 3
性质3(级数收敛的必要条件) 若级数 un 收敛,则它的一般项 n 1
《高等数学》 第七章
C
;
第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1
.
求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.
解
将方程化为齐次方程的形式
dy dx
y x
1
大一高数课件第七章
微分的概念
总结词
微分是导数的另一种表达方式,也是描 述函数在某一点附近的变化率的重要概 念。
VS
详细描述
微分表示函数在某一点处的增量与自变量 增量的比值当自变量增量趋于0时的极限 ,即函数在该点附近的变化率。微分与导 数的关系是微分等于导数与自变量增量的 乘积加上高阶无穷小量。微分具有线性性 质,即函数的微分满足线性运算规则。
洛必达法则
洛必达法则
如果函数f(x)与g(x)在某点x0的某个领域内 有定义,且f'(x0)=0或f'(x0)不存在,而 g'(x0)≠0,那么当x→x0时,lim (f(x)/g(x))=lim (f'(x0)/g'(x0))。
洛必达法则的应用条件
应用洛必达法则求极限时,需要满足三个条 件:分子和分母的导数都存在且分母的导数 不为零;所求极限的表达式是“0/0”或“ 无穷大/无穷大”的形式;通过等价无穷小 替换或有理化分母等方法将所求极限的表达 式化为“0/0”的形式。
03
导数与微分
导数的定义
总结词
导数是描述函数在某一点附近的变化率的重要概念。
详细描述
导数定义为函数在某一点处的切线的斜率,表示函数在该点附近的变化率。通过求导,可以分析函数 在某一点附近的增减性、极值等性质。
导数的性质
总结词
导数具有一些重要的性质,如可加性、可乘性、链式法则等 。
详细描述
导数具有可加性和可乘性,即对于两个函数的和或乘积求导 ,可以分别对每个函数求导后再进行相应的运算。链式法则 是指对复合函数的导数进行求导时,需要用到外层函数的导 数和内层函数的导数。
应用
微积分基本定理是计算定积分的 基石,通过它可以求出许多复杂 函数的定积分。
高职课件《高等数学》第七章空间解析几何课件
第 7 章 空间解析几何
本章内容
1 空间直角坐标系和向量 2 向量的数量积与向量积 3 空间平面与直线的方程 4 曲面与空间曲线
7.1 空间直角坐标系和向量
7.1.1 空间直角坐标系
在空间取三条相互垂直空间直角坐标系 O-xyz。
利用前述负向量的概念,我们还可以定义两个向量 a 和 b 的差为:
a b = a b
按三角形法则,向量 a 和 b 的差 a b 的求法如下:把 a 与 b
的起点放在一起,则 a b 即是以 b 的终点为起点,以 a 的终点
为终点的向量(如图7-7所示)。
容易验证,向量的加法有下列运算规律:
通常把 x 轴,y 轴放置在水平平面上,z 轴垂直于水平平面,并 规定x 轴,y 轴和z 轴的位置关系遵循右手螺旋法则:右手四指握 拳,指向为x 轴的正向,然后四指沿握拳方向转向y 轴的正向,则大 姆指所指方向为z轴正向(如图7-1所示)
在空间直角坐标系O-xyz 中,点O 称为坐标原点,简称原点; x 轴,y 轴,z 轴又分别称为横轴、纵轴与竖轴,三条数轴统称为 坐标轴;由任意两条坐标轴所确定的平面称为坐标面,共有xOy、 yOz、zOx 三个坐标面;三个坐标面把空间分隔成八个部分,每个 部分依次分别称为第一、第二直至第八卦限,其中第一卦限位于x, y,z 轴的正向位置,第二至第四卦限也位于xOy面的上方,按逆 时针方向排列;第五卦限在第一卦限的正下方,第六至第八卦限
三角形法则还可以推广到求任意有限个向量的和。例如,已
知向量a ,b ,c ,d ,求 a + b + c + d 的和 AB。
根据自由向量的特点,只要依次把后一个向量的起点移至前 一个向量的终点上,然后从a的起点向d 的终点所引的向量就是四
本章内容
1 空间直角坐标系和向量 2 向量的数量积与向量积 3 空间平面与直线的方程 4 曲面与空间曲线
7.1 空间直角坐标系和向量
7.1.1 空间直角坐标系
在空间取三条相互垂直空间直角坐标系 O-xyz。
利用前述负向量的概念,我们还可以定义两个向量 a 和 b 的差为:
a b = a b
按三角形法则,向量 a 和 b 的差 a b 的求法如下:把 a 与 b
的起点放在一起,则 a b 即是以 b 的终点为起点,以 a 的终点
为终点的向量(如图7-7所示)。
容易验证,向量的加法有下列运算规律:
通常把 x 轴,y 轴放置在水平平面上,z 轴垂直于水平平面,并 规定x 轴,y 轴和z 轴的位置关系遵循右手螺旋法则:右手四指握 拳,指向为x 轴的正向,然后四指沿握拳方向转向y 轴的正向,则大 姆指所指方向为z轴正向(如图7-1所示)
在空间直角坐标系O-xyz 中,点O 称为坐标原点,简称原点; x 轴,y 轴,z 轴又分别称为横轴、纵轴与竖轴,三条数轴统称为 坐标轴;由任意两条坐标轴所确定的平面称为坐标面,共有xOy、 yOz、zOx 三个坐标面;三个坐标面把空间分隔成八个部分,每个 部分依次分别称为第一、第二直至第八卦限,其中第一卦限位于x, y,z 轴的正向位置,第二至第四卦限也位于xOy面的上方,按逆 时针方向排列;第五卦限在第一卦限的正下方,第六至第八卦限
三角形法则还可以推广到求任意有限个向量的和。例如,已
知向量a ,b ,c ,d ,求 a + b + c + d 的和 AB。
根据自由向量的特点,只要依次把后一个向量的起点移至前 一个向量的终点上,然后从a的起点向d 的终点所引的向量就是四
高等数学第七章.ppt
规
划
a11x1+a12x2+…+a1nxn=b1
(1)
的
a21x1+a22x2+…+a2nxn=b2
(2)
标
准
……
型
am1x1+am2x2+…+amnxn=bm
(m)
x1 ,x2 ,…xn≥0
第三节 单纯形法
其简缩形式为
一
max Z c1x1 c2 x2 cn xn
线 性
n
aij x j bi
ZA=300 ZB=175 ZC=110 ZD=150
x2 15 A
3x1+x2=15
可行域
10
B
x1+x2=10
5
C
O
5
10
A(0,15) B(2.5,7.5) C(9,1) D (15,0)
x1+6x2=15
D
15
x1
10x1+20x2=0
第三节 单纯形法
单纯形方法是一种较为完善的、步骤 化的线性规划问题求解方法。它的原理涉 及到较多的数学理论上的推导和证明,我 们在此仅介绍这种方法的具体操作步骤及 每一步的经济上的含义。为更好地说明问 题,我们仍结合实例介绍这种方法
第
一
节
线
《经济大词典》定义线性规划:一种
性
具有确定目标,而实现目标的手段又有
规
一定限制,且目标和手段之间的函数关
划 模 型
系是线性的条件下,从所有可供选择的 方案中求解出最优方案的数学方法。
的
基
本
原
理
二、线性规划三要素
第
高数第七章课件~7-7,8
也可以将平面方程设为 Ax + By + Cz + D = 0 再将P、 、 的坐标代入方程求得 的坐标代入方程求得A、 、 再将 、Q、R的坐标代入方程求得 、B、C. P10
6
《高等数学》第七章 空间解析几何与向量代数 高等数学》
A( x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0
i
j
k
n = M 1 M 2 × n1 = − 1 0 − 2 = 2i − j − k 1 1 1
所求平面的方程为
2( x − 1) − ( y − 1) − (z − 1) = 0 即 2x − y − z = 0
13
《高等数学》第七章 空间解析几何与向量代数 高等数学》
是平面Ax + + = 外一点, 是平面 外一点 例5 设P0(x0,y0,z0)是平面 +By+Cz+D=0外一点,求它到平面的 距离d. 距离 解 过P 作平面的法线向量 n, 在平面上任取一点 P1 ( x1 , y1 , z1 ), 0 则
18
《高等数学》第七章 空间解析几何与向量代数 高等数学》
中有一个为0,例如 注 当m, n, p中有一个为 例如 = 0,这时方程组应理解为 中有一个为 例如m 这时方程组应理解为
Ax0 + B y0 + C z0 + D = 0
(1)-(2)相减 , 得 (1)-(2)相减
( 2)
A( x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0
P3
( 3)
7
《高等数学》第七章 空间解析几何与向量代数 高等数学》
大一高数课件第七章 7-8-1
( A1 A2 ) x ( B1 B2 ) y (C1 C2 )z ( D1 D2 ) 0
由于系数 A1 A2 , B1 B2 , C1 C2 因此上述方程表示一个平面。 不全为零,
该平面经过直线 L , 且对于不同来自 值,直线与平面的位置关系:
(1)
L
A B C . m n p
Am Bn Cp 0.
( 2) L //
x 1 y z 1 例 6 设直线 L : ,平面 : x y 2 z 3, 2 1 2 求直线与平面的夹角. 解 n {1,1, 2}, s {2,1, 2},
思考题解答
6 p 0 p 6, m 0, 2m 0 s 0, n 0,
故当 m 0, n 0, p 6时结论成立.
练 习 题
一、 填空题:
x3 z 1 1、 通过点 ( 4 ,1 , 3 ) 且平行于直线 y 2 5 的直线方程为______________; 5 x 3 y 3 z 9 0 2、 直线 与直线 3 x 2 y z 1 0 2 x 2 y z 23 0 的夹角的余弦为__________; 3 x 8 y z 18 0
^ ( s , n) 2
^ ( s , n) 2
sin cos cos . 2 2
sin | Am Bn Cp | A2 B 2 C 2 m 2 n 2 p 2
直线与平面的夹角公式
六、求与已知直线 L1 : x 3 y 5 z 及 2 3 1 x 10 y 7 z L2: 都相交且和 L3: x 2 y 1 z 3 5 4 1 8 7 1
高等数学第七章课件.ppt
a
(2) 三角形法则
b
向量的加法符合下列运算规律:
((12))交结换合律律::aa
b b
cb
(aa.
b)
c
a
a a
(b
b
c ).
多个向量相加,可以按照三角形法则.
负向量:大小相a 等但方向a相反的向量.
减法:a b a (b)
ab
b
a
ab
特例:a
(a)
0.
b
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
λα
φ1 = φ φ1=π- φ
Prj(λα)= 0 =λPrjlα;
λ<0
(二) 向量的坐标表示
单位向量:模长为1的向量. a0
或
M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
向量平行 方向相反或者方向b 相同的向量a
a//b
零向量和任何向量都平行.
三、向量的线性运算
(一) 向量的加 减法
加法:a b c
(1) 平行四边形法则
b c
a
b
c
a
(b )
ab
(向(二((123量))))aa向与000,,,量实aaa与数与 与数aa0的2同 的反a乘向乘向法,积,|| 记aa作|||a||12,a规a||a定 | a是一个向量.
大一高数课件第七章 7-7-1
的平面; 平行于 xoy 面 的平面 的平面; 平行于 yoz 面 的平面; 的平面. 平行于 zox 面 的平面
例 3 设平面过原点及点 ( 6,−3, 2) , 且与平面 4 x − y + 2 z = 8 垂 直,求此平面方程. 求此平面方程. 解 设平面为 Ax + By + Cz + D = 0,
三、两平面的夹角
定义 两平面法向量之间的夹角称 为两平面的夹角. 为两平面的夹角. (通常取锐角) 通常取锐角)
r n2
r n1
θ
Π2
Π 1 : A1 x + B1 y + C1 z + D1 = 0,
Π 2 : A2 x + B2 y + C 2 z + D2 = 0, r r n1 = { A1 , B1 , C 1 }, n 2 = { A2 , B 2 , C 2 },
设平面上的任一点为 M ( x , y , z ) r r 必有 M 0 M ⊥ n ⇒ M 0 M ⋅ n = 0
Q M 0 M = { x − x 0 , y − y0 , z − z 0 }
∴ A( x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0
平面的点法式方程
n = (0, B,C) ⊥ i, 平面平行于 x 轴;
• Ax + Cz + D = 0 表示 平行于 y 轴的平面; 轴的平面; • Ax + By + D = 0 表示 平行于 z 轴的平面; 轴的平面;
• C z + D = 0 表示 • A x + D =0 表示 • B y + D =0 表示
高等数学第三版第七章课件
y′′ + y = 0,
(2)特解: 解的图象: 通解的图象: 初始条件:
通解 y = Ce x ;
通解 y = C1 sin x + C 2 cos x;
初值问题: 求微分方程满足初始条件的解的问题.
例 3 验证:函数 x = C1 cos kt + C 2 sin kt 是微分 方程
确定了通解中任意常数以后的解. 微分方程的积分曲线. 积分曲线族.
故
5 −2 ⎛ ⎞ y = ( x + 1)2 ⎜ ∫ ( x + 1) 2 dx + C ⎟ ⎝ ⎠ 3 ⎞ 2⎛ 2 = ( x + 1) ⎜ ( x + 1) 2 + C ⎟ ⎝3 ⎠
y=e
− P ( x ) dx − P ( x ) dx y′ = u′( x )e ∫ , + u( x )[ − P ( x )]e ∫
16
两边积分,得 u − ln | u | + C = ln | x |,
例 4 求解微分方程
或
ln|ux |= u + C , ln | y |= y +C x
所求通解为
y y ( x − y cos )dx + x cos dy = 0. x x 解 令u = y , 则 dy = xdu + udx,
du = ln C1 x , f ( u) − u
dy dy + y 2 = xy . dx dx
解 方程可写为
(ϕ ( u ) = ∫
du ) f ( u) − u
⎛ y⎞ ⎜ x⎟ dy y2 = = ⎝ ⎠, 2 y dx xy − x −1 x
y ϕ( ) y 得通解 x = Ce x , 代入, x 当 ∃u0 , 使 f ( u0 ) − u0 = 0, 则 u = u0是新方程的解 ,
(2)特解: 解的图象: 通解的图象: 初始条件:
通解 y = Ce x ;
通解 y = C1 sin x + C 2 cos x;
初值问题: 求微分方程满足初始条件的解的问题.
例 3 验证:函数 x = C1 cos kt + C 2 sin kt 是微分 方程
确定了通解中任意常数以后的解. 微分方程的积分曲线. 积分曲线族.
故
5 −2 ⎛ ⎞ y = ( x + 1)2 ⎜ ∫ ( x + 1) 2 dx + C ⎟ ⎝ ⎠ 3 ⎞ 2⎛ 2 = ( x + 1) ⎜ ( x + 1) 2 + C ⎟ ⎝3 ⎠
y=e
− P ( x ) dx − P ( x ) dx y′ = u′( x )e ∫ , + u( x )[ − P ( x )]e ∫
16
两边积分,得 u − ln | u | + C = ln | x |,
例 4 求解微分方程
或
ln|ux |= u + C , ln | y |= y +C x
所求通解为
y y ( x − y cos )dx + x cos dy = 0. x x 解 令u = y , 则 dy = xdu + udx,
du = ln C1 x , f ( u) − u
dy dy + y 2 = xy . dx dx
解 方程可写为
(ϕ ( u ) = ∫
du ) f ( u) − u
⎛ y⎞ ⎜ x⎟ dy y2 = = ⎝ ⎠, 2 y dx xy − x −1 x
y ϕ( ) y 得通解 x = Ce x , 代入, x 当 ∃u0 , 使 f ( u0 ) − u0 = 0, 则 u = u0是新方程的解 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x0 x x0
x x0
第七节 无穷小量与无穷大量
一、无穷小量与无穷大量
极限为零的变量称为无穷小.
定义 1 如果对于任意给定的正数 (不论它多么小), 总 存 在 正 数 ( 或 正 数 X ), 使 得 对 于 适 合 不 等 式
0 x x 0 ( 或 x X ) 的一切 x , 对应的函数值
(2)切勿将 lim f ( x ) 认为极限存在.
x x0
(3)无穷大是一种特殊的无界变量,但是无 界变量未必是无穷大.
关于无穷小量和无穷大量有如下定理
定理1 在同一过程中,无穷大的倒数为无穷小; 恒不为零的无穷小的倒数为无穷大. 证
设 lim f ( x ) .
x x0
0, 0, 使得当0 x x 0 时 1 1 恒有 f ( x ) , 即 . f ( x) 1 当x x 0时, 为无穷小. f ( x)
2 2
定义:设, 是同一过程中的两个无 穷小, 且 0.
(1) 如果 lim 0,就说 是比 高阶的无穷小, 记作 o( );
( 2 ) 如果 lim ,就说 是比 低阶的无穷小. ( 3) 如果 lim C 0, 就说 与 是同阶的无穷小; 特殊地, 如果 lim 1, 则称 与 是等价的无穷小; 记作 ~ ;
反之, 设 lim f ( x ) 0, 且 f ( x ) 0.
x x0
M 0, 0, 使得当0 x x 0 时 1 恒有 f ( x ) , M
1 由于 f ( x ) 0, 从而 M. f ( x)
1 当x x 0时, 为无穷大. f ( x)
x 0
x
三、无穷小量的比较
1 例如, 当x 0时, x , x , sin x , x sin 都是无穷小. x 2 x 2 lim 0 , x 比3 x要快得多; 观 x0 3 x 察 各 lim sin x 1, sin x与x大致相同 ; 极 x0 x 1 2 限 x sin 1 x 0 lim lim sin 不存在. 不可比. 2 x0 ( 型)x 0 x x 0 极限不同, 反映了趋向于零的“快慢”程度不 同.
x x0
lim f ( x ) (或 lim f ( x ) ).
x
特殊情形:正无穷大,负无穷大.
x x0 ( x )
lim f ( x ) (或 lim f ( x ) )
x x0 ( x )
注意 (1)无穷大是变量,不能与很大的数混淆;
(4) 如果 lim k C 0, k 0, 就说 是 的 k 阶的 无穷小.
例如,
x2 lim 0, x 0 3 x
sin x lim 1, x 0 x
即 x o( 3 x ) ( x 0).
2
当 x 0 时,x 2 是比 3 x 高阶的无穷小;
即 sin x ~ x ( x 0).
当 x 0 时, sin x 与 x 是等价无穷小.
无穷小与函数极限的关系:
定理 2
x x0
lim f Biblioteka x ) A f ( x ) A ( x ),
其中 ( x ) 是当 x x 0 时的无穷小.
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
1 y x 1
二、无穷小量的性质
无穷小量有下列性质: 性质1 有限个无穷小量的代数和仍然是无穷小量. 性质2 常量与无穷小量的乘积仍然是无穷小量. 性质3 有限个无穷小量的乘积仍然是无穷小量. 性质4 有界变量与无穷小量的乘积是无穷小量. sin x 例2 求 lim x x 1 1 x sin x 1, 0 ,即 解: 由于lim 时, 为无穷小量而 x x x sin x 0 即sin x为有界变量,根据性质4,有 lim x x 1 x sin 例3 求 lim x 0 x 1 1 sin 1 解: 当 x 0 时,x 为无穷小量, x ,即sin 为有界 x 1 变量,所以有 lim x sin 0
意义 关于无穷大的讨论,都可归结为关于无穷小 的讨论.
1 例1 求 lim x 1 x 1
解: M 0. 要使 1 M , x 1
1 1 只要 x 1 , 取 , M M
1 1 1 . 当0 x 1 时, 就有 M . lim x 1 x 1 M x 1
f ( x ) 都满足不等式 f ( x ) ,
那末 称函数 f ( x ) 当 x x 0 (或 x )时为无穷小, 记作
x x0
lim f ( x ) 0 (或 lim f ( x ) 0).
x
例如,
lim sin x 0, 函数 sin x是当x 0时的无穷小. x 0
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
则 lim f ( x ) lim ( A ( x )) A lim ( x ) A.
定义 2 设函数 f ( x )在 x 0 某一去心邻域内有定义(或 x 大于某一正数时有定义) .如果对于任意给定的正数
M (不论它多么大),总存在正数 (或正数 X ),使得对于
适合不等式 0 x x 0 (或 x X )的一切 x ,对应的 函数值 f ( x ) 总满足不等式 f ( x ) M , 则称函数 f ( x ) 当 x x 0 (或 x )时为无穷大,记作
1 lim 0, x x 1 函数 是当x 时的无穷小. x
n ( 1) n ( 1 ) lim 0, 数列{ }是当n 时的无穷小. n n n
注意 (1)无穷小是变量,不能与很小的数混淆;
(2)零是可以作为无穷小的唯一的数.
绝对值无限增大的变量称为无穷大.
x x0
第七节 无穷小量与无穷大量
一、无穷小量与无穷大量
极限为零的变量称为无穷小.
定义 1 如果对于任意给定的正数 (不论它多么小), 总 存 在 正 数 ( 或 正 数 X ), 使 得 对 于 适 合 不 等 式
0 x x 0 ( 或 x X ) 的一切 x , 对应的函数值
(2)切勿将 lim f ( x ) 认为极限存在.
x x0
(3)无穷大是一种特殊的无界变量,但是无 界变量未必是无穷大.
关于无穷小量和无穷大量有如下定理
定理1 在同一过程中,无穷大的倒数为无穷小; 恒不为零的无穷小的倒数为无穷大. 证
设 lim f ( x ) .
x x0
0, 0, 使得当0 x x 0 时 1 1 恒有 f ( x ) , 即 . f ( x) 1 当x x 0时, 为无穷小. f ( x)
2 2
定义:设, 是同一过程中的两个无 穷小, 且 0.
(1) 如果 lim 0,就说 是比 高阶的无穷小, 记作 o( );
( 2 ) 如果 lim ,就说 是比 低阶的无穷小. ( 3) 如果 lim C 0, 就说 与 是同阶的无穷小; 特殊地, 如果 lim 1, 则称 与 是等价的无穷小; 记作 ~ ;
反之, 设 lim f ( x ) 0, 且 f ( x ) 0.
x x0
M 0, 0, 使得当0 x x 0 时 1 恒有 f ( x ) , M
1 由于 f ( x ) 0, 从而 M. f ( x)
1 当x x 0时, 为无穷大. f ( x)
x 0
x
三、无穷小量的比较
1 例如, 当x 0时, x , x , sin x , x sin 都是无穷小. x 2 x 2 lim 0 , x 比3 x要快得多; 观 x0 3 x 察 各 lim sin x 1, sin x与x大致相同 ; 极 x0 x 1 2 限 x sin 1 x 0 lim lim sin 不存在. 不可比. 2 x0 ( 型)x 0 x x 0 极限不同, 反映了趋向于零的“快慢”程度不 同.
x x0
lim f ( x ) (或 lim f ( x ) ).
x
特殊情形:正无穷大,负无穷大.
x x0 ( x )
lim f ( x ) (或 lim f ( x ) )
x x0 ( x )
注意 (1)无穷大是变量,不能与很大的数混淆;
(4) 如果 lim k C 0, k 0, 就说 是 的 k 阶的 无穷小.
例如,
x2 lim 0, x 0 3 x
sin x lim 1, x 0 x
即 x o( 3 x ) ( x 0).
2
当 x 0 时,x 2 是比 3 x 高阶的无穷小;
即 sin x ~ x ( x 0).
当 x 0 时, sin x 与 x 是等价无穷小.
无穷小与函数极限的关系:
定理 2
x x0
lim f Biblioteka x ) A f ( x ) A ( x ),
其中 ( x ) 是当 x x 0 时的无穷小.
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
1 y x 1
二、无穷小量的性质
无穷小量有下列性质: 性质1 有限个无穷小量的代数和仍然是无穷小量. 性质2 常量与无穷小量的乘积仍然是无穷小量. 性质3 有限个无穷小量的乘积仍然是无穷小量. 性质4 有界变量与无穷小量的乘积是无穷小量. sin x 例2 求 lim x x 1 1 x sin x 1, 0 ,即 解: 由于lim 时, 为无穷小量而 x x x sin x 0 即sin x为有界变量,根据性质4,有 lim x x 1 x sin 例3 求 lim x 0 x 1 1 sin 1 解: 当 x 0 时,x 为无穷小量, x ,即sin 为有界 x 1 变量,所以有 lim x sin 0
意义 关于无穷大的讨论,都可归结为关于无穷小 的讨论.
1 例1 求 lim x 1 x 1
解: M 0. 要使 1 M , x 1
1 1 只要 x 1 , 取 , M M
1 1 1 . 当0 x 1 时, 就有 M . lim x 1 x 1 M x 1
f ( x ) 都满足不等式 f ( x ) ,
那末 称函数 f ( x ) 当 x x 0 (或 x )时为无穷小, 记作
x x0
lim f ( x ) 0 (或 lim f ( x ) 0).
x
例如,
lim sin x 0, 函数 sin x是当x 0时的无穷小. x 0
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
则 lim f ( x ) lim ( A ( x )) A lim ( x ) A.
定义 2 设函数 f ( x )在 x 0 某一去心邻域内有定义(或 x 大于某一正数时有定义) .如果对于任意给定的正数
M (不论它多么大),总存在正数 (或正数 X ),使得对于
适合不等式 0 x x 0 (或 x X )的一切 x ,对应的 函数值 f ( x ) 总满足不等式 f ( x ) M , 则称函数 f ( x ) 当 x x 0 (或 x )时为无穷大,记作
1 lim 0, x x 1 函数 是当x 时的无穷小. x
n ( 1) n ( 1 ) lim 0, 数列{ }是当n 时的无穷小. n n n
注意 (1)无穷小是变量,不能与很小的数混淆;
(2)零是可以作为无穷小的唯一的数.
绝对值无限增大的变量称为无穷大.