植物生长所必需的元素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一。必需元素
某一元素是否属于必需,并不能根据生长在土壤上植物的矿质成分来确定。水培养和砂基培养技术对较精确地研究矿质元素的必要性提供了可能,并使人们对它们在植物代谢中的作用有了更深的了解。化学药品的纯化和测定技术的提高也促进了这一领域的发展。确定植物的必需元素(essential element)有三条标准。当某一元素符合这三条标准时,则称为必需元素,这三条标准是:
(1)在完全缺乏该元素时,植物不能进行正常的生长和生殖,不能完成其生活周期。
(2)该元素的功能不能被其他元素所替代。
(3)该元素必需直接参与植物的代谢。如参与植物体某些重要分子或结构的组成,或者作为某种酶促反应的活化剂。
到目前为止,确定下列17种元素是植物生长发育所必需的:C,H,O,N,S,P,K,Ca,Mg,Fe,B,Cu,Zn,Mn,Mo,Cl,Ni
除17种必需元素外,一些对生长有促进作用但不是必需的,或只对某些植物种类,或在特定条件下是必需的矿质元素,通常称为有益元素(beneficial elements)。钠、硅、钴、硒、和铝等被认为属于有益元素。已证明Na为某些沙漠植物和盐碱植物以及某些C4植物和CAM植物所必需,Na属于这些植物的微量元素。硅在玉米和许多禾本科植物中的积累达到干重的1%~4%,水稻则高达16%,而大多数双子叶植物中硅的含量较低。当水稻缺硅时营养生长和谷物产量都严重下降,并发生缺素症,例如成熟叶片枯斑和植株凋萎。土壤溶液中硅以单硅酸(H4SiO4或Si(OH)4)形式存在和被植物吸收,其在植物体内多以无定形硅(SiO4·nH2O)或称蛋石的形式积累。在植物的根茎叶和禾本科植物花序的表皮细胞壁以及其他细胞的初生壁和次生壁含有丰富的硅。硅影响高等植物的稳固性,一方面是由于它能被动沉积在木质化的细胞壁中,另一方面是由于它能调节木质素的生物合成。
钴对许多细菌是必需的。由于根瘤菌及其他固氮微生物需要钴,因而钴对豆科及非豆科植物的根瘤固氮非常重要。不过,钴对高等植
物是否具有直接的功能,至今还不清楚。
作物中硒的平均含量在0.01~1.0mg/kg干重之间,硒以硒酸盐(SeO42-)和亚硒酸盐(SeO32-)的形式吸收,硒酸根与硫酸根(SO42-)争夺根细胞质膜的结合位点,形成硒的半胱氨酸和氨基酸类似物,即硒半胱氨酸和硒蛋氨酸,在非积累型植株中形成含硒蛋白质。这些蛋白质充当酶蛋白时,或无功能或比相应的含硫蛋白质的功能弱得多。相反在积累型植株中,含硒氨基酸被转化为非蛋白氨基酸,如硒甲基半胱氨酸,这种阻止含硒氨基酸结合入蛋白质的排斥作用,是积累型植物忍耐硒的最重要的机制之一。
植物所需要的17种必需元素中除硼外均是高等动物所必需。此外动物还需要钠、碘、钴、硒,可能还有硅、铬、锡、钒、氟,有理由设想高等动物所必需的元素也是高等植物的必需元素。
二。必需元素的生理作用及其缺乏病症
根据生理作用不同,可将必需元素分成两类:一类是作为植物体中重要结构物质的构成部分,如N、S、P的主要功能是蛋白质和核酸等的组成物质;另一类则是在调节酶的活性方面起作用,如许多微量元素作为酶的辅基或活化剂等。不过,这两种类型的区分并不是绝对的,例如镁既是叶绿素的结构成分,又是许多酶的活化剂。
所有处于可溶性状态的元素,不论是游离的或结合态的,均起渗透调节剂的作用。钾离子并不参与结构物质的组成,其主要作用在于维持细胞的渗透势。此外,钾离子和氯离子还在酶活性的调节方面起作用。
下面将植物必需的矿质元素的生理作用及缺乏病症逐一介绍。1.氮
多数土壤容易缺氮。植物所吸收的氮素主要是硝酸盐(NO3-)和铵(NH4+),也可以利用某些可溶性的含氮有机物,如尿素等。氮是构成蛋白质的主要成分。此外,氮存在于核酸、磷脂、叶绿素、辅酶、植物激素(如吲哚乙酸、激动素等)和多种维生素(如B1,B2,B6,PP等)中。由于氮作为组成植物体中许多基本结构物质的组分,对植物的生命活动有举足轻重的作用,故氮又称为生命元素。
氮素在植物体内可以自由移动。缺氮时幼叶向老叶吸收氮素,老
叶出现缺绿病。严重的情况下老叶完全变黄枯死,但幼叶可较长时间保持绿色。
植物缺氮时植株矮小,叶小色淡或发红,分枝少,花少,籽实不饱和,产量低。
2.磷
土壤中缺磷的现象非常普遍,其缺乏的可能性仅次于缺氮。磷主要以一价磷酸根(H2PO4-)或二价磷酸根(HPO42-)的形式被植物吸收,土壤pH控制着这些磷酸根的比例。pH小于7时,H2PO4-状态的离子较多;pH大于7时,HPO42-状态较多。
磷进入根系或由木质部运输到地上部后,大部分很快转化成有机物质。与氮和硫不同,植物体中一部分磷并不经过还原而仍然保持磷酸盐的形式
磷与光合作用、呼吸作用和其他代谢过程有关,磷是核苷酸和膜脂的组成成分。磷存在于ATP,ADP,AMP和焦磷酸(PPi)中,在能量代谢中起重要作用。此外,植物细胞中的磷酸盐起到酸碱缓冲作用,可以说,没有磷,植物的全部代谢活动都不能进行。
磷在植物体内能从一个器官转移到另一个器官,进行重新分配。磷在老叶较少,而在幼叶、花和种子中较多。缺磷时首先表现在成熟的老叶。
植株缺磷时,蛋白质合成受阻,植株生长缓慢,植株短而粗,叶色深绿,有时呈红色(因为缺磷有利于花色素的积累)。
3.钾
钾是土壤中第三种容易缺乏的元素。由于氮、磷、钾对植物生长发育的重要性,被称为肥料三要素。土壤中的KCl和K2SO4解离后,以钾离子的形式被植物吸收。钾在植物体中几乎全部呈离子状态。
钾不参与植物体内重要有机物的组成。钾是光合作用、呼吸作用中许多重要酶的活化剂,钾也是淀粉和蛋白质合成所需要的酶的活化剂。目前已知道有50多种酶完全依赖于钾或被钾激活。
钾在不同的水平上影响着光合作用。如钾离子作为主要的平衡离子在光诱导的跨类囊体膜的质子流动以及光合磷酸化中ATP合成所必需的膜pH梯度等方面起作用。此外,K+能促进CO2的固定。