高中数学人教版微积分基本公式
高中数学积分公式大全
高ѣ数学微积分公式大全一、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− ⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x x ′=−⋅ ⑼()xxe′=ea ⑽() ⑾()ln xxaa′=1ln x x′=⑿()1log ln xa x a′= ⒀()arcsin x ′= ⒁()arccos x ′=⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x ′=−+⒄()1x ′=⒅′=二、导数的四则运算法则()u v u v ′′±=±′′ () uv u v uv ′′=+2u u v u v v ′v ′′−⎛⎞=⎜⎟⎝⎠三、高阶导数的运算法则 (1)()()()()()()()n n u x v x u x v x ±=±⎡⎤⎣⎦n (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()(n n nu ax b a uax b +=+⎡⎤⎣⎦) (4)()()()()()()()0nn n k k k n k u x v x c u x v x −=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nx n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x a a =n a(4)()()sin sin 2n n ax b a ax b n π⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠ (5) ()()cos cos 2n nax b a ax b n π⎛⎞+=++⎡⎤⎜⎟⎣⎦⎝⎠⋅ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎞=−⎜⎟+⎝⎠+ (7) ()()()()()11!ln 1n n n na n axb ax b −⋅−+=−⎡⎤⎣⎦+五、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d x x dx μμμ−=()sin cos d x xd =x x x ⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x⑺ ⑻()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅x ⑼ ⑽ ⑾()xxd ee dx =()ln xxd a aadx =()1ln d x dx x=⑿()1logln x a d dx x a =() ⒀arcsin =d x ⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=−+ 六、微分运算法则⑴ ⑵()d u v du dv ±=±()d cu cdu = ⑶ ⑷()d uv vdu udv =+2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠七、基本积分公式⑴ ⑵kdx kx c =+∫11x x dx c μμμ+=++∫ ⑶ln dxx c x=+∫ ⑷ln xxa a dx c a=+∫ ⑸x x e dx e c =+∫ ⑹cos sin xdx x c =+∫ ⑺sin cos xdx x c =−+∫ ⑻221sec tan cos dx xdx x c x ==+∫∫⑼221csc cot sin xdx x c x ==−∫∫+ ⑽21arctan 1dx x c x =++∫ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =−+∫ cot ln sin xdx x c =+∫ sec ln sec tan xdx x x c =+∫+ csc ln csc cot xdx x x c =−+∫2211arctan xdx c a x a a=+∫+ 2211ln 2x adx c x a a x a−=+−+∫c + ln dx c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ∫,令,n u x =ax dv e dx =形如sin n x xdx ∫令, n u x =sin dv xdx =形如cos n x xdx ∫令, n u x =cos dv xdx =⑵形如arctan n x xdx ∫,令, arctan u x =n dv x dx =形如ln n x xdx ∫,令,ln u x =n dv x dx =⑶形如,令u e 均可。
人教版高中数学第一章1.6微积分基本定理
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
归纳升华 (1)利用微积分基本定理求定积分,关键是求使 F′(x) =f(x)的 F(x),其求法是反方向运用求导公式. (2)当被积函数是积的形式时,应先化和差的形式, 再利用定积分的性质化简,最后再用微积分基本定理求定 积分的值.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
[变式训练] 下列积分值为 2 的是( )
A.∫50(2x-4)dx C.∫311xdx
B.∫0π cos xdx D.∫0π sin xdx
解析:∫50(2x-4)dx=(x2-4x)|50=5,∫0π cos xdx=sin
x|π0 =0,∫311xdx=ln x|31=ln 3,∫π0 sin xdx=-cos x|0π =2.
x 的原函数为
F(x)
π
=12x-12sin x,所以 sin2 x2dx=12x-12sin x|20=π4-12=
π-2 4. π-2 答案: 4
5.曲线 y=2x2 与直线 x=1,x=2 及 y=0 所围成的 平面图形的面积为________.
解析:依题意,所求面积为 S=∫212x2dx=23x3|21=136- 23=134. 答案:134
=sin 1-23. 答案:sin 1-23
类型 3 微积分基本定理的综合应用(互动探究)
微积分的公式大全
微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。
2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。
-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。
-函数有界,且极限存在,则函数必定有极大值和极小值。
3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。
- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。
- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。
- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。
四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。
2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = nx^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。
-三角函数的导数:- d/dx(sin(x)) = cos(x)。
- d/dx(cos(x)) = -sin(x)。
- d/dx(tan(x)) = sec^2(x)。
-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。
- d/dx(arccos(x)) = -1/√(1-x^2)。
- d/dx(arctan(x)) = 1/(1+x^2)。
常用微积分公式大全
以下是常用的微积分公式大全,包括导数、积分和极限的公式:导数公式:1. 常数函数导数:(c)' = 02. 幂函数导数:(x^n)' = nx^(n-1)3. 指数函数导数:(e^x)' = e^x4. 对数函数导数:(ln(x))' = 1/x5. 三角函数导数:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)6. 反三角函数导数:(arcsin(x))' = 1/√(1-x^2), (arccos(x))' = -1/√(1-x^2), (arctan(x))' = 1/(1+x^2)7. 链式法则:如果y = f(g(x)),则y' = f'(g(x)) * g'(x)积分公式:1. 幂函数积分:∫(x^n) dx = (x^(n+1))/(n+1) + C,其中C 是常数2. 指数函数积分:∫(e^x) dx = e^x + C3. 对数函数积分:∫(1/x) dx = ln|x| + C4. 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C, ∫sec^2(x) dx = tan(x) + C5. 反三角函数积分:∫(1/√(1-x^2)) dx = arcsin(x) + C, ∫(-1/√(1-x^2)) dx = arccos(x) + C, ∫(1/(1+x^2)) dx = arctan(x) + C极限公式:1. 极限定义:lim(x→a) f(x) = L,表示当x 趋近于a 时,f(x) 趋近于L2. 基本极限:lim(x→0) (sin(x)/x) = 1, lim(x→∞) (1/x) = 0, lim(x→0) (e^x - 1)/x = 1这只是一些常用的微积分公式,还有更多的公式和规则可用于不同的函数和问题。
高中数学微积分公式大全
微積分公式sec x = sec x tan x csc x = -csc x cot x sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + Csin -1(-x) = -sin -1 x cos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 x sec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 xsin -1 x dx = x sin -1 x+21x -+C cos -1 x dx = x cos -1 x-21x -+Ctan -1 x dx = x tan -1 x-½ln (1+x 2)+Ccot -1 x dx = x cot -1 x+½ln (1+x 2)+C sec -1 x dx = x sec -1x- ln |x+12-x |+Ccsc -1 x dx = x csc -1 x+ ln|x+12-x |+Ctanh coth sinh x dx = cosh x + C cosh x dx = sinh x + Ctanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln |xx e e 211---+| + C d uv = u d v + v d ud uv = uv = u d v + v d u → u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θsinh -1 x dx = x sinh -1 x-21x ++ C cosh -1 x dx = x cosh -1 x-12-x + C tanh -1 x dx = x tanh -1 x+ ½ ln |1-x 2|+ Ccoth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C sech -1 x dx = x sech -1 x- sin -1x + C csch -1 x dx = x csch -1 x+ sinh -1 x + Ca b c αβ γRcos x = 1-!22x +!44x -!66x +…+)!2()1(2n x nn -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1 x = x-33x +55x -77x +…+)12()1(12+-+n xn n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1∑=ni i 12= 61 n (n +1)(2n +1) ∑=ni i 13= [½n (n +1)]2 Γ(x) = ⎰∞0t x-1e -t d t = 2⎰∞0t 2x-12t e -d t = ⎰∞0)1(ln tx-1 d tβ(m , n ) =⎰10x m -1(1-x)n -1d x =2⎰20sin π2m -1x cos 2n -1x d x = ⎰∞+-+01)1(nm m x x d x希臘字母 (Greek Alphabets)大寫小寫讀音 大寫 小寫讀音 大寫 小寫讀音 Α αalpha Ιι iota ΡρrhoΒ β betaΚ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilon Ε ε epsilon Νν nu Φ φ phi Ζ ζ zetaΞ ξ xi Χ χkhi Η ηeta Ο ο omicron Ψ ψpsi Θθ theta Ππ pi Ω ω omega倒數關係: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1商數關係: tan θ= θθcos sin ; cot θ= θθsin cos平方關係: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高;順位高d 順位低 ;0* =∞1 * = ∞∞ = 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e順位一: 對數; 反三角(反雙曲) 順位二: 多項函數; 冪函數 順位三: 指數; 三角(雙曲)算術平均數(Arithmetic mean)nX X X X n+++= (21)中位數(Median)取排序後中間的那位數字 眾數(Mode)次數出現最多的數值。
高中数学微积分公式大全
35 7
(2n 1)
(1+x)r =1+rx+ r(r 1) x2+ r(r 1)(r 2) x3+…
2!
3!
-1<x<1
Γ(x) =
t
x-1e—t
dt
=
2
t
2x—1
et2
dt
=
(ln 1) x-1 dt
0
0
0t
β(m, n) =
1
x
m—1(1—x)n—1
dx=2
2 sin 2m-1x cos2n—
sinh—1 ( x )= ln (x+ a2 x2 ) x R a
cosh-1 ( x )=ln (x+ x2 a2 ) x≧1 a
tanh-1 ( x )= 1 ln ( a x ) |x| a 2a a x
〈1
coth-1 ( x )= 1 ln ( x a ) |x| 〉
a 2a
xa
a
x
1 x2 x2
) |x| >0
duv = udv + vdu duv = uv = udv + vdu
→ udv = uv — vdu
cos2θ-sin2θ=cos2θ
cos2θ+ sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
Dx sinh—1( x )= a
npi
變異數 V(x)
1 (n2+1)
12
1 (b-a)2
12
pq npq
kq p2
npi(1—pi)
動差母函數 m(t)
高中数学《微积分》常用公式-微积分的牛顿-莱布尼茨公式
高中数学《微积分》常用公式-微积分的
牛顿-莱布尼茨公式
微积分是数学中的一个重要分支,它通过研究函数的变化率来分析和研究问题。
在微积分中,牛顿-莱布尼茨公式是一个常用的公式,它是微积分的基础之一。
1. 牛顿-莱布尼茨公式的定义
牛顿-莱布尼茨公式,也称为微积分基本定理,它是将微分与积分联系起来的公式。
它的数学表达式如下所示:
$$\int_a^b f(x)dx = F(b) - F(a)$$
其中,$\int_a^b f(x)dx$ 表示函数 $f(x)$ 在区间 $[a, b]$ 上的积分,$F(x)$ 是 $f(x)$ 的一个原函数。
2. 牛顿-莱布尼茨公式的意义
牛顿-莱布尼茨公式的意义在于它建立了微积分中积分和微分的联系。
通过该公式,我们可以通过求函数的原函数来计算函数在某个区间上的积分,或者通过求函数的导数来计算函数在某个点的变化率。
3. 牛顿-莱布尼茨公式的应用
牛顿-莱布尼茨公式在微积分中有广泛的应用。
以下是一些常见的应用场景:
- 计算曲线下面的面积:通过积分,我们可以计算出曲线在某个区间上的面积;
- 求函数的平均值:通过对函数在某个区间上的积分除以区间的长度,我们可以求得函数在该区间上的平均值;
- 解决微分方程:通过对微分方程两边同时积分,我们可以求得微分方程的解。
结论
牛顿-莱布尼茨公式是微积分中的重要工具,它将微分和积分联系在一起,帮助我们解决了许多数学和物理上的问题。
在学习微积分的过程中,掌握并理解牛顿-莱布尼茨公式的定义和应用是非常重要的。
高等数学微积分公式大全
高等数学微积分公式大全微积分是高等数学中的重要分支,是研究函数变化规律以及求解各种问题的一种数学工具。
微积分公式是微积分学习中最为基础和重要的内容之一,掌握这些公式可以帮助我们更好地理解和应用微积分知识。
本文将为大家逐一介绍高等数学微积分公式大全。
1. 导数公式导数是函数在某一点上的变化速率,反映了函数的局部特征。
以下是常见的导数公式:- 常数函数导数公式:若y = C,C为常数,则导数dy/dx = 0。
- 幂函数导数公式:若y = x^n,n为实数,则导数dy/dx = nx^(n-1)。
- 指数函数导数公式:若y = a^x,a>0且a≠1,则导数dy/dx = a^x * ln(a)。
- 对数函数导数公式:若y = loga(x),a>0且a≠1,则导数dy/dx = 1 / (x * ln(a))。
- 三角函数导数公式:若y = sin(x),则导数dy/dx = cos(x)。
若y = cos(x),则导数dy/dx = -sin(x)。
若y = tan(x),则导数dy/dx = sec^2(x)。
2. 积分公式积分是反导数的计算过程,可以计算函数的面积、曲线长度、体积等。
以下是常见的积分公式:- 幂函数积分公式:∫x^n dx = (1/(n+1))x^(n+1) + C,其中C为常数。
- 指数函数积分公式:∫a^x dx = (1/ln(a))a^x + C,其中C为常数。
- 对数函数积分公式:∫(1/x) dx = ln|x| + C,其中C为常数。
- 三角函数积分公式:∫sin(x) dx = -cos(x) + C,其中C为常数。
∫cos(x) dx = sin(x) + C,其中C为常数。
∫tan(x) dx = -ln|cos(x)| + C,其中C为常数。
3. 极限公式极限是函数在某一点附近的近似取值,是微积分理论的基础。
以下是常见的极限公式:- 基本极限公式:lim(x→0) (sin(x)/x) = 1。
常用微积分公式大全
常用微积分公式大全微积分是数学的一个重要分支,涵盖了导数、积分、极限等概念和公式。
在学习微积分的过程中,掌握一些常用的微积分公式对于解题和理解概念非常重要。
下面是一些常用的微积分公式的介绍。
1. 导数的基本公式:- 常数函数导数为0:(c)' = 0,其中 c 是常数。
- 幂函数导数公式:(x^n)' = n*x^(n-1),其中 n 是常数。
- 乘积法则:(f*g)' = f'*g + f*g',其中 f 和 g 是可导函数。
- 商法则:(f/g)' = (f'*g - f*g')/g^2,其中 f 和 g 是可导函数,并且 g 不等于0。
- 链式法则:(f(g(x)))' = f'(g(x))*g'(x),其中 f 是可导函数,g 是可导函数。
2. 基本积分公式:- 变上限定积分公式:∫(f(x)'dx) = f(x) + C,其中 C 是常数。
- 幂函数积分公式:∫(x^n dx) = (x^(n+1))/(n+1) + C,其中 n 不等于-1,C 是常数。
- 指数函数积分公式:∫(e^x dx) = e^x + C,其中 C 是常数。
- 三角函数积分公式:∫(sin(x) dx) = -cos(x) + C,∫(cos(x) dx) = sin(x) + C,∫(tan(x) dx) = -ln|cos(x)| + C,C 是常数。
- 分部积分法:∫(f(x)g(x) dx) = f(x)∫(g(x) dx) - ∫(f'(x)∫(g(x) dx) dx,其中 f 和 g 是可导函数。
3. 极限的基本公式:- 夹逼定理:如果对于 x -> a,有g(x) ≤ f(x) ≤ h(x),且 g(x) 和h(x) 的极限都等于 L,则 f(x) 的极限也等于 L。
- 幂函数极限公式:lim(x -> a) (x^n) = a^n,其中 n 是正整数。
高中数学微积分公式大全
cos2θ+ sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
学习好资料
欢迎下载
Dx
sinh-1(
x a
)=
cosh-1( x )= a
1 a2 x2
1 x2 a2
sinh-1 x dx = x sinh-1 x- 1 x2 + C
a a2 x2
coth-1( x )= a
sech-1( x )=
a
a x a2 x2
csch-1(x/a)= a x a2 x2
coth-1 x dx = x coth-1 x- ½ ln | 1-x2|+ C →cos3θ=¼(3cosθ+cos3θ)
sech-1 x dx = x sech-1 x- sin-1 x + C csch-1 x dx = x csch-1 x+ sinh-1 x + C
sinh-1 ( x )= ln (x+ a2 x2 ) x R a
cosh-1 ( x )=ln (x+ x2 a2 ) x≧1 a
tanh-1 ( x )= 1 ln ( a x ) |x| <1 a 2a a x
sec-1 x dx = x sec-1 x- ln |x+
sin 3θ=3sinθ-4sin3θ
cosh-1 x dx = x cosh-1 x- x2 1 + C cos3θ=4cos3θ-3cosθ
tanh-1 x dx = x tanh-1 x+ ½ ln | 1-x2|+ C →sin3θ= ¼ (3sinθ-sin3θ)
(完整版)微积分公式大全
(完整版)微积分公式大全1. 极限极限是微积分的基本概念之一,用于描述函数在某一点处的趋近情况。
常见的极限公式包括:- $\lim\limits_{x \to a} f(x) = L$:函数 $f(x)$ 在点 $a$ 处的极限为 $L$。
- $\lim\limits_{x \to \infty} f(x) = L$:函数 $f(x)$ 在正无穷远处的极限为 $L$。
- $\lim\limits_{x \to a^+} f(x) = L$:函数 $f(x)$ 在点 $a$ 的右侧极限为 $L$。
- $\lim\limits_{x \to a^-} f(x) = L$:函数 $f(x)$ 在点 $a$ 的左侧极限为 $L$。
2. 导数导数用于描述函数在某一点处的斜率,常见的导数公式有:- $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) +\frac{d}{dx}g(x)$:和的导数等于各个函数导数之和。
- $\frac{d}{dx}(k \cdot f(x)) = k \cdot \frac{d}{dx}f(x)$:常数倍的函数导数等于常数与函数导数的乘积。
- $\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$:乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。
- $\frac{d}{dx}(f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx}$:复合函数的导数等于外函数对内函数的导数乘以内函数对自变量的导数。
3. 积分积分是导数的逆运算,用于计算曲线与坐标轴之间的面积或曲线的长度。
常见的积分公式有:- $\int f(x) dx$:函数 $f(x)$ 的不定积分。
高中数学微积分公式大全
γ
Ra
b
β
α
c
sin x = e jx e jx cos x = e jx e jx
2j
2
sinh x = e x e x cosh x = e x e x
2
2
正弦定理: a = b = c =2R sin sin sin
餘弦定理: a2=b2+c2-2bc cosα
cos-1 ( x )= a
tan-1
(
x a
)=
a a2 x2
cot-1 ( x )= a
sec-1 ( x )= a a x x2 a2
csc-1 (x/a)=
sin-1 x dx = x sin-1 x+ 1 x2 +C cos-1 x dx = x cos-1 x- 1 x2 +C tan-1 x dx = x tan-1 x-½ln (1+x2)+C cot-1 x dx = x cot-1 x+½ln (1+x2)+C
b2=a2+c2-2-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)
高中数学微积分公式大全
tanh-1( x )= a
a a2 x2
coth-1( x )= a
sech-1( x )=
a
a x a2 x2
csch-1(x/a)= a x a2 x2
coth-1 x dx = x coth-1 x- ½ ln | 1-x2|+ C →cos3θ=¼(3cosθ+cos3θ)
ex=1+x+ x2 + x3 +…+ xn + …
2! 3!
n!
sin x = x- x3 + x5 - x7 +…+ (1)n x2n1 + …
3! 5! 7!
(2n 1)!
cos x = 1- x2 + x4 - x6 +…+ (1)n x2n + …
2! 4! 6!
(2n)!
ln (1+x) = x- x2 + x3 - x4 +…+ (1)n xn1 + …
sech-1 x dx = x sech-1 x- sin-1 x + C csch-1 x dx = x csch-1 x+ sinh-1 x + C
γ
Ra
b
β
α
c
sin x = e jx e jx cos x = e jx e jx
2j
2
ex ex
ex ex
sinh x =
cosh x =
2
2
正弦定理: a = b = c =2R sin sin sin
餘弦定理: a2=b2+c2-2bc cosα
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T2
T1
v(t
)dt
s(T2
)
s(T1
)
s(t) v(t)
推广 一般情况下
F ( x) f ( x)
b
?
a f (x)dx F(b) F(a)
积分上限的函数
定义 设 f (x) C[a,b]
x
( x) a f (t)dt (a x b)
称为积分上限的函数.
刹车,
问从开始刹车到停车走了多少距离?
例7 求极限
微积分基本公式
一、牛—莱公式及其应用 二、积分上限函数及其应用
微积分基本公式
一、牛—莱公式及其应用 二、积分上限函数及其应用
应用
只要有函数的地方,就可以有积分上限函数的题目 只要是积分上限函数的题目,就应该考虑其导数
例8
求
lim
x0
1
第二讲 微积分基本公式
微积分基本公式
一、牛—莱公式及其应用 二、积分上限函数及其应用
微积分基本公式
一、牛—莱公式及其应用 二、积分上限函数及其应用
物理事实 变速直线运动的路程
s(T1 )
T1
s(T2 ) s(T1 )
v T2 (t )dt T1
s(T2 )
T2
s s(t)
v v(t)
(b)
F
(a)
注
牛顿 - 莱布尼茨公式
f (函)(b数 a)
F(导)(b数 a)
积分
微分
中值定理
中值定理
牛—莱公式
b
定f积(x分) dx a
F (b不)定 积F (分a)
牛—莱公式
定理2 如果函数 f ( x)在区间[a, b]上连续,则函数
( x) x f (t)dt 就是f(x)在[a,b]上的一个原函数. a
性质
定理1 如果函数 f ( x)在区间[a, b]上连续,那么积分上限的函数
例1
( x) x f (t)dt 在[a, b]上可导,并且它的导数 a
(x) d
x
f (t)dt f (x) (a x b)
dx a
y
y f (x)
求
x
1 t 2dt
cos
x
e
t
2
dt
x2
.
x
tf (t)dt
例9
f (x) C[0,),
f (x) 0
证明
F(xБайду номын сангаас
0 x
在 [0,) 内单调增加.
0 f (t)dt
定理3 如果函数F(x)为连续函数f(x)在[a,b]上的一个原函数
则
b
a
f
(x)
dx
F (b)
F (a)
注
牛顿 - 莱布尼茨公式
f ( )(b a) 微分学 F( )(b a)
积分
微分
中值定理
中值定理
牛—莱公式
b
f (x) dx 积分学F (b) F (a) a
例2 计算
例3 计算 1 dx. 2 x
例4
f
(
x)
x
sin
x
1
1 0
x x
0 1
例5 计算曲线y=sinx在[0,π]上
求
1
f (x)dx.
1
y y sin x
与x轴围成的平面图形的面积.
o
x
例6 汽车以每小时36km 的速度行驶 , 到某处需要减速
停车, 设汽车以等加速度
a
(x)
o a x b x
x x
牛—莱公式
定理2 如果函数 f ( x)在区间[a, b]上连续,那么函数
( x) x f (t)dt 就是f(x)在[a,b]上的一个原函数 a
定理3 如果函数F(x)为连续函数f(x)在[a,b]上的一个原函数
那么
b
a
f
(x)
dx
F