第六章氧化还原滴定法
合集下载
分析化学 氧化还原滴定法
a 与 C的关系为:
aOx
Ox
Ox
C Ox Ox Ox
aRed
Red
Re d
C Red Red Red
-活度系数 -副反应系数
Ox / Re d
Ox / Re d
RT ln γOx Red cOx nF γ c Red Ox Red
Ox / Re d
RT ln γOxRed
Red
增大,
0
值增大。
Eg. 2Fe3+ + 2I = I2 + 2Fe2+
Fe3+ + e = Fe2+ φFe3+/Fe2+ =0.771V I2 + 2e = 2I- ΦI2/I- =0.54V
例如,用间接碘量法测定Cu2+时,反应为
2Cu2 4I
2CuI I2
若试液中有Fe3+共存时,Fe3+也可以氧化I-生成I2,
0' 0 0.059lg OxRed
n
Red Ox
从条件电位的定义式知道,影响条件电位的因素 就是影响电对物质的活度系数和副反应系数的因素。
主要包括:盐效应 酸效应 生成沉淀 生成配合物
活度系数 副反应系数
1.盐效应:溶液中的电解质浓度对条件电位 的影响作用。
电解质浓度 离子强度 活度系数
*以标准氢电极为参照电极的相对值。
2、书写Nernst方程式时注意的问题:
(1)固体、溶剂的活度为1mol/L;
(2)气体以大气压为单位;
(3)如果半电池中除了氧化态和还原态外, 还有其他组分如:H+、OH参加, 活度也要包 括到Nernst方程式中;
第六章氧化还原滴定
反应产物: cCe3+和 cFe3+ 很小,且相等;
化学计量点时的溶液电位的通式:
(n1 n2 )Eeq n1E1O n2 E2O
Eeq
n1 E1O n1
n2
E
O 2
n2
该式仅适用于可逆对称(n1= n2)的反应。 化学计量点电位: Eeq= (0.68 +1.44) / (1+1) = 2.12 / 2
cOx2 cRed2
滴定过程中,达到平衡时(1 = 2):
O' 1
O' 2
0.059 lg( cRed1 )n2 ( cOx2 )n1
n1n2
cOx1
cRed2
0.059 lg
n1n2
K
K’ 越大,反应越完全。K’ 与两电对的条件电极电位 差和 n1 、n2有关。对于 n1 = n2 = 1的反应,若要求反应 完全程度达到 99.9%,即在到达化学计量点时:
2. 副反应的影响 主要影响因素
电对的氧化态(cOX)生成沉淀(或配合物)时,电极电位降低; 还原态(cRed)生成沉淀(或配合物)时,电极电位增加。
3.酸度的影响
若有H+或OH-参加氧化还原半反应,则酸度变化直接影响电 对的电极电位。
例:判断二价铜离子能否与碘离子反应
2Cu2+ + 4I- = 2CuI + I2
条件电极电位(Conditional Electrode Potential):
ox/Red
O ox/Red
RT nF
ln
aox aRed
ox/Red
O ox/Red
RT nF
ln ox c Red ox Red c ox Red
第六章 氧化还原滴定法
lg
COx2 CRe d2
反应达平衡时:1 2
1
'
0.059 n1
lg
COx1 CRe d1
2 '
0.059 n2
lg
COx2 CRe d2
lg
K
'
lg
C n2 Re d1
C n2 Ox1
n1
COx2 n1 CRe d2
n(1 ' 2 ' )
0.059
n '
0.059
n:为两半反应电子得失数n1与n2的最小公
解:已知φθ’Fe3+/Fe2+=0.68V, φθ’Sn4+/Sn2+=0.14V
对于反应 2Fe3++Sn2+=2Fe2++Sn4+ 则,
lg K ' n1 n2 1 ' 2 ' 2 0.68 0.14 18.3
0.059
0.059
解:溶液的电极电位就是Cr2O72-/Cr3+电极电 位 。 其 半 反 应 为 : Cr2O72+14H++6e=2Cr3++7H2O 当0.100mol/LK2Cr2O7被还原至一半时:
cCr(VI)c=CC(0VrI().II/5IC)×=(III02) .×1010..030m35V0o0l/mL=ol0/.L0=500.01m00oml/Lol/L
HAsO2
[H ] Ka [H ]
HAsO2的Ka 5.11010
27
[H ] 5mol / L
HAsO2 1.0,H3AsO4 1.0
0.60V ' H3AsO4 HAsO2
水分析化学6 氧化还原滴定法
的大小由电对的氧化态和还原态的材料自身性质及温度 决定。当二者一定时, 为常数。
第六章 氧化还原滴定法
2、条件电极电位
以HCl溶液中Fe(Ⅲ)/Fe(Ⅱ)这一电对为例,在298.15K时,由能 斯特方程式可得:
在盐酸溶液中,Fe(Ⅲ)以Fe3+、FeOH2+、FeCl2+、FeCl63-等形 式存在;而Fe(Ⅱ)也以Fe2+、FeOH+、FeCl+、FeCl42-等形式 存在。那么,Fe(Ⅲ)与Fe(Ⅱ)的分析浓度与游离Fe3+和Fe2+的 平衡浓度之间的关系并不相等。
第六章 氧化还原滴定法
生成沉淀的影响
在氧化还原反应中,当加入一种可以与氧化态或者还原态生成 沉淀的沉淀剂时,会改变电对的电极电位。根据能斯特方程式, 若电对的氧化态生成沉淀,则电位降低;反之,还原态生成沉 淀则使电对的电位增高。 例如,碘量法测铜是基于以下反应:
从标准电极电位看,应该是I2氧化Cu+,但是由于Cu2+/ Cu+中 Cu+生成的了CuI沉淀使得电对的电位升高,超过了0.54V,从而 氧化还原反应的方向发生了转变。
第六章 氧化还原滴定法
第六章 氧化还原滴定法
主要内容:
氧化还原平衡
氧化还原反应的速度
氧化还原滴定过程及滴定曲线
氧化还原滴定的指示剂
氧化还原滴定法在水质分析中的应用
第六章 氧化还原滴定法
氧化还原滴定法:是以氧化还原反应为基础的滴定 方法。 氧化还原反应的特点:
是电子转移反应(反应机理复杂); 反应常分步进行; 反应速率慢,且多有副反应。
发生氧化还原反应的两个电对的条件电极电位相差 得越大,其K’越大,说明反应进行得越完全。还可 以根据两电对的 ' 以及各自转移的电子数n1、n2 推导出用于判别可否用于氧化还原滴定分析的通式。
第六章氧化还原滴定法
在半反应中,化合价高的物质称氧化态,
化合价低的物质称还原态。
由一种元素的氧化态物质与其对应的还原态物质所构成 的整体叫氧化还原电对
表示为“氧化态/还原态”。如Zn2+ /Zn, Cu2+ /Cu 2
氧化还原反应是两个电对的反应,
Ox表示氧化态,Red表示还原态
Ox1 + ne
Red1
Red2
Ox2 + ne
C C n2 n1 Ox1 Re d2
0.059
0.059
即:
lgK
'
lg
C C n1 n2 Ox2 Re d1
C C n2 n1 Ox1 Re d2
n1n2 '
0.059
11
根据滴定分析误差要求,反应完全程度应达99.9% 以上,未作用物应小于0.1%,代入上式中:
n2Ox1 n1 Re d2
lgK ' n1n2' 0.059
' 0.059 lg K ' 0.059 3(n1 n2 )
n1n2
n1n2
满足 lgK ' 3(n1 n2 ) 或 ' 0.059 3(n1 n2 ) / n1n2
的氧化还原反应才可用于滴定分析
12
lgK ' 3(n1 n2 ) ' 0.059 3(n1 n2 ) / n1n2
第六章 氧化还原滴定法
一、氧化还原滴定法: 以氧化还原反应为基础的滴定分析方法
二、实质: 电子的转移
1
第一节 氧化还原反应
一、氧化还原电对的电位
氧化还原反应是由两个半反应构成的
例:Zn+Cu2+
第六章氧化还原滴定法
§6.2 氧化还原反应进行的程度
§6.2.1 条件平衡常数 n2Ox1 + n1Red2 n2Red1 + n1Ox2
氧化还原反应进行的程度,可用什么来衡量? 氧化还原反应进行的程度,可用什么来衡量?
Ox1 + n1eOx2 + n2eRed1 Red2
Ε1 = Ε
O' 1
c Ox1 0 . 059 + lg c Red1 n1 c 0 . 059 lg Ox2 n2 c Red2
4+ 3+ θ′
(1mol·L-1 H2SO4) ϕ (Fe /Fe )=0.68 V
3+ 2+
θ′
滴定反应: 滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 对于滴定的每一点,达平衡时有: 对于滴定的每一点,达平衡时有:
ϕ(Fe3+/Fe2+)=ϕ(C 4+/C 3+) e e
分析 滴定前, 未知, 滴定前,Fe3+未知,不好计算
第六章 氧化还原滴定法
§6.1 氧化还原反应平衡 §6.2 氧化还原反应进行的程度 §6.3 氧化还原反应的速率与影响因素 §6.4 氧化还原滴定曲线及终点的确定 §6.5 氧化还原滴定法中的预处理 §6.6 高锰酸钾法 §6.7 重铬酸钾法 §6.8 碘量法 §6.9 其它氧化还原滴定法 §6.10 氧化还原滴定结果的计算
HClO4 0.75
HCl 0.70
ϕθ'(Fe3+ /Fe2+)
与Fe3+的络合作用增强
氧化态形成的络合物更稳定, 氧化态形成的络合物更稳定,结果是电位降低 计算pH pH为 NaF浓度为 浓度为0.2 mol/l时 P136 例2 计算pH为3.0, NaF浓度为0.2 mol/l时, Fe3+/ Fe 的条件电位。在此条件下,用碘量法测 Fe2+的条件电位 在此条件下, 的条件电位。 Fe 铜时,会不会干扰测定? pH改为 改为1.0 铜时,会不会干扰测定?若pH改为1.0 时,结果又 如何? 如何?
第六章 氧化还原滴定法
条件电位
条件电位是校正了各种外界因素影响后得到的电对电 位,反映了离子强度及各种副反应影响的总结果。
当缺乏相同条件下的值时,可采用条件相近的值。在 无 φө′ 值时,可根据有关常数估算值,以便判断反应 进行的可能性及反应进行方向和程度。
五、电极电位的应用
1、判断氧化还原反应的方向
电对1 :Ox1 + ne = Red1 电对2:Red2 - ne = Ox2 φ1ө> φ2ө ,当体系处于标准状态时,电对1 中的氧化 态是较强的氧化剂,电对2中的还原态是较强的还原 剂,它们之间能够发生氧化还原反应,氧化还原反 应的方向为: Ox1 + Red2 = Red1 + Ox2
2Cu2+ + 4I-⇌2CuI↓ + I2 有关反应电对为:Cu2+ + e ⇌ Cu+ φCu2+/Cu+ө = 0.16V I2 + 2e ⇌ 2IφI2/I-ө = 0.54V 从电对的标准电极电位来判断,应当是I2氧化Cu+。 但事实上,Cu2+氧化I-的反应进行的很完全。这是由 于CuI沉淀的生成,使溶液中[Cu+]极小,Cu2+/Cu+电 对的条件电位显著升高, Cu2+ 的氧化能力显著增强 的结果。
3、催化剂对反应速率的影响 催化剂可以从根本上改变反应机制和反应速率,使用 催化剂是改变反应速率的有效方法。能加快反应速率 的催化剂称为正催化剂,能减慢反应速率的催化剂称 为负催化剂。
第三节 氧化还原滴定原理
一、氧化还原滴定曲线
1、滴定开始前 FeSO4 溶液中可能有极小量的 Fe2+ 被空气和介质氧化 生成 Fe3+ ,组成 Fe3+/Fe2+ 电对,但 Fe3+ 的浓度未知, 故滴定开始前的电位无法计算。
第 六 章 氧化还原滴定法
αFe3+(F)=1+β1[F- ]+β2[ F -]2+β3[F -]3=107.7 (8.6) αFe2+=1
1 故 = 0.77 + 0.059 lg —— = 0.32 V 7.7 10 因加入 F - 使 0 Fe3+/Fe2+ < 0 I /I2
2018/10/8
0
**加入NH4HF2:维持pH=3.2 掩蔽Fe3+
电对的电极电位。表征氧化剂和还原剂的强弱。
4
结论:
1)电对的 高,其氧化型的氧化能力强,可氧化电位比它低的 还原剂。
0
2)电对的 低,其还原型的还原能力强,可还原电位比它高的 氧化剂。
0
3) 随[H+]而改变,随 cOx和 cRed而变化,随介质条件变。
4.条件电位 0 '
当氧化型,还原型存在副反应时,其有效浓度发生 值发生变。 变化, 2+ 例如: Fe3+ +eFe aFe3 0 Fe3 / Fe2 0.059 lg aFe2 3 [ Fe ] 0 Fe Fe / Fe 0.059 lg Fe [ Fe 2 ]
德拜-休克尔(Debye-Hü ckel)公式
德拜-休克尔(Debye-Hü ckel)极限公式
2018/10/8
8
2. 副反应的影响
(1)生成沉淀的影响
Ox / Re d
0.059 cOx 'Ox / Re d lg n cRe d
0
[Ox]生成沉淀, 降低; [Red]生成沉淀, 升高
n1, n2 的最小公倍数
0.059 cOx1 0.059 cOx 2 0 ' lg 2 ' lg n1 cRe d1 n2 cRe d 2
1 故 = 0.77 + 0.059 lg —— = 0.32 V 7.7 10 因加入 F - 使 0 Fe3+/Fe2+ < 0 I /I2
2018/10/8
0
**加入NH4HF2:维持pH=3.2 掩蔽Fe3+
电对的电极电位。表征氧化剂和还原剂的强弱。
4
结论:
1)电对的 高,其氧化型的氧化能力强,可氧化电位比它低的 还原剂。
0
2)电对的 低,其还原型的还原能力强,可还原电位比它高的 氧化剂。
0
3) 随[H+]而改变,随 cOx和 cRed而变化,随介质条件变。
4.条件电位 0 '
当氧化型,还原型存在副反应时,其有效浓度发生 值发生变。 变化, 2+ 例如: Fe3+ +eFe aFe3 0 Fe3 / Fe2 0.059 lg aFe2 3 [ Fe ] 0 Fe Fe / Fe 0.059 lg Fe [ Fe 2 ]
德拜-休克尔(Debye-Hü ckel)公式
德拜-休克尔(Debye-Hü ckel)极限公式
2018/10/8
8
2. 副反应的影响
(1)生成沉淀的影响
Ox / Re d
0.059 cOx 'Ox / Re d lg n cRe d
0
[Ox]生成沉淀, 降低; [Red]生成沉淀, 升高
n1, n2 的最小公倍数
0.059 cOx1 0.059 cOx 2 0 ' lg 2 ' lg n1 cRe d1 n2 cRe d 2
第6章氧化还原滴定法
计算公式:
高锰酸盐指数(mgO2 / L)
(V1 V1' )C1 V2C2 V水 (ml)
8 1000
8 —氧的摩尔质量(1/2 O,g/mol); C1 — KMnO4标准溶液浓度(1/5 KMnO4 , mol/L); C2 — Na2C2O4标准溶液浓度(1/2 Na2C2O4 , mol/L). 1mmol/L(1/5 KMnO4 ) = 8 O2mg/L; 1mmol/L(1/5 KMnO4 ) =5 mmol/L(KMnO4 )
2、自身指示剂
有些标准溶液或被滴定的物质本身具有颜色, 而其反应产物无色或颜色很浅,则滴定时无需另 外加入指示剂。
如:用KMnO4作滴定剂时,由于MnO4-本身呈深 紫红色,反应后它被还原为几乎无色的Mn2+,当滴 定到化学计量点后,稍微过量的MnO4-存在就可使 溶液呈现粉红色,指示终点到达。
3、专属指示剂
防止Cl-干扰: 1) 可加AgSO4生成AgCl沉淀,除去后再 行测定; 2) 加蒸馏水稀释,降低Cl-浓度后再行
测定; 3) 改用碱性高锰酸钾法测定,因为在
碱性介质中,高锰酸钾的氧化性弱些不 能氧化Cl- 。
校正系数: 在高锰酸钾指数的时间测定中,往往 引入高锰酸钾标准溶液的校正系数。 测定方法:p213 引入校正系数的计算公式为:p213
(3)在大于2mol/L的强碱性溶液中 MnO4- + e- = MnO42- ,
MnO4 / Mn2
1.51V
MnO4 / MnO2 0.588V
MnO4 / MnO42
0.564V
高锰酸钾指数亦被称为化学需氧量的高锰酸钾法。 但由于高锰酸钾的氧化能力较弱,水中有机物只能部分 地被氧化,因此不能作为总有机物含量的尺度,是一个 相对的条件指标。
第六章 氧化还原滴定法
★可逆电对
反应中氧化态和还原态物质能很快建立平衡的电对,其 电极电势严格遵从能斯特方程。
对于任何电极:aOX + ne- = a’Red
c(OX) / c c(OX) / c RT 2.303RT ln lg ' a' a nF nF c(RED) / c c(RED) / c
3+
/Fe2+
电池反应的自发方向为: Fe3+ + Cu = Fe2+ + Cu2+
★对称电对
氧化态与还原态的系数相同。
Fe3+ + e = Fe2+
MnO4- + 8H+ + 5e- = Mn2+ + 4H2O
★不对称电对 氧化态与还原态的系数不相同。 I2 + 2e = 2I- Cr2O72- + 14H+ + 6e- = 2Cr3+ + 7H2O
*注意诱导反应与催化作用的区别?
6.2 氧化还原滴定的基本原理
6.2.1 氧化还原滴定曲线
氧化还原滴定过程中存在着两个电对:滴定剂电对和被滴
定物电对。滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 随着滴定剂的加入,两个电对的电极电位不断发生变化, 并处于动态平衡中。 绘制方法:横坐标为滴定剂加入体积(mL)或百分数%。 纵坐标为溶液的电位值。 溶液的电位值由两种方法得到: 第一,电对是可逆的,由能斯特方程式求得; 第二,电对是不可逆的由电位计测定。
⑤ φθ’值可查表,在无电对的φθ’时可用相近条件的φθ’值或是
分析化学:氧化还原滴定法
c
a Ox
a Ox
b Red
c
b Red
Ox/Red
θ Ox / Re d
0.059 lg n
c aOx
a Ox
b Red
c
b Red
∴忽略盐效应后的 Ox/Red 计算式:
Ox/Red
θ
0.059 lg n
b Red
a Ox
⑵酸效应
H+或OH 参加电极反应时
Ox或 Red 为弱酸、弱碱时 pH影响极大!
(25ο C)
aOx
Ox [Ox ]
OxcOx Ox
;
aRed
Red [Re
d]
Red c Red Red
Ox / Red
θ Ox /Red
0.059 lg n
a Ox
b Red
c aOx
a Ox
b Red
c
b Red
Ox / Red
θ Ox /Red
0.059 lg n
a Ox
与还原态生成配合物,φ’↑
利用此影响可消除某些离子对主反应的干扰
例:φ’Fe3+/Fe2+= 0.77V,Fe3+可氧化I 干扰其与
Cu2+的反应。加入NaF,使[F ]=1.0mol/L
Fe3/Fe 2
θ Fe3 / Fe2
0.059 lg Fe2
1
Fe3
Fe3/Fe 2
θ Fe3 / Fe2 0.059 lg 1
Ox1+Red2→Red1+Ox2
φOx/Red大者为氧化剂,发生还原反应; φOx/Red小者为还原剂,发生氧化反应。
➢ 氧化还原方程式配平(离子-电子法)
第六章 氧化还原滴定法
Cu2/Cu 0.87 V
• 5-3.氧化还原反应进行的程度 一平衡常数与电极电位的关系
在氧化还原滴定反应过程中,需要判断:
(1) 反应是否进行完全,即终点误差是否满足要求;
(2) 如果两个电对反应完全,应满足什么条件?
n2 Ox1 + n1 Red2 = n2 Red1 + n1 Ox2
两个半电池反应的电极电位为:
增加反应物浓度可以加速反应的进行; (2) 催化剂
改变反应过程,降低反应的活化能; (3) 温度
通常,温度每升高10度,反应速度可提高2-3倍。 反应机理复杂, 需要综合考虑各种因素
• 例如:在高锰酸钾法滴定中 (1) KMnO4与C2O42-的滴定反应需要在75-85C下
进行,以提高反应速度。但温度太高将使草酸分 解。
• 4.3 氧化还原滴定法的应用
• 1 高锰酸钾法 (permanganate titration) 高锰酸钾法优点:氧化能力强,可以直接、间接地测定多种
无机物和有机物;Mn2+近于无色,一般无需另加指示剂。 1)直接滴定法:适用于还原性物质测定FeSO4、H2C2O4、
H2O2、As(Ⅲ)、NO2- 等 • (2)返滴定法:适用于氧化性物质测定 MnO2、PbO2、
• =1.06V
• 3 滴定突跃范围 从滴定分析的误差要求小于-0.1~+0.1%出
发,可以由能斯特公式导出滴定的突跃范围。取 决于两电对的电子转移数与电势差,与浓度无关。
• 两电对的电子转移数相等,Esp正好位于突跃范 围的中点。若不相等,偏向电子转移数大的电对 一方。 与氧化剂和还原剂两电对ΔφØ差值大,滴定 突跃就大,差值小,滴定突跃就小 滴定突跃的大小与氧化剂和还原剂的浓度无关。
第六章 氧化还原滴定法
本书在处理有关氧化还原反应的电位计算问 题时,为了讨论问题的方便,一般仍采用标准电 极电位。
例6-1 计算1mol/LHCl溶液,cCe(IV)=1.00×10-2 mol/L, cCe(III)=1.00×10-3mol/L 时Ce(IV)/Ce(III)电对的电极电位。 解:查附表11,半反应Ce(IV)+e-=Ce(III)在1mol/LHCl介 质中的E0f=1.28V,则
E=E0fCe(IV)/Ce(III)+0.059lg[cCe(IV)/cCe(III)] =1.28V+0.059lg1.00×10-2/1.00×10-3
=1.34V
例 6-2 计 算 在 2.5mol/LHCl 溶 液 中 , 用 固 体 亚 铁 盐 将 0.100mol/LK2Cr2O7还原至一半时溶液的电极电位。 解:溶液的电极电位就是Cr2O72-/Cr3+电极电位。其半反应 为:Cr2O72-+14H++6e-=2Cr3++7H2O 附录一及表11中没有该电对相应的条件电位值,可采 用 相 近 3mol/L 的 介 质 中 的 E0f 代 替 , E0f=1.08V 。 当 0.100mol/LK2Cr2O7 被 还 原 至 一 半 时 : cCr(VI)=0.5×0.100mol/L=0.0500mol/L cCr(III)=2×0.0500mol/L=0.100mol/L 故 E=E0fCe(VI)/Cr(III)+(0.059/6)×lgcCr(VI)/c2Cr(III) =1.08+(0.059/6)×lg0.0500/(0.100)2
在氧化还原反应中,氧化剂和还原剂的浓度不 同,电位也就不同。因此,改变氧化剂或还原剂的 浓度,可能改变氧化还原反应的方向。
例6-1 计算1mol/LHCl溶液,cCe(IV)=1.00×10-2 mol/L, cCe(III)=1.00×10-3mol/L 时Ce(IV)/Ce(III)电对的电极电位。 解:查附表11,半反应Ce(IV)+e-=Ce(III)在1mol/LHCl介 质中的E0f=1.28V,则
E=E0fCe(IV)/Ce(III)+0.059lg[cCe(IV)/cCe(III)] =1.28V+0.059lg1.00×10-2/1.00×10-3
=1.34V
例 6-2 计 算 在 2.5mol/LHCl 溶 液 中 , 用 固 体 亚 铁 盐 将 0.100mol/LK2Cr2O7还原至一半时溶液的电极电位。 解:溶液的电极电位就是Cr2O72-/Cr3+电极电位。其半反应 为:Cr2O72-+14H++6e-=2Cr3++7H2O 附录一及表11中没有该电对相应的条件电位值,可采 用 相 近 3mol/L 的 介 质 中 的 E0f 代 替 , E0f=1.08V 。 当 0.100mol/LK2Cr2O7 被 还 原 至 一 半 时 : cCr(VI)=0.5×0.100mol/L=0.0500mol/L cCr(III)=2×0.0500mol/L=0.100mol/L 故 E=E0fCe(VI)/Cr(III)+(0.059/6)×lgcCr(VI)/c2Cr(III) =1.08+(0.059/6)×lg0.0500/(0.100)2
在氧化还原反应中,氧化剂和还原剂的浓度不 同,电位也就不同。因此,改变氧化剂或还原剂的 浓度,可能改变氧化还原反应的方向。
第六章氧化还原滴定法
根据反应类型的不同,又可分为如 下两种:
2)反应温度与滴定速度 温度应在15℃以下。 温度高:
HNO2分解与逸失。可采用“快速滴定法”
3)苯环上取代基团的影响
在苯胺环上:有吸电子基团取代 如: -NO2、-SO3H、-COOH等 使反应加速;
有斥电子基团(-OH、 -OR)使反应 减慢。
三、亚硝酸钠法的指示剂
•高锰酸钾法
标准溶液:高锰酸钾。 指示剂:自身指示剂。 测定条件:控制在1~2mol/L H2SO4溶液测定
还原性物质。
•亚硝酸钠法
(1)重氮化滴定法:在酸性介质中,用亚硝酸 钠标准溶液滴定芳伯胺化合物,发生重氮化反 应; (2)亚硝化滴定法:用亚硝酸钠标准溶液滴定
芳仲胺化合物,发生亚硝基化反应。
氧化还原反应的程度也是用平衡常数 的大小来衡量。氧化还原反应的平衡常数 与有关电对的电极电位有关。
(二)氧化还原反应进行的速度
氧化还原反应平衡常数的大小,可以 表示反应进行的程度,但不能说明反应的 速度。有许多氧化还原反应,虽然从理论 上看可以进行完全,但实际上由于反应速 度太慢而几乎觉察不出反应的进行。例如, 水溶液中的溶解氧:
2、书写Nernst方程式时注意几点:
(1)固体、溶剂的活度为1mol/L (2)气体以大气压为单位 (3)半反应中有其它组分参加,其它组分的
活度应包括在Nernst方程式中
3、条件电极电位 为了讨论方便,我们以下式为例来
进行讨论:
Ox + n e Red
• 二、氧化还原反应进行的程度和速度 (一)氧化还原反应进行的程度
101.0 110.0 150.0 200.0
100.0 95.0 90.0 80.0 60.0 50.0 40.0 10.0 1.0 0.1
2)反应温度与滴定速度 温度应在15℃以下。 温度高:
HNO2分解与逸失。可采用“快速滴定法”
3)苯环上取代基团的影响
在苯胺环上:有吸电子基团取代 如: -NO2、-SO3H、-COOH等 使反应加速;
有斥电子基团(-OH、 -OR)使反应 减慢。
三、亚硝酸钠法的指示剂
•高锰酸钾法
标准溶液:高锰酸钾。 指示剂:自身指示剂。 测定条件:控制在1~2mol/L H2SO4溶液测定
还原性物质。
•亚硝酸钠法
(1)重氮化滴定法:在酸性介质中,用亚硝酸 钠标准溶液滴定芳伯胺化合物,发生重氮化反 应; (2)亚硝化滴定法:用亚硝酸钠标准溶液滴定
芳仲胺化合物,发生亚硝基化反应。
氧化还原反应的程度也是用平衡常数 的大小来衡量。氧化还原反应的平衡常数 与有关电对的电极电位有关。
(二)氧化还原反应进行的速度
氧化还原反应平衡常数的大小,可以 表示反应进行的程度,但不能说明反应的 速度。有许多氧化还原反应,虽然从理论 上看可以进行完全,但实际上由于反应速 度太慢而几乎觉察不出反应的进行。例如, 水溶液中的溶解氧:
2、书写Nernst方程式时注意几点:
(1)固体、溶剂的活度为1mol/L (2)气体以大气压为单位 (3)半反应中有其它组分参加,其它组分的
活度应包括在Nernst方程式中
3、条件电极电位 为了讨论方便,我们以下式为例来
进行讨论:
Ox + n e Red
• 二、氧化还原反应进行的程度和速度 (一)氧化还原反应进行的程度
101.0 110.0 150.0 200.0
100.0 95.0 90.0 80.0 60.0 50.0 40.0 10.0 1.0 0.1
第六章氧化还原滴定法
当 [ H ] 1 8 m 0 / L o H '3 A 4 lH sO 2 A 0 . 1 s V O 0 I 3 / I
H3ASO4 + 3I-+ 2H+
HASO2 + I3-+ 2H2O(酸性条件)
间接碘量法
HASO2 + I3-+ 2H2O
H3ASO4 +3I- + 2H+ (碱性条件)
直接碘量法
注:根据电对的电位高低判断氧化还原反应的方向
第六章 氧化还原滴定法
❖§6.2 氧化还原反应进行的程度 ❖ 一. 进行的程度用反应平衡常数来衡量
由标准电极电位→K 由条件电位→K’(条件平衡常数)
பைடு நூலகம்
Ox1 + n1e
Red1
Red2
Ox2 + n2e
11 0.n 0 1 5 lg a 9 a R O d 11 ex1 ' 0.n 0 1 5 lg C 9 C R O d 11 ex
Cu+
Cu2
Cu
0.16V4
2I-
I2
I
0.53V5
Fe 2+
Fe3
Fe2
0.771V
Fe3氧化能力强,C干 u2扰 测定
如加入能 Fe3与 形成配合F物 的
'
F3e
F2e
0.05l9 gF2e(F)
F3e (F)
F 3 e F 2 e 0 .0l5 1 g 9 1 [ F ]2 [ 1 F ] 2 3 [ F ] 3
H 3 A4 s O [H ]3 [H ]2K a 1 [ [H H ] ]2 3 K a 1 K a 2 K a 1 K a 2 K a 3
第六章氧化还原滴定法
§6-1 氧化还原反应平衡
一、 条件电极电位
在较稀的弱电解质或极稀的强电解质溶液中,离子的总浓
度很低,离子间力很小,离子的活度系数≈1,可以认为活度等
于浓度。 在一般的强电解质溶液中,离子的总浓度较高,离子间力较 大,活度系数就<1,因此活度就小于浓度,在这种情况下, 严格地讲,各种平衡常数的计算就不能用离子浓度,而应用活 度。
例:判断二价铜离子能否与碘离子反应
2Cu 2 4I 2CuI I 2
Cu
2
/Cu
0.16 V ;
I
2 /I
0.54 V
从数据看,不能反应,但实际上反应完全。 原因:反应生成了难溶物CuI,改变了反应的方向。 Ksp(CuI) = [Cu+][I-] = 1.1 10-12
一、 条件电极电位
实际溶液中的作用力问题:
不同电荷的离子之间存在着相互吸引的作用力
电荷相同的离子之间存在着相互排斥的作用力
离子与溶剂分子之间也可能存在着相互吸引或相互排斥的作
用力 由于这些离子间力的影响,使得离子参加化学反应的有 效浓度要比实际浓度低,为此, 引入活度这个概念.
§6-1 氧化还原反应平衡
在 5mol/L HCl中
=0.70 V =0.64 V
在 0.5mol/L H2SO4中 =0.68 V 在 1mol/L HClO4中 =0.76 V 在 1mol/L H3PO4中 在 2mol/L H3PO4中
=0.44 V =0.46 V
§6-1 氧化还原反应平衡
不同的酸度还会影响反应物、产物的存在形式:
H 3 AsO4
HAsO 2
pKa 1=2.2
第6章氧化还原滴定法
任何完整的氧化还原反应都是两个半反应 之和 其中一个半反应失去电子(或电子偏离),元 素的氧化数升高,称为氧化半反应;另一个 半反应得到电子(或电子偏向),元素的氧化 数降低,称为还原半反应 每一个半反应均可写成
氧化态+zeOx + ze还原态 Red
(其中氧化态与还原态称为氧化还原电 对,一般以Ox/Red表示)
有机物测定
甲醇、甘油、甲酸等有机化合物可用高锰酸钾法在碱 性溶液中进行测定。如甲醇的测定,将一定量且过量 的高锰酸钾标准溶液加入待测物质的试液中,反应为 : 6MnO4-+CH3OH+8OH-=CO32-+6MnO42++6H2O 反应结束后,将溶液酸化,MnO42+歧化为MnO4-和 MnO2。再加入准确过量的FeSO4溶液,将所有的高价 锰还原为Mn2+,最后以KMnO4溶液返滴定剩余的Fe2+
实验证明,一般温度升高10℃,反 应速度可增加2~4倍。如高锰酸钾 氧化草酸,在室温下,该反应较慢, 不利于滴定,可以加热到70-80℃来 提高反应速率。 由于不同反应物所需的温度各不相 同,必须根据具体情况确定反应的 适宜温度
影响氧化还原反应速率的因素
浓度 温度 催化剂
影响氧化还原反应速率的因素
氧化还原滴定曲线
滴定曲线的特点 滴定的双平台及滴定突跃
被滴定物质和滴定剂电对的条件电极电 位 介质
滴定突跃的影响因素
被滴定物质和滴定剂电对的条件电极电 位的差值
氧化还原滴定终点的指示方法 电位计法
通过电位仪测定滴定 过程中溶液电极电位 的变化情况,并从滴 定曲线上确定滴定终 点
RT [Ox ] EE ln nF [Re d ]b
氧化态+zeOx + ze还原态 Red
(其中氧化态与还原态称为氧化还原电 对,一般以Ox/Red表示)
有机物测定
甲醇、甘油、甲酸等有机化合物可用高锰酸钾法在碱 性溶液中进行测定。如甲醇的测定,将一定量且过量 的高锰酸钾标准溶液加入待测物质的试液中,反应为 : 6MnO4-+CH3OH+8OH-=CO32-+6MnO42++6H2O 反应结束后,将溶液酸化,MnO42+歧化为MnO4-和 MnO2。再加入准确过量的FeSO4溶液,将所有的高价 锰还原为Mn2+,最后以KMnO4溶液返滴定剩余的Fe2+
实验证明,一般温度升高10℃,反 应速度可增加2~4倍。如高锰酸钾 氧化草酸,在室温下,该反应较慢, 不利于滴定,可以加热到70-80℃来 提高反应速率。 由于不同反应物所需的温度各不相 同,必须根据具体情况确定反应的 适宜温度
影响氧化还原反应速率的因素
浓度 温度 催化剂
影响氧化还原反应速率的因素
氧化还原滴定曲线
滴定曲线的特点 滴定的双平台及滴定突跃
被滴定物质和滴定剂电对的条件电极电 位 介质
滴定突跃的影响因素
被滴定物质和滴定剂电对的条件电极电 位的差值
氧化还原滴定终点的指示方法 电位计法
通过电位仪测定滴定 过程中溶液电极电位 的变化情况,并从滴 定曲线上确定滴定终 点
RT [Ox ] EE ln nF [Re d ]b
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不是活度。
a(Ox d) ceq (Re d )
同时,对于氧化还原反应易发生副反应, 从而需引入副反应系数。
(Ox) c(Ox)
ceq (Ox)
(Re d ) c(Re d )
ceq (Re d )
经过校正后,得到:
a(Ox) (Ox) c(Ox) / (Ox) a(Re d ) (Re d ) c(Re d ) / (Re d )
EOx Re d
EOx Re d
0.0592 lg n
aOx aRe d
EOx Re d
0.0592 lg n
c(Ox) (Re d ) (Ox) c(Re d ) (Ox) (Re d )
EOx Re d
0.0592 lg n
(Ox) (Re d ) (Re d ) (Ox)
0.0592 lg n
Ox1 n1e Re d1
E1
E10
0.0592 n1
lg
cOx1 cRe d1
Ox2 n2e Re d2
E2
E20
0.0592 n2
lg
cOx2 cRe d2
当反应达到平衡时,E1 E2 ,则
E10
0.0592 n1
lg
cOx1 cRe d1
E20
0.0592 n2
lg
cOx2 cRe d2
0.0592 lg n
c(Ox) c(Re d)
6.1.2 影响电极电位的因素
1.沉淀反应的影响
2.配位反应的影响 3.介质酸度的影响
6.1.3 氧化还原反应进行的程度及条件平衡常数 K
对于水溶液中的氧化还原反应
aOx1 b Re d2 a Re d1 bOx2
两个电对的半反应及相应的nernst方程是:
0.0592 lg
c(Fe3 ) c(Fe2 )
0.1000 19.98
0.68 0.0592 lg
39.98 0.1000 0.02
0.86v
39.98
2.化学计量点时,
E E E 液
( Fe3 / Fe2 )
(Ce4 / Ce3 )
E( Fe3 / Fe2 )
E 0 ( Fe3 / Fe2 )
c(Ox) c(Re d )
令EOx Re d
EOx Re d
0.0592 lg n
(Ox) (Re d ) (Re d ) (Ox)
式中EOx 称为条件电极电位,或克式量电位, Re d
它表示在一定条件下,氧化态和还原态的分析浓度均为
1mol / L时的实际电极电位。
则EOx Re d
EOx Re d
E液
E( Fe3 / Fe2 )
E 0 ( Fe3 / Fe2 )
0.0592lg
c(Fe3 ) c(Fe2 )
0.68
0.0592 lg
c(Fe3 c(Fe2
) )
当加入Ce4+溶液19.98ml时,即溶液中的Fe2+ 被氧化99.9%时,
E液
E( Fe3 / Fe2 )
E 0 ( Fe3 / Fe2 )
以c(Ce4+)=0.1000mol/L的Ce(SO4)2标准溶液滴定 20.00ml0.1000mol/L的FeSO4溶液为例,
滴定反应式:Fe2+ + Ce4+ = Fe3+ + Ce3+ E0 (Ce4 / Ce3 ) 1.44v, E0 (Fe3 / Fe2 ) 0.68v,
1.计量点前,溶液中有剩余的Fe2+,同时生成一些 Fe3+,此时应用电对Fe3+/Fe2+来求溶液的电极电势。
整理得 :
lg K lg[( cRe d1 )n2 ( cOx2 )n1 ] n(E10 E20 )
cOx1
cRe d2
0.0592
式中n为两个电对得失电子数n1和n2的最小公倍数。
按滴定分析的要求,允许滴定的相对误差<0.1%,
对于氧化还原反应( n1= n2):
Ox1 Re d2 Re d1 Ox2
例:下列反应能用于氧化还原滴定分析的是( )
A、K2Cr2O7 与KIO3的反应 B、 K2Cr2O7 与KBrO3的反应 C、K2Cr2O7 与Fe2+的反应 D、K2Cr2O7 与Na2S2O3的反应
6.1 氧化还原反应
6.6.1 条件电极电位 氧化剂和还原剂的强弱可用有关氧化还原电对
的电极电位来衡量。电对的电极电位越高,氧化 态的氧化能力越强;电极电位越小,还原态的还 原能力越大。
1.增加反应物浓度 2.升高温度 如Na2C2O4标定 KMnO4 时,加热溶 液至75 ~ 850C 3.使用催化剂
(1)自动催化反应 (2)诱导反应
MnO4- + 5 Fe2+ + 8H+ = Mn2+ + 5Fe3+ + 4H2O 2MnO4- + 10Cl- + 16H+ = 2 Mn2+ + 5Cl2 + 8H2O
第六章 氧化还原滴定法
氧化还原滴定法:是以氧化还原反应为基础的 滴定分析方法。常见的有KMnO4法、K2Cr2O7法和 碘量法。 氧化还原滴定法对反应的要求: 1、滴定剂和被滴定物质的电对的电极电位要有足够
大的差值,反应才能进行完全;
2、滴定反应能迅速完成; 3、能有适当的方法或指示剂指示反应的滴定终点;
第一个反应对第二个反应有诱导作用。
6.2 氧化还原滴定基本原理 在氧化还原滴定中,随着标准溶液的加入,溶
液中有关组分浓度不断发生变化,电对的电极电势 不断发生变化。以标准溶液的加入量为横坐标,溶 液的电极电势为纵坐标作图所得曲线称为氧化还原 滴定曲线。
6.2.1 氧化还原滴定曲线 在298k时,c(H2SO4)=1mol/L的H2SO4溶液中,
0.1% 0.1% 99.9% 99.9%
K ( cRed1 ) ( cOx1 ) 99.9% 99.9% 106
cOx2
cRe d2
0.1% 0.1%
lg K 6
E 0
E10
E20
0.0592 n
lg
K
0.36v
即两电对的条件电位差必须大于0.4v的反应才可进行滴定分析。
6.1.4 氧化还原反应的反应速率
氧化还原电对的电极电位,可用能斯特(Nernest)
方程式求得:
Ox + ne
Red
EOx Re d
EOx Re d
0.0592 lg n
aOx aRe d
式中aOx和aRed分别为氧化态和还原态的活度,
EOxRe d是电对Ox Re d 的标准电极电位。
在实际工作中,通常知道的是离子的浓度而