向量的减法教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《向量的减法》教案
英德中学黄小玲
教学目标:
〈一〉知识目标
1、掌握向量的减法运算,并理解其几何意义,会作两个向量的差向量。
2、理解相反向量的概念及向量加法与减法的逆运算关系。
〈二〉能力目标
1、向量的运算能反映出一些物理规律,从而加深学科之间的联系,提高我们的应用能力。
2、培养学生逻辑思维能力、发散思维能力及从多方位,多角度分析问题的能力,提高学生自身解题的能力。
〈三〉德育目标
理解事物之间相互转化、相互联系的辩证思想。
〈四〉美育目标
通过学习体会数学的内在美及向量证明方法的逻辑美。
教学重点:向量减法的运算及其几何意义。
教学难点:向量减法定义的理解。
学法引导:类比向量加法运算与数的运算,培养学生的观察力,提高学习兴趣及探究精神。
教学过程:
一、创设情境
如图,已知a、b,求作向量c,使c =a +b。
(学生板演后,保留图形,方便后面对比)
向量是否有减法?如何理解向量的减法?
我们知道,减法是加法的逆运算,类比实数的减法运算,能否把向量的减法同样作为向量加法的逆运算引入?二、展示目标
三、自主探究
阅读课本p94---p96 2.2.2向量减法运算及其几何意义,回答下列问题:
1、小东从A地走10米到B地,又再从B地走10米到A地,他的位移是多少?
2、什么叫做相反向量?相关性质?
3、你如何理解向量减法的定义?
4、已知两个向量a,b,如何作出两个向量的差?
小试牛刀:
(1)设b是a相反向量,则下列说法错误的是( C )
A、a与b的长度必相等
B、a∥b
C、a与b一定不相等
D、a是b的相反向量
(2)下列等式,①a + 0 =a ②、b +a = a +b ③、-(-a)= a
④、a +(-a)=0 ⑤、a +(-b)=a-b正确的有( )个?
A、2
B、3
C、4
D、5
(3)已知向量a, b怎样作出向量m,使m =a-b?
四、共同探导
1、从上面习题(3)中,引导从之前的加法作图法中,归纳出作两向量差的方法。
三角形法则:①起点重合,连接两向量终点,箭头指向被减数(几何意义)
②、利用a-b=a +(-b)(板书演示作图过程)
2、改变a、b的位置(如下图),该怎样作出 a-b?
3、上题中,向量a、b不共线,若a、b共线时,怎样作a-b?(指名板演,师生共同评议)引导归纳作两共线向量差的方法:利用向量减法的几何意义。并与怎样作a +b比较。
5、再展牛刀
a
b
a
b
a b
a
b
(1)课本p95例3 (2)课本p96 第3题 (3) 课本p96 第2题
(4)、已知菱形ABCD 的边长为2,求向量AB CB CD -+的模的长。 五、 新手上路
1、例4 如图,平行四边形ABCD 中,AB =a ,AD =b ,你能用a 、b 表示向量AC ,DB 吗?
分析:AC =a +b ,DB =a -b ,BD =b -a ,并指导
学生如何判断是做向量加法还是减法。
强调:上题结论在以后的应用中非常广泛,应该理解并记住 变式:(1)当a 、b 满足什么条件时,a +b 与 a -b 垂直? (2)当a 、b 满足什么条件时,│a +b │=│a -b │? (3)a +b 与 a -b 可能是相等向量吗?
(4)当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角?
(5)若│a │=│b │=│a -b │,求a 与a +b 所在直线的夹角
知识迁移:已知│a │=6,│b │=8,且│a +b │=│a -b │,则│a -b │= 。(提示:解法一:以a 、b 、a +b 、、a -b 组成一个平行四边形的边与对角线。解法二:利用必修2“平行四边形对角线的平方和等于各边的平方和”)
2、我们在上节课已证出,对任意给定的向量a 、b ,都有│a +b │≤|a |+|b |,你还能证明│|a |-|b |│≤│a -b │,并指出等式成立的条件吗?
若把上面两式中的b 换成-b ,各得到什么式子?(│a -b │≤|a |+|b |,│|a |-|b |│≤│a +b │)
综合四式,可得什么结论?(│|a |-|b |│≤│a ±b │≤|a |+|b |) 此三角不等式在后继学习中(即证明不等式)有着重要的作用,需深入理解记忆。 六、成果检验
1、在三角形ABC 中,BC =a ,CA =b ,则AB 等于( B )
A 、a +b
B 、-a +(-b )
C 、a - b
D 、b – a 2、在平行四边形ABCD 中,若│AD AB
+│=│AD AB -│,则边AB 与AD 所夹的角=
3、若向量a 、b 满足|a |=8,|b |=12,则│a +b │的最小值为 4 ,│a -b │的最
大值为 20 。
七、学习内容及学习方法(学生谈) 学习内容:
1、 相反向量的定义、性质
2、 向量减法的意义
3、
两向量和、差的作法及比较
学习方法:
向量的减法与加法互为逆运算,有关向量的减法可同加法向类比,也可同实数的减法向类比,体现化生为熟,化未知为已知的化归思想。
师补充:在学习过程中,要养成对例题或习题进行变式训练的习惯,培养我们的发散思维的能力,从多方位,多角度分析问题,提高我们自身解题的能力。 八、 作业
1、已知O 是平行四边形ABCD 的对角线AC 和BD 的交点,若AB =a ,BC = b ,OD =c , OB =c + a +b ?并试证明你的结论。
2、课本p101 习题2.2A 组4、5及第二教材相关习题。
C