2006年高考.江苏卷.数学试题及详细解答
2002至2006江苏高考数学试卷及答案
2002年普通高等学校招生全国统一考试(江苏卷)数学第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)函数xxx f cos 2sin )(=的最小正周期是( )。
A.2πB. πC. π2D. π4 (2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。
A.21B. 23C. 1D.3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD.}11|{-≠<x x x 且(4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A. )45,()2,4(ππππ⋃ B. ),4(ππ C. )45,4(ππ D. )23,45(),4(ππππ⋃ (5)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则( )A. N M =B. N M ⊂C. N M ⊃D. φ=N M (6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。
A.43 B. 54 C. 53 D. 53- (7)函数b a x x x f ++=||)(是奇函数的充要条件是( ) A.ab=0 B. a+b=0 C. a=b D. 022=+b a (8)已知10<<<<a y x ,则有( )。
A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy aA(9)函数111--=x y A. 在(+∞-,1)内单调递增 B. 在(+∞-,1)内单调递减 C. 在(+∞,1)内单调递增 D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与1cos =θρ(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )。
2006年江苏省高考试题(数学)含详解汇总
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年高考江苏卷数学试题及参考答案
・4 6・
中学 数学 月刊
20 0 6年第 7期
2 O 年高考江苏卷数学试题及参考答案 O6
参考公式 :
一
( ) 。= 8 A x ( ) C 一 4 x
( B)
一 一 8 x
组 数 据 , , , 的方 差 。…
三组 , 右 端 的 六 个 接 线 点 也 随 机 地 平 均 分 成 将 三组 , 把 所 得 六 组 中 每 组 的两 个 接 线 点 用 导 再
() D 向右平移÷ 个单位长度, 再把所得各点的
横坐标伸长到原来 的 3 ( 坐标不变 ) 倍 纵
线 连 接 , 这 五 个 接 收 器 能 同时 接 收 到 信 号 的 则 概 率 是 ( )
正方 体 内 , 正 四棱 锥 的底 面 A C 与 正 方 体 使 B D 的 某 一 个 面平 行 , 各 顶 点 均 在 正 方 体 的面 上 , 且 则 这 样 的 几何 体 体 积 的 可 能 值 有 ( )
( A)1 个 ( )2 B 个 ( c)3 个 ( 无 穷 多 个 D)
)
锥 组 成 如
图 1所 示
( ) 人 5 上 班 途 中 所 花 的 时 间 ( 位 : 钟 ) 别 3某 次 单 分 分
为 , , 0 l , . Y 1 , 1 9 已知 这 组 数 据 的 平 均 数 为 1 , 0 方 差 为 2 则 l — Y1 值 为 , 的
( )1 A ( B) 2 ( )3 C ( )4 D
( a B) + — ≥ a+ 1
“
(
)
( )已知 口∈ R, 1 函数 f x ( )一 s x— l , ∈ R 为 i n “l 奇 函数 , n一 则
2006年普通高等学校招生全国统一考试江苏卷
几何分布的期望与方差几何分布:(1)E p ξ=1,(2)D p pξ=-12。
(1)由P k q p k ()ξ==-1,知E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 ()下面用倍差法(也称为错位相减法)求上式括号内的值。
记S q q kq k k =++++-12321qS q q k q kq k k k =+++-+-2121 ()两式相减,得()1121-=++++--q S q q q kq k k kS q q kq q k k k=----1112()由01<<p ,知01<<q ,则lim k kq →∞=0,故 1231112122+++++==-=-→∞p q kq S q p k k k lim () 从而E pξ=1 也可用无穷等比数列各项和公式S a q q =-<111(||)(见教科书91页阅读材料),推导如下: 记S q q kq k =+++++-12321qS q q k q k =+++-+-2121 ()相减,()111121-=+++++=--q S q q q qk 则S q p=-=11122() 还可用导数公式()'x nx n n =-1,推导如下:12321+++++-x x kx k=+++++=+++++x x x x x x x x k k '()'()'()'()'2323=-=----=-()'()()()()x x x x x x 1111122 上式中令x q =,则得 1231112122+++++=-=-q q kq q p k () (2)为简化运算,利用性质D E E ξξξ=-22()来推导(该性质的证明,可见本刊6页)。
可见关键是求E ξ2。
E p qp q p k q p k ξ22222123=+++++-=+++++-p q q k q k ()12322221对于上式括号中的式子,利用导数,关于q 求导:k q kq k k 21-=()',并用倍差法求和,有 12322221+++++-q q k q k=+++++()'q q q kq k 2323=-=-+--=--=+-=-[()]'()()()()()q q q q q q q q q q p p 11211111122242433则E p p p p p ξ23222=-=-(),因此D E E p p p p pξξξ=-=--=-22222211()() 利用上述两个结论,可以简化几何分布一类的计算问题。
2006年全国各地高考数学试题及解答分类汇编大全(11解析几何初步、坐标系与参数方程)
2006年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)一、选择题:1.(2006安徽文)直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是( )A .1)B .11)C .(11)D .1) 1.解:由圆2220(0)x y ay a +-=>的圆心(0,)a 到直线1x y +=大于a ,且0a >,选A 。
2.(2006福建文)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( )(A )2 (B )1 (C )0 (D )1-2.解:两条直线2y ax =-和(2)1y a x =++互相垂直,则(2)1a a +=-,∴ a =-1,选D.3. (2006福建理)对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2),定义它们之间的一种“距离”:‖AB ‖=︱x 1-x 2︱+︱y 1-y 2︱.给出下列三个命题:①若点C 在线段AB 上,则‖AC ‖+‖CB ‖=‖AB ‖;②在△ABC 中,若∠C =90°,则‖AC ‖2+‖CB ‖2=‖AB ‖2; ③在△ABC 中,‖AC ‖+‖CB ‖>‖AB ‖. 其中真命题的个数为( )A.0B.1 C .2 D.33.解:对于直角坐标平面内的任意两点1122(,),(,)A x y B x y ,定义它们之间的一种“距离”:2121||.AB x x y y =-+-①若点C 在线段AB 上,设C 点坐标为(x 0,y 0),x 0在x 1、x 2之间,y 0在y 1、y 2之间,则01012020||||||||AC CB x x y y x x y y +=-+-+-+-=2121||.x x y y AB -+-=③在ABC ∆中,01012020||||||||AC CB x x y y x x y y +=-+-+-+->01200120|()()||()()|x x x x y y y y -+-+-+-=2121||.x x y y AB -+-=∴命题① ③成立,而命题②在ABC ∆中,若90,oC ∠=则222;ACCB AB +=明显不成立,选C.4.(2006湖南文)圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36 B. 18 C. 26 D. 254解:.圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到到直线014=-+y x 的距离=>32,圆上的点到直线的最大距离与最小距离的差是2R =62,选C.5. (2006湖南理)若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为则直线l 的倾斜角的取值范围是 ( )A.[,124ππ]B.[5,1212ππ]C.[,]63ππD.[0,]2π5.解:圆0104422=---+y x y x 整理为222(2)(2)x y -+-=,∴圆心坐标为(2,2),半径为32,要求圆上至少有三个不同的点到直线0:=+by ax l 的距离为22,则圆心到直线的距离应小于等于2,∴2()4()1a a b b ++≤0,∴ 2()2a b --+≤()ak b =-,∴ 22l 的倾斜角的取值范围是]12512[ππ,,选B.6. (2006江苏)圆1)3()1(22=++-y x 的切线方程中有一个是( )(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =06. 【思路点拨】本题主要考查圆的切线的求法,直线与圆相切的充要条件是圆心到直线的距离等于半径.【正确解答】直线ax+by=022(1)(1x y -+=与相切1=,由排除法, 选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。
2006年普通高等学校夏季招生考试数学(文理合卷)江苏卷(新课程)
2005年普通高等学校夏季招生考试数学(文理合卷)江苏卷(新课程)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6 (6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点, 满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)下图中有一个信号源和五个接收器。
2006年全国各地高考数学试题及解答分类大全(集合)
2006年全国各地高考数学试题及解答分类大全(集合)一、选择题:1. (2006春招上海) 若集合131,11,2,01A y y x x B y y x x ⎧⎫⎧⎫⎪⎪==-≤≤==-<≤⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,则A ∩B 等于( ) (A )]1,(∞-. (B )[]1,1-. (C )∅. (D )}1{.2.(2006安徽文)设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8}2.解:{1,3,5,6}S T ⋃=,则()U C S T ⋃={2,4,7,8},故选B3.(2006安徽理)设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B 等于( ) A .R B .{},0x x R x ∈≠ C .{}0 D .∅3.解:[0,2]A =,[4,0]B =-,所以(){0}R R C AB C =,故选B 。
4.(2006北京文)设集合A ={}312<+x x ,B ={}23<<x x -,则A ⋂B 等于( ) (A) {}13<<x x - (B) {}21<<x x (C){x|x >-3} (D) {x|x <1} 4.解:集合A ={}312<+x x ={x|x <1},借助数轴易得选A5.(2006福建文、理)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于( )(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)- 5.全集,U R =且{}|12{|1或3},A x x x x x =->=<->{}2|680{|24},B x x x x x =-+<=<< ∴ ()U A B =(2,3],选C.6..(2006湖北文)集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =( )A.{-2,2}B.{-2,2,-4,4}C.{-2,0,2}D.{-2,2,0,-4,4}6. 解:P ={x |x 2-16<0}={x |-4<x <4},故P Q ={-2,0,2},故选C7..(2006湖北理)有限集合S 中元素的个数记做()card S ,设,A B 都为有限集合,给出下列命题: ①A B =∅的充要条件是()()()card A B card A card B =+;②A B ⊆的充要条件是()()card A card B ≤;③A B 的充要条件是()()card A card B ≤;④A B =的充要条件是()()card A card B =;其中真命题的序号是 ( )A .③④B .①②C .①④D .②③7. 解:①A B =∅⇔集合A 与集合B 没有公共元素,正确②A B ⊆⇔集合A 中的元素都是集合B 中的元素,正确③A B ⇔集合A 中至少有一个元素不是集合B 中的元素,因此A 中元素的个数有可能多于B 中元素的个数,错误④A B =⇔集合A 中的元素与集合B 中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,错误选B8. (2006江苏)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A8.【思路点拨】本题主要考查.集合的并集与交集运算,集合之间关系的理解。
2006年江苏高考数学试卷分析
2006年江苏高考数学试卷分析——兼谈与2005年江苏数学卷相似之处和2007届数学复习一、整体情况1、选择题部分第1题到第10题是选择题,每个小题5分共50分。
涉及到三角与奇函数,统计,不等式,集合,概率、二项式定理、平面向量、立体几何,解析几何等内容,其中最后两道对大部分考生来讲,有一定的难度,第9题涉及立体几何,第10题是主要考查排列与组合的等可能事件的概率。
整个选择题起点比较高,没有多少容易题,对于50%左右的考生是难于顺利完成。
2、填空题部分第11题到第16题是填空题,每个小题5分共30分。
第11题直接用正弦定理可解决;第12题是一道线性规划也较容易;第13道是一道排列组合试题,是相同元素的排列与组合,中学不研究的;第14题是一道三角计算题,出现不太常见的余切函数;第15题是导数、切线、数列的和的综合题,思维量不大,计算麻烦;第16题是解一道含对数的不等式,有偏离教材的情况,不大方。
3、解答题部分解答题共5大题,共70分。
第17题是一道解析几何试题,满分12分。
有两个小题,第1问5分,根据已知条件求一个椭圆方程,第2问7分,根据一个对称的条件求出一个双曲线的方程,此题难度不大,大多数考生都可以完成。
第18题是一道涉及导数的立体几何应用题,满分14分。
先根据已知条件求一个下面是正六棱柱上面是正六棱锥的一个帐篷体积的最大值,先建模,再求体积的最大值,对考生来讲选择适当的变量是解题的关键,不在计算上出现错误是基础,此题难度虽然不大,但是对而不全是比较普遍。
第19题是一道立体几何试题,满分14分。
有三个小题,载体是将一个三角形按一定的要求翻折后形成的几何体,先证明一个垂直关系,4分;再求一个直线和平面所成的角,5分;最后求一个二面角的大小,5分;需要考生有一定的空间想象能力和基本功,利用空间坐标系解比较方便,传统的立体几何方法就不那么容易。
第20题是一个求函数最大值的试题,满分16分。
有三个小题,第一小问是一个提示,先用换元法求一个函数式子,以及变量的取值范围,4分;再在第二小问中加以应用,求出一个函数,6分;第三小问是在第二小题的基础上加以解决的问题,涉及解方程,6分。
2006年高考数学试题之2006年高考数学试题(江苏卷)
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式:一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一...项.是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A)0 (B)1 (C)-1 (D)±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A)x -y =0 (B)x +y =0 (C)x =0 (D)y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A)1 (B)2 (C)3 (D)4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A)向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B)向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C)向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D)向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A)0 (B)2 (C)4 (D)6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为(A)x y 82= (B)x y 82-= (C)x y 42= (D)x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A)C A ⊆ (B)A C ⊆ (C)C A ≠ (D)φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A)||||||c b c a b a -+-≤- (B)aa a a 1122+≥+ (C)21||≥-+-ba b a (D)a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为的正方体内,使正四棱锥的底面ABCD 平面平行,且各顶点...均在正方体的面上,体积的可能值有 (A)1个 (B)2个 (C)3个 (D)无穷多个(10)右图中有一个信号源和五个接收器。
2006年江苏省苏州市高考数学试卷
2006年江苏省苏州市高考数学试卷一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项是符合题目要求的。
1. 已知a R ∈,函数()sin ||,f x x a x R =-∈为奇函数,则a = (A )0(B )1(C )1-(D )1±2.圆22(1)(1x y -+=的切线方程中有一个是 (A )0x y -= (B )0x y += (C )0x =(D )0y =3.某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y ,已知这组数据的平均数为10,方差为2,则||x y -的值为 (A )1 (B )2 (C )3 (D )44.为了得到函数2sin(),36x y x R π=+∈的图象,只需把函数2sin ,y x x R =∈的图象上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5.101)3x-的展开式中含x 的正整数指数幂的项数是 (A )0(B )2 (C )4 (D )66.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为 (A )28y x =(B )28y x =- (C )24y x =(D )24y x =- 7.若A 、B 、C 为三个集合,A B B C = ,则一定有(A )A C ⊆ (B)C A ⊆ (C)A C ≠ (D)A =∅8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是 (A )||||||a b a c b c -≤-+- (B )2211a a a a+≥+ (C )1||2a b a b-+≥-(D ≤9.两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为的正方体内,使正四棱锥的底面ABCD 各顶点均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个(C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
2006年高考江苏卷数学试题及参考答案
走私、贩卖、运输、制造毒品罪,是指明知是毒品而故意实施走私、贩卖、运输、制造的行为。
本罪是选择性罪名,凡实施了走私、贩卖、运输、制造毒品行为之一的,即以该行为确定罪名。
凡实施了其中两种以上行为的,如运输、贩卖毒品,由定为运输、贩卖毒品罪,不实行数罪并罚。
运输、贩卖同一宗毒品的,毒品数量不重复计算;不是同一宗毒品的,毒品数量累计计算。
居间介绍买卖毒品的,不论是否获利,均以贩卖毒品罪的共犯论处。
走私毒品,又走私其他物品构成犯罪的,按走私毒品和构成的其他走私罪分别定罪,实行数罪并罚。
对多次走私、贩卖、运输、制造毒品,未经处理的,毒品数量累计计算。
所谓“未经处理”的既包括未经刑罚处理,也包括未作行政处理。
但对于犯罪已过追诉时效的,则毒品数量不再累计计算。
已作过处理的,应视为已经结案。
一立案标准我国刑法第347条规定:走私、贩卖、运输、制造毒品,无论数量多少,都应当追究刑事责任,予以刑事处罚。
走私、贩卖、运输、制造毒品,有下列情形之一的,处十五年有期徒刑、无期徒刑或者死刑,并处没收财产:(一)走私、贩卖、运输、制造鸦片一千克以上、海洛因或者甲基苯丙胺五十克以上或者其他毒品数量大的;(二)走私、贩卖、运输、制造毒品集团的首要分子;(三)武装掩护走私、贩卖、运输、制造毒品的;(四)以暴力抗拒检查、拘留、逮捕,情节严重的;(五)参与有组织的国际贩毒活动的。
走私、贩卖、运输、制造鸦片二百克以上不满一千克、海洛因或者甲基苯丙胺十克以上不满五十克或者其他毒品数量较大的,处七年以上有期徒刑,并处罚金。
走私、贩卖、运输、制造鸦片不满二百克、海洛因或者甲基苯丙胺不满十克或者其他少量毒品的,处三年以下有期徒刑、拘役或者管制,并处罚金;情节严重的,处三年以上七年以下有期徒刑,并处罚金。
单位犯第二款、第三款、第四款罪的,对单位判处罚金,并对其直接负责的主管人员和其他直接责任人员,依照各该款的规定处罚。
利用、教唆未成年人走私、贩卖、运输、制造毒品,或者向未成年人出售毒品的,从重处罚。
2006年江苏高考数学试卷及答案
2020年最新绝密★启用前220年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:一组数据的方差 ])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项....是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0(B )1(C )-1(D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 (A )1(B )2(C )3(D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0(B )2(C )4(D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为 (A )x y 82=(B )x y 82-= (C )x y 42=(D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆(B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个(D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)
2006年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题:1. (2006春招上海) 抛物线x y 42=的焦点坐标为( )(A ))1,0(. (B ))0,1(. (C ))2,0(. (D ))0,2(.2.(2006安徽文、理)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .42.解:椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D 。
3.(2006福建文、理)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞3.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴ ba≥3,离心率e 2=22222c a ba a +=≥4,∴ e ≥2,选C.4、(2006广东)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A.2 B.332 C. 2 D.4 4、解:依题意可知 3293,322=+=+==b a c a ,2332===a c e ,故选C.5. (2006湖南文、理)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3D.25.解:过双曲线1:222=-b y x M 的左顶点A (1,0)作斜率为1的直线l :y=x -1, 若l 与双曲线M的两条渐近线2220y x b-=分别相交于点1122(,),(,)B x y C x y , 联立方程组代入消元得22(1)210b x x -+-=,∴ 1221222111x x b x x b ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,x 1+x 2=2x 1x 2,又||||BC AB =,则B 为AC 中点,2x 1=1+x 2,代入解得121412x x ⎧=⎪⎪⎨⎪=-⎪⎩,∴ b 2=9,双曲线M 的离心率e=c a = A.6、.(2006湖北文、理)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若1,2且⋅=,则点P 的轨迹方程是( )A. )0,0(123322>>=+y x y x B. )0,0(123322>>=-y x y x C. )0,0(132322>>=-y x y x D.)0,0(132322>>=+y x y x6. 解:设P (x ,y ),则Q (-x ,y ),又设A (a ,0),B (0,b ),则a >0,b >0,于是BP x y b PA a x y u u u r u u u r =(,-),=(-,-),由2BP PA u u u r u u u r =可得a =32x ,b =3y ,所以x >0,y >0又ABu u u r =(-a ,b )=(-32x ,3y ),由•OQ AB u u u r u u u r =1可得)0,0(132322>>=+y x y x ,故选D7. (2006江苏)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅u u u u r u u u r u u u u r u u u r=0,则动点P (x ,y )的轨迹方程为( ) (A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 7.【思路点拨】 主要考查平面向量的数量积运算,抛物线的定义.【正确解答】设(,)P x y ,0,0x y >>,(2,0),(2,0)M N -,4MN =u u u u r则(2,),(2,)MP x y NP x y =+=-u u u r u u u r0=⋅+,则4(2)0x -=,化简整理得x y 82-= 所以选B【解后反思】向量的坐标表示和数量积的性质在平面向量中的应用是学习的重点和难点.也是高考常常考查的重要内容之一.在平时请多多注意用坐标如何来表示向量平行和向量垂直,既要注意它们联系,也要注意它们的区别.8、(2006江西理)设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A •u u u r u u u r=-4,则点A 的坐标是( )A .(2,±B. (1,±2)C.(1,2)D.(2,)8. 解:F (1,0)设A (20y 4,y 0)则O A u u u r =( 20y 4,y 0),F A u u u r =(1-20y 4,-y 0),由O A u u u r • F A u u u r=-4⇒y 0=±2,故选B9.(2006江西文、理)P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.6 B.7 C.8 D.99. 解:设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时|PM|-|PN|=(|PF 1|-2)-(|PF 2|-1)=10-1=9故选D10.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率10. 解:方程22520x x -+=的两个根分别为2,12,故选A11.(2006辽宁文、理) 曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同11. 【解析】由221(6)106x y m m m+=<--知该方程表示焦点在x 轴上的椭圆,由221(59)59x y m m m+=<<--知该方程表示焦点在y 轴上的双曲线,故只能选择答案A 。
2006年江苏高考数学试卷及答案
'.绝密★启用前2006年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:一组数据的方差 ])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项....是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0(B )1(C )-1(D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 (A )1(B )2(C )3(D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0(B )2(C )4(D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为 (A )x y 82=(B )x y 82-= (C )x y 42=(D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆(B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个(D )无穷多个(10)右图中有一个信号源和五个接收器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式:一组数据的方差])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (5)10)31(x x -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )a a a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A)1个 (B )2个(C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )454 (B )361 (C )154 (D )158 二、填空题:本大题共6小题,每小题5分,共30分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上........。
(11)在△ABC 中,已知BC =12,A =60°,B =45°,则AC = ▲(12)设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 ▲(13)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 ▲种不同的方法(用数字作答)。
(14)︒-︒︒+︒︒40cos 270tan 10sin 310cos 20cot = ▲(15)对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n 的前n 项和的公式是 ▲ (16)不等式3)61(log 2≤++x x 的解集为 ▲三、解答题:本大题共5小题,共70分。
请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分,第一小问满分5分,第二小问满分7分)已知三点P (5,2)、1F (-6,0)、2F (6,0).(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程。
(18)(本小题满分14分)请您设计一个帐篷。
它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。
试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?(19)(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分) 在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA=CP:PB =1:2(如图1)。
将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小;(Ⅲ)求二面角B -A 1P -F 的大小(用反三角函数表示)(20)(本小题满分16分,第一小问4分,第二小问满分6分,第三小问满分6分) 设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。
(Ⅰ)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t )(Ⅱ)求g (a ) (Ⅲ)试求满足)1()(ag a g =的所有实数a(21)(本小题满分14分)设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…), 证明}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)1【思路点拨】本题考查函数的奇偶性,三角函数sinx 的奇偶性的判断,本题是一道送分的概念题【正确解答】解法1由题意可知,()()f x f x =--得a=0解法2:函数的定义域为R,又f(x)为奇函数,故其图象必过原点即f(0)=0,所以得a=0,解法3由f(x)是奇函数图象法函数画出()R x a x x f ∈-=,sin 的图象选A【解后反思】对数学概念及定理公式的深刻理解是解数学问题的关健,讨论函数的奇偶性,其AF EC B A 1E F CP B前提条件是函数的定义域必须关于原点对称.若函数f(x)为奇函数()()()f x f x y f x ⇔-=-⇔=的图象关于原点对称.若函数f(x)为偶函数()()()f x f x y f x ⇔-=⇔=的图象关于y 轴对称.2【思路点拨】本题主要考查圆的切线的求法,直线与圆相切的充要条件是圆心到直线的距离等于半径.【正确解答】直线ax+by=022(1)(1x y -+=与相切1=,由排除法, 选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。
【解后反思】直线与圆相切可以有两种方式转化(1)几何条件:圆心到直线的距离等于半径(2)代数条件:直线与圆的方程组成方程组有唯一解,从而转化成判别式等于零来解.3【思路点拨】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法【正确解答】由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x 、y ,只要求出y x -,设x=10+t, y=10-t, 24x y t -==,选D【解后反思】4【思路点拨】本题主要考三角函数的图象变换,这是一道平时训练的比较多的一种类型。
【正确解答】先将R x x y ∈=,sin 2的图象向左平移6π个单位长度, 得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像 【解后反思】由函数sin ,y x x R =∈的图象经过变换得到函数sin(),y A x x R ωφ=+∈(1).y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的(2)函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变) (3)函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)可以先平移变换后伸缩变换,也可以先伸缩变换后平移变换,但注意:先伸缩时,平移的单位把x 前面的系数提取出来。
5【思路点拨】本题主要考查二项式展开通项公式的有关知识.【正确解答】1031⎪⎭⎫ ⎝⎛-x x 的展开式通项为31010102121011()()33r r r r r r C C x x ---=,因此含x 的正整数次幂的项共有2项.选B【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.6【思路点拨】本题主要考查平面向量的数量积运算,抛物线的定义.【正确解答】设(,)P x y ,0,0x y >>,(2,0),(2,0)M N -,4MN =则(2,),(2,)MP x y NP x y =+=-0=⋅+,则4(2)0x -=,化简整理得x y 82-= 所以选B【解后反思】向量的坐标表示和数量积的性质在平面向量中的应用是学习的重点和难点.也是高考常常考查的重要内容之一.在平时请多多注意用坐标如何来表示向量平行和向量垂直,既要注意它们联系,也要注意它们的区别.7【思路点拨】本题主要考查.集合的并集与交集运算,集合之间关系的理解。
【正确解答】因为A A B C B C ⊆⊆且A B C B =由题意得A C ⊆所以选A【解后反思】对集合的子、交、并、补运算,以及集合之间的关系要牢固掌握。