立体几何与空间向量

合集下载

空间向量与立体几何公式

空间向量与立体几何公式

空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。

它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。

换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。

2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。

通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。

3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。

从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。

二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。

立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。

2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。

例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。

3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。

这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。

2023年高考之立体几何和空间向量考点解读

2023年高考之立体几何和空间向量考点解读

3
=
2
1
1
|AB|·|BC|=
×2×
2
2
1
所 以 VP-ABC = S△ABC ·|PM|=
2 2=2 2,
3
1
26

×2 2× 3=
3
3
考查,
一是空间线面关系 的 命 题 真 假 的 判 断,
以选填题的形式考查,
属 于 基 础 题;
二是空间
线线、
线面、
面面平行和垂 直 关 系 交 汇 的 综 合
命题,
(
2)若 ∠POF =1
2
0
°,求 三 棱 锥 PABC
|A1A| -|AM| =
2
6

2
2
1
2=
2
解 析:(
1)连 接 DE ,
OF ,设 |AF|=



则 B→
t|AC|,
F =BA + AF = (
1-t)
BA +


所求体积 V =
76

=
6
1
6
×(
4+1+ 4×1)
×
3
2
考点解读:空 间 几 何 体 的 结 构 特 征 是 立
则该圆锥的
1
2
0
°,
4
体积为(
胡银伟
33
2
=
2
-
3
2
2
|PC| -|OC|
2
2
=
= 6。所以圆锥的体积 V
1
1
2
2
π×|OA| ×|PO|= π× (3)× 6=

空间向量和立体几何的思维导图

空间向量和立体几何的思维导图

空间向量和立体几何的思维导图
空间向量和立体几何的思维导图:
空间向量(space vector)是一个数学名词,是指空间中具有大小和方向的量。

向量的大小叫做向量的长度或模(modulus)。

长度为0的向量叫做零向量,记为0。

.模为1的向量称为单位向量。

与向量a长度相等而方向相反的向量,称为a的相反向量。

记为-a。

方向相等且模相等的向量称为相等向量。

三个坐标面把空间分成八个部分,每个部分叫做一个卦限。

含有x轴正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy 面的上方,按逆时针方向确定。

在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。

数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—- 因为实际上这大致上就是我们生活的空间。

一般作为平面几何的后续课程。

立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,瓶盖等等。

毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。

尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。

设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。

设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。

设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。

向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。

向量具有平移不变性。

2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。

运算法则包括三角形法则、平行四边形法则和平行六面体法则。

3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。

共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量:能平移到同一平面内的向量叫做共面向量。

5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。

若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。

6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

空间向量与立体几何复习课ppt课件

空间向量与立体几何复习课ppt课件

一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。

立体几何与空间向量知识梳理

立体几何与空间向量知识梳理

立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。

下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。

2. 立体图形的性质:体积、表面积、对称性、切割等。

3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。

4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。

二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。

2. 空间向量的运算:加、减、数乘、点乘、叉乘等。

3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。

4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。

总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。

在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。

在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。

高中数学空间向量与立体几何知识点归纳总结

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

高中数学必修2--空间向量与立体几何知识点归纳总结

高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

空间向量与立体几何的知识点总结

空间向量与立体几何的知识点总结

空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。

空间向量与立体几何知识点

空间向量与立体几何知识点

立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a b a b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角但要注意两异面直线所成角与两向量的夹角在取值范围上的区别,再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 1线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.2线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥.3线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.4线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.5面面平行①证明两个平面的法向量平行即是共线向量; ②转化为线面平行、线线平行问题.6面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 1求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤ ⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.2求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.3求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.1点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.2点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,则向量a可以记为AB,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关.6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +;3、空间平面的表达式空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y 使MP xMA yMB =+或对空间任一定点O,有或OP xOA yOB zOM =++其中1x y z ++=这几个式子是M,A,B,P 四点共面的充要条件.三、空间向量基本定理 1、定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z,使p =xa yb +zc +2、注意以下问题1空间任意三个不共面的向量都可以作为空间向量的一个基底.2由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.由空间向量的基本定理知,若三个向量a 、b 、c 不共面;那么所有空间向量所组成的集合就是{}|,,,p p xa yb zc x y z R =++∈,这个集合可看做是由向量a 、b 、c 生成的,所以我们把{},,a b c 称为空间的一个基底;a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 3、向量的坐标表示 1单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{},,i j k 表示.2空间直角坐标系在空间选定一点O 和一个单位正交基底{},,i j k 以点O 为原点,分别以i 、j 、k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.则建立了一个空间直角坐标系O -xyz,点O 叫原点,向量i 、j 、k 都叫坐标向量. 3空间向量的坐标给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,存在唯一有序数组x,y,z 使a xi y j zk =++,有序数组x,y,z 叫做a 在空间直角坐标系O -xyz 中的坐标,记为a =(),,x y z ;对坐标系中任一点A,对应一个向量OA ,则OA =a xi y j zk =++;在单位正交基底i 、j 、k 中与向量OA 对应的有序实数组x,y,z,叫做点A 在此空间直角坐标系中的坐标,记为Ax,y,z. 四、空间向量的运算 1、空间向量的加法三角形法则注意首尾相连、平行四边形法则, 加法的运算律:交换律 a b b a +=+ 结合律()()a b c a b c ++=++2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,OA a OB b ==,则BA a b =-,即从b 的终点指向a 的终点的向量,这就是向量减法的几何意义. 3、空间向量的数乘运算 1定义实数λ与a 的积是一个向量,记为a λ,它的模与方向规定如下: ①a aλλ=⋅② 当0λ>时,a λ与a 同向;当0λ<时,a λ与a 异向;当0λ=时.0a λ=注意:① 关于实数与空间向量的积a λ的理解:我们可以把a 的模扩大当λ>1时,也可以缩小λ< 1 时,同时,我们可以不改变向量a 的方向当0λ>时,也可以改变向量a 的方向当0λ<时; .② 注意实数与向量的积的特殊情况,当0λ=时,0a λ=;当0λ≠,若0a =时,有0a λ=;③ 注意实数与向量可以求积,但是不能进行加减运算.比如a λ+,a λ-无法运算; 2实数与空间向量的积满足的运算律 设λ、μ是实数,则有()()a aλμλμ= 结合律()a a a λμλμ+=+ 第一分配律()a b a bλλλ+=+ 第二分配律实数与向量的积也叫数乘向量.4、共线向量 1共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量;若a 与b 是共线向量,则记为a b a b b 0a b a b a =+OP OA ta a AB a=(),(1)OP OA t AB OP OA t OB OA t OA tOB=+∴=+-=-+12t =1122OP OA OB =+AB λ111OP OA OB λλλ=+++11112222(,,),(,,)P x y z P x y z 12PP =222z y x |OP |++=→→→→><b a b ,a 与为性质若→→b a 、是非零向量,→e 是与→b 方向相同的单位向量,θ是→→e a 与的夹角,则 1θcos |a |e a a e →→→→→=⋅=⋅ 20b a b a =⋅⇔⊥→→→→3若→→b a 与同向,则|b ||a |b a →→→→⋅=⋅; 若→→b a 与反向,则|b ||a |b a →→→→⋅-=⋅;特别地:→→→→→→⋅==⋅a a |a ||a |a a 2或4若θ为|b ||a |ba cosb a →→→→→→⋅⋅=θ的夹角,则、5|b ||a ||b a |→→→→≤⋅2. 运算律 1结合律)b a (b )a (→→→→⋅=⋅λλ 2交换律→→→→⋅=⋅a b b a3分配律→→→→→→→⋅+⋅=+⋅c a b a )c b (a不满足消去律和结合律即:典型例题例1. 已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心;求证:E 、F 、G 、H 四点共面; 证明:分别延长PE 、PF 、PG 、PH 交对边于M 、N 、Q 、R ∵E 、F 、G 、H 分别是所在三角形的重心∴M 、N 、Q 、R 为所在边的中点,顺次连结MNQR 所得四边形为平行四边形,且有 ∵MNQR 为平行四边形,则∴由共面向量定理得E 、F 、G 、H 四点共面;例2. 如图所示,在平行六面体'D 'C 'B 'A ABCD -中,→=→a AB ,→=→b AD ,→=→c AA ,P 是CA'的中点,M 是CD'的中点,N 是C'D'的中点,点Q 是CA'上的点,且CQ :QA'=4:1,用基底}c b a {→→→,,表示以下向量: 1→AP ;2→AM ;3→AN ;4→AQ ;解:连结AC 、AD'1)c b a (21)'AA AD AB (21)'AA AC (21AP →+→+→=→+→+→=→+→=→;2→+→+→=→+→+→=→+→=→c21b a 21)'AA AD 2AB (21)AD AC (21AM ;3)'AD AC (21AN →+→=→4)AC 'AA (54AC CQ AC AQ →-→+→=→+→=→点评:本例是空间向量基本定理的推论的应用.此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有用,选定空间不共面的三个向量作基向量.并用它们表示出指定的向量,是用向量解决几何问题的一项基本功.例3. 已知空间四边形OABC 中,∠AOB=∠BOC=∠AOC,且OA=OB=OC;M 、N 分别是OA 、BC 的中点,G 是MN 的中点;求证:OG ⊥BC;证明:连结ON,设∠AOB=∠BOC=∠AOC=θ又设→=→a OA ,→=→b OB ,→=→c OC ,则|c ||b ||a |→=→=→;又)ON OM (21OG →+→=→∴)b c ()c b a (41BC OG →-→⋅→+→+→=→⋅→∴OG ⊥BC例4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5; 1求以→→AC AB 和为邻边的平行四边形面积;2若3|a |=→,且→→→AC AB a 、分别与垂直,求向量→a 的坐标;解:1由题中条件可知∴23AC AB sin >=→→<, ∴以→→AC AB 、为邻边的平行四边形面积:2设),,(z y x a =→由题意得解得⎪⎩⎪⎨⎧-=-=-=⎪⎩⎪⎨⎧===1z 1y 1x 1z 1y 1x 或∴),,=()或,,(111a 111a ---→=→第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行或共线的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.1若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P,一定存在实数t,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.2空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对x ,y ,使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的. 三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用 1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1⇔1u 2u ⇔1u 2u 1v 2v ⇔1v 2v ⇔1v 2v u v ⇔u v ⇔u v (,,)n x y z =111222(,,),(,,)a a b c b a b c ==00n a n b ⎧⋅=⎪⎨⋅=⎪⎩a b a b ()a kbk R =∈a αn //l α⊥a n 0⋅=a n2根据线面平行的判定定理:“如果直线平面外与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.3根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可. 3、面面平行1由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可. 2若能求出平面α、β的法向量u 、v ,则要证明αu v a b a b 0a b ⋅=a u a u ////,//a a b b /a /b02πθ<≤a b ϕcos |cos |a b a bθϕ⋅==⋅02πθ≤≤a u a u ϕsin |cos |cos sin a u a uθϕθϕ⋅===⋅或[0,]πl αβ--AB CD 1n 2n l αβ--1n 2n BO BA =cos cos BA BO ABOABO BO⋅⋅∠∠=nAB n BO n⋅=n n n=0d AB n =⋅nCD n d AB n⋅==设→→b a 、分别是直线l 1、l 2的方向向量,根据下列条件判断l 1与l 2的位置关系; 1→a =2,3,-1,→b =-6,-9,3; 2→a =5,0,2,→b =0,4,0;3→a =-2,1,4,→b =6,3,3解:1∵),,(132a -=→,→b =-6,-9,3∴→→-=b31a ,∴→→b //a ,∴l 1→a →b 0b a =⋅→→→→⊥b a =→a →b →→b a 与设→→v u 、分别是平面α、β的法向量,根据下列条件判断α、β的位置关系:1→u =1,-1,2,→v =3,2,21-;2→u =0,3,0,→v =0,-5,0;3→u =2,-3,4,→v =4,-2,1;解:1∵→u =1,-1,2,→v =3,2,21-∴0v u =⋅→→ →→⊥∴v u∴α⊥β2∵→u =0,3,0,→v =0,-5,0∴βα//v//u v53u ∴∴-=→→→→3∵→u =2,-3,4,→v =4,-2,1∴→→v u 与既不共线、也不垂直,∴α与β相交点评:应熟练掌握利用向量共线、垂直的条件;例3. 已知点A3,0,0,B0,4,0,C0,0,5,求平面ABC 的一个单位法向量; 解:由于A3,0,0,B0,4,0,C0,0,5,∴→AB =-3,4,0,→AC =-3,0,5设平面ABC 的法向量为→n x,y,z则有0AC n 0AB n =→⋅→=→⋅→且即⎩⎨⎧=+-=+-0z 5x 30y 4x 3 取z=1,得35x =,45y =于是→n =14535,,,又12769|n |=→∴平面α的单位法向量是)769127691576920(n ,,=→例4. 若直线l 的方向向量是→a =1,2,2,平面α的法向量是→n =-1,3,0,试求直线l 与平面α所成角的余弦值;分析:如图所示,直线l 与平面α所成的角就是直线l 与它在平面内的射影所成的角,即∠ABO,而在Rt △ABO 中,∠ABO=-2π∠BAO,又∠BAO 可以看作是直线l 与平面α的垂线所成的锐角,这样∠BAO 就与直线l 的方向向量a 与平面α的法向量n 的夹角建立了联系,故可借助向量的运算求出∠BAO,从而求出∠ABO,得到直线与平面所成的角; 解:∵→a =1,2,2,,→n =-1,3,0∴3|a |=→,10|n |=→,5n a =⋅→→∴610|n ||a |na n ,a cos =⋅⋅>=<→→→→→→若设直线l 与平面α所成的角是θ则有><=→→n ,a sin cos θ∵610n ,a cos >=<→→ ∴626n ,a sin >=<→→因此626cos =θ,即直线l 与平面α所成角的余弦值等于626;例5. 如图a 所示,在正方体1111D C B A ABCD -中,M 、N 分别是C C 1、11C B 的中点;求证:1MN BD A 1C D B //BD A 111平面1DD 21211A →MN 2121BD A 1→n 0DB n 0DA n 1=⋅=⋅→→→→且⎩⎨⎧=+=+0y x 0z x 1y -=1z -=→∴n →→⋅n MN 2121→⊥→n MN BDA 1→=→-→=→-→=→-→=→111111111DA 21)D D A D (21C C 21B C 21M C N C MN →→1DA //MN BD A //MN 1平面→-→=→M C N C MN 11→-→=D D 21A D 21111→→→DB DA MN 1与可用→→→DB DA MN 1、与→MN BD A 1→n →m→→n //m 如图,在正方体1111D C B A ABCD -中,O 为AC 与BD 的交点,G 为CC 1的中点;求证:A 1O ⊥平面GBD;证明:设→=→→=→→=→c A A b D A a B A 11111,,,则 而)b a (21c )AD AB (21A A AO A A O A 111→+→+→=→+→+→=→+→=→∴)a b ()b 21a 21c (BD O A 1→-→⋅→+→+→=→⋅→同理0OG O A 1=→⋅→∴BD O A 1⊥,OG O A 1⊥又O OG BD = ,∴⊥O A 1面GBD; 例7. 2004年天津如图a 所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD,PD=DC,E 是PC 的中点;1证明:PA 2a 2a 2a 2a →PA →EG 2a 2a -→=→EG 2PA ⊂⊄2a →FE 2a →FB 2a →DC 0FB FE =→⋅→0DC FE =→⋅→55a 252a |FB ||FE |==→→=55正方体1111D C B A ABCD -中,E 、F 分别是11D A 、11C A 的中点,求:1异面直线AE 与CF 所成角的余弦值;2二面角C —AE —F 的余弦值的大小; 解:不妨设正方体棱长为2,分别取DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A2,0,0,C0,2,0,E1,0,2,F1,1,21由→AE =-1,0,2,→CF =1,-1,2,得5|AE |=→,6|CF |=→∴→⋅→CF AE =-1+0+4=3 又>→→<>=→→<⋅→⋅→=→⋅→CF ,AE cos 30CF ,AE cos |CF ||AE |CF AE∴1030CF ,AE cos >=→→<,∴所求值为10302∵→EF =0,1,0 ∴→⋅→EF AE =-1,0,2·0,1,0=0∴AE ⊥EF,过C 作CM ⊥AE 于M则二面角C —AE —F 的大小等于>→→<MC ,EF∵M 在AE 上,∴→=→AE m AM 设则→AM =-m,0,2m,→-→=→AM AC MC =-2,2,0--m,0,2m=m -2,2,-2m∵MC ⊥AE ∴→⋅→AE MC =m -2,2,-2m ·-1,0,2=0∴52m =,∴)54,2,58(MC --=→,556|MC |=→ ∴→⋅→MC EF =0,1,0·58-,2,54-=0+2+0=2又>→→<>=→→<⋅→⋅→=→⋅→MC ,EF cos 556MC ,EF cos |MC ||EF |MC EF∴35MC ,EF cos >=→→< ∴二面角C —AE —F 的余弦值的大小为35例9. 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,H 是EF 与AC 的交点,CG ⊥面ABCD,且CG=2;求BD 到面EFG 的距离;分析:因BD//平面EFG,故O 到面EFG 与BD 到面EFG 距离相等,证明OM 垂直于面EFG 即可;解:如图所示,分别以CD 、CB 、CG 所在直线为x 、y 、z 轴建立空间直角坐标系; 易证BD//面EFG,设BD AC =O,EF ⊥面CGH,O 到面EFG 的距离等于BD 到面EFG 的距离,过O 作OM ⊥HG 于M,易证OM ⊥面EFG,可知OM 为所求距离;另易知H3,3,0,G0,0,2,O2,2,0;设→=→GH GM λ,→GH =3,3,-2则)22,23,23()2,2,2()2,3,3(GO GM OM +---=---=→-→=→λλλλ 又0GH OM =→⋅→,∴0)22(2)23(3)23(3=---+-λλλ∴118=λ,∴)116,112,112(OM =→ ∴11112)116()112(2|OM |22=+⨯=→即BD 到平面EFG 的距离等于11112励志故事习惯父子俩住山上,每天都要赶牛车下山卖柴;老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦”有一次父亲因病没有下山,儿子一人驾车;到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动;到底是怎么回事 儿子百思不得其解;最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦”牛应声而动;牛用条件反射的方式活着,而人则以习惯生活;一个成功的人晓得如何培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生;。

第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。

②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。

且把叫做空间的一个基底,都叫基向量。

ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。

ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。

③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。

ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。

④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。

ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。

平行于同一平面的向量,也是共面向量。

ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。

ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。

ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。

⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。

⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。

空间向量与立体几何

空间向量与立体几何

向量与坐标系
在三维坐标系中,空间向量的坐标表示 可以通过三维坐标系中的点来表示,反 之亦然。
VS
向量与几何变换
通过向量的线性组合和数乘,可以实现几 何变换,如平移、旋转和缩放等。
THANKS
感谢观看
影的模长的乘积与它们夹角的余弦值的乘积。
性质
03
混合积满足交换律、结合律和分配律。
03
向量的应用
向量在物理中的应用
力与运动
向量在描述力和运动时非常有用,例如,速度和加速度是向量, 可以用它们来描述物体的运动状态和变化。
动量与冲量
动量和冲量是向量,它们在描述物体的相互作用和运动变化时具 有重要意义。
空间向量在解决实际问题中的应用
力的合成与分解
在物理和工程领域中,力的合成与分 解是常见的应用,通过空间向量的加 法、数乘和向量的模,可以表示力的 合成与分解。
速度和加速度
在运动学中,速度和加速度是重要的 物理量,通过空间向量的加法、数乘 和向量的模,可以表示物体的速度和 加速度。
空间向量与几何体的相互转化
04
立体几何的基本概念
点、直线和平面的基本性质

点是空间中最基本的元素,没有大小和形状,只 有位置。
直线
直线是无限长的,它通过两点或给定方向上所有 点。
平面
平面是无限大的,由直线和不在该直线上的一个 点确定。
空间几何体的表面积和体积
表面积
几何体的表面积是指其外部各面的总 面积。
体积
几何体的体积是指其内部空间所占的 区域大小。
几何意义
性质
向量积满足交换律和结合律,但不满 足分配律。
两个向量的向量积等于它们在垂直于 它们所在平面方向上的投影的模长的 乘积与它们夹角的正弦值的乘积。

立体几何与空间向量

立体几何与空间向量

空间几何体的结构、三视图和直观图1.空间几何体的结构特征(1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形.②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.(2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到.②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到.④球可以由半圆或圆绕直径所在直线旋转得到.2.空间几何体的三视图空间几何体的三视图是正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.3.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.4.常用结论(1)常见旋转体的三视图①球的三视图都是半径相等的圆.②水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.③水平放置的圆台的正视图和侧视图均为全等的等腰梯形.④水平放置的圆柱的正视图和侧视图均为全等的矩形.(2)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.空间几何体的表面积和体积1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l3.柱、锥、台和球的表面积和体积名称 几何体表面积体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1.空间点、线、面位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.直线、平面平行判定与性质1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α直线、平面垂直的判定与性质1.直线与平面垂直2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理图形条件结论判定a⊥b,b⊂α(b为α内的任意一条直线)a⊥αa⊥m,a⊥n,m、n⊂α,m∩n=O a⊥αa∥b,a⊥αb⊥α性质a⊥α,b⊂αa⊥ba⊥α,b⊥αa∥b空间向量及其运算1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a=b相反向量方向相反且模相等的向量a的相反向量为-a 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a∥b共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a (a ≠0)与b 共线的充要条件是存在实数λ,使得b =λa . 推论如图所示,点P 在l 上的充要条件是OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →=OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z = 1 . (3)空间向量基本定理如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a =λ1e 1+λ2e 2+λ3e 3,空间中不共面的三个向量e 1,e 2,e 3叫作这个空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23立体几何中的向量方法-证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.立体几何中的向量方法-求空间角和距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 (0,π2][0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 4.利用空间向量求距离(供选用) (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO→|=|AB →·n ||n |.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七部分 立体几何与空间向量一、知识梳理(一)基本知识梳理:见《步步高》文科P123—124 ;理科P135—137 . (二)要点梳理:1。

平面的基本性质是高考中立体几何的重点容.要掌握平面的基本性质,特别注意:不共线的三点确定一个平面.考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形.[例]已知线段AB 长为3,A 、B 两点到平面α的距离分别为1与2,则AB 所在直线与平面α所成角的大小为_____;解析:要注意到点A 、B 是平面α同侧还是在平面α的两侧的情况.当A 、B 在平面α的同侧时,AB 所在直线与平面α所成角大小为31arcsin ;当A 、B 在平面α的两侧时,AB 所在直线与平面α所成角为2π. 2。

线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直. [例]已知平面βα,,直线b a ,.有下列命题:(1)βαβα////a a ⇒⎭⎬⎫⊂;(2)αββα//a a ⇒⎭⎬⎫⊥⊥(3)βαβα////⇒⎪⎭⎪⎬⎫⊥⊥b a b a ;(4)βαβα////⇒⎪⎭⎪⎬⎫⊂⊂b a b a .其中正确的命题序号是______.解析:立体几何中的符号语言所描述的问题是高考命题中的重点,基本上每年的高考在选择或填空题中都会有涉及,要充分理解符号语言所体现的几何意义.(1)体现的是两平面平行的一个性质:若两平面平行,则一个平面的任一直线与另一平面平行.(2)要注意的是直线a 可能在平面α.(3)注意到直线与平面之间的关系:若两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直.且垂直于同一直线的两个平面平行.(4)根据两平面平行的判定知,一个平面两相交直线与另一个平面平行,两平面才平行.由此知:正确的命题是(1)与(3). 3。

直线与平面所成角的围是]2,0[π;两异面直线所成角的围是]2,0(π.一般情况下,求二面角往往是指定的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可.[例]设A 、B 、C 、D 分别表示下列角的取值围:(1)A 是直线倾斜角的取值围;(2)B 是锐角;(3)C 是直线与平面所成角的取值围;(4)D 是两异面直线所成角的取值围.用“⊆”把集合A 、B 、C 、D 连接起来得到___. (答案:A C D B ⊆⊆⊆) 4。

立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的围.当求出的余弦值为a 时,其所成角的大小应为||arccos a .[例]正方体ABCD -A 1B 1C 1D 1中,E 是AB 中点,则异面直线DE 与BD 1所成角的大小为_____. (答案:515arccos )特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是不一样的.本题中的向量1BD 与所成的角大小是两异面直线DE 与BD 1所成角的补角.5。

直线与平面所成角的求解过程中,要抓住直线在平面上的射影,转化到直角三角形中去求解.点到平面的距离的求解可以利用垂线法,也可以利用三棱锥的体积转化. 1[例]正三棱柱ABC -A 1B 1C 1的底面边长是2,BC 1与平面ACC 1A 1所成 角为30°.试求:(1)三棱柱ABC -A 1B 1C 1的体积;(2)点C 到平面BAC 1 的距离. (答案:(1)62.(2)11662) 6.直线与直线所成的角,直线与平面所成的角,二面角在计算过程中都有射影定理.两直线所成角余弦值的大小是一直线上的线段在另一直线上的射影长(过此线段两端点向另一直线作垂线,两垂足之间的线段长,若两直线垂直,则两垂足重合,射影长为0)与原线段长的比;二面角的平面角(或其补角)的余弦值等于/S S,其中S 是一个半平面上的图形面积,/S 是此图形在另一平面上的射影图形面积.说明:利用这种方法在解选择、填空等问题时比较方便,但要注意的此法解大题时慎用.7。

长方体、正方体是最基本的几何体,要熟练掌握它们中的线面关系.长方体的长、宽、高分别为c b a ,,,对角线长为l ,则2222c b a l ++=.利用这一关系可以得到下面两个结论:(1)若长方体的对角线与三棱所成角分别为γβα,,,则1cos cos cos 222=++γβα;(2)若长方体的对角线与三面所成角分别为γβα,,,则2cos cos cos 222=++γβα.[例]长方体ABCD -A 1B 1C 1D 1的对角线AC 1与过A 点的三条棱所成的角分别为γβα,,,若3,4πβπα==,则γ=( ) A 、6π; B 、4π; C 、3π、 D 、不确定. (答案:C ) 8.正方体中线面关系可以说是高考中的重点容,相当一部分的高考题是以正方体作为载体进行命题,或是截取正方体的一部分进行命题.请特别关注正方体表面按不同形式的展开图,会由展开的平面图形想象立体图形.[例1]如图是一正方体的平面展开图,在这个正方体中:(1)AF 与CN 所在的直线平行;(2)CN 与DE 所在的直线异面;(3)CN 与BM 成60°角;(4)DE 与BM 所在的直线垂直.以上四个命题中正确的命题序号是_;解析:将此展开图还原成正方体(如图).可以看出:(2)、(3)、(4)是正确命题.[例2]ABCD -A 1B 1C 1D 1是单位正方体,黑、白两只蚂蚁从点A 出发以相同速度沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是 →→111D A AA ,黑蚂蚁爬行的路线是→→1BB AB ,在爬行过程中它们都遵循如下规则:所爬行的第2+n 段与第n 段所在直线必须是异面直线(其中N n ∈).设黑、白两只蚂蚁都爬完2007段后各自停止在正方体的某个顶点处,这时黑、白两个蚂蚁的距离是( )A 、1;B 、2;A BCD E F M N A 11C 、3;D 、0.解析:注意到它们的运动规律,都是呈周期运动,运动 周期为6.经过2007次运动,由333462007+⨯=知, 它们运动后所停位置就是第3次运动后所停位置.则它 们都到达C 1点,所以这两蚂蚁之间的距离为0,选D.9.三棱锥顶点在底面三角形射影为三角形的外心、心、垂心的条件要分清楚.外心:三侧棱相等或三侧棱与底面所成的角相等(充要条件);心:三侧面与底面所成的二面角相等(充要条件);垂心:相对的棱垂直(充要条件)或三侧棱两两垂直(充分条件).[例]三棱锥的“三侧棱与底面所成的角相等且底面是正三角形”是“三棱锥为正三棱锥”的( ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件.解析:三侧棱与底面所成的角相等,则顶点在底面上的射影是底面三角形的外心,又底面是正三角形,则外心就是中心,知此三棱锥是正三棱锥.反之也成立,选C. 10.关注正棱锥中的几个直角三角形:(1)高、斜高、底面边心距组成的直角三角形;(2)侧棱、斜高、底面棱长的一半组成的直角三角形;(3)底面上的边心距、底面外接圆半径、底面棱长的一半组成的直角三角形.(4)高、侧棱、底面外接圆半径组成的直角三角形.进一步关注的是:侧棱与底面所成角、侧面与底面所成二面角的平面角都体现在这些直角三角形中.[例]若一正三棱锥的底面边长是a ,体积为1233a ,则此三棱锥的侧棱与底面所成角的大小为____;侧面与底面所成二面角的大小为____;此三棱锥的侧面积为____. (答案:3π;32arctg ; 2439a S =侧) 11。

特别注意有一侧棱与底面垂直且底面为正方形、直角梯形、菱形等 四棱锥,关注四个面都是直角三角形的三棱锥.它们之间的线面关系也是 高考命题的热点容.[例1]如图三棱锥S -ABC 中,SA ⊥平面ABC ,=∠ACB 90°, 则此三棱锥的四个面中的直角三角形的个数有_____个. (答案:4)12。

对平面图形的翻折问题要有所了解:翻折后,在同一半平面的两点、 点线及两线的位置关系是不变的,若两点分别在两个半平面中,两点之间 的距离一般会发生变化.要认清从平面图形到空间图形之间的联系,能够从 平面图形的关系过渡到空间图形的关系,根据问题画出空间图形.[例]如图在正三角形ABC 中,D 、E 、F 分别是各边的中点,G 、H 、I 分别是DE 、FC 、EF 的中点.将三角形ABC 沿DE 、EF 、DF 折成三棱锥后,BG 与IH 所成角的大小为( ) A 、6π; B 、3π; C 、32arccos ; D 、33arccos .SABCAB DEO A DFGIHB Ca a 2 a a a a aa A B D aa a a 2解析:平面图形翻折成三棱锥后,A 、B 、C 重合于一点,BG 是△BED 的中线,HI//BE.所以BG 与HI 所成角为6π.选A. 13.图形的分解、组合是立几命题的新思路,学会平面到空间、空间到平面的转化. [例]下面的一组图形为一四棱锥S -ABCD 的侧面与底面.(1)请画出四棱锥S -ABCD 的示意图,是否存在一条侧棱垂直于底面?如果存在的话,指出是示意图中的哪一条,说明理由.(2)求出此四棱锥的体积;(3)设E 是最长侧棱的中点,F 是底面正方形ABCD 的边中与最长侧棱异面的边的中点,求EF 与最短侧棱所成角的大小.解析:这是一道比较新颖的立体几何题.要能根据侧面与底面的形状先把它拼起来后, 再解题.问题是从立几中解决,因此对于作图能力有一定的要求,作不出图则无法解决. (1)如图知,侧棱SA ⊥底面ABCD.因为侧面SAB 、SAD 都是等腰直角三角形.(2)该四棱锥的体积331a V =;(3)最长侧棱是SC ,E 是SC 中点,取底面边AB 的 中点为F ,最短侧棱为SA.即求EF 与SA 所成角的大小.不难求出此角为4π.二.易错易混易忘知识点提醒:【易错点1】立体图形的截面问题。

1.正方体ABCD --1111A B C D ,E 、F 分别是1AA 、1CC 的中点, P 是1CC 上的动点(包括端点),过E 、D 、P 作正方体的截面, 若截面为四边形,则P 的轨迹是()A 、 线段1C FB 、线段CFC 、线段CF 和一点1CD 、线段1C F 和一点C. (答案:C )【知识点归类点拔】高考对用一平面去截一立体图形所得平面图形的考查实质上对学生空间想象能力及对平面基本定理及线面平行与面面平行的性质定理的考查。

相关文档
最新文档