集合与简易逻辑知识点
集合与简易逻辑知识点整理
集合与简易逻辑 知识点整理班级: 姓名:1.集合中元素的性质(三要素): ; ; 。
2.常见数集:自然数集 ;自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 。
3.子集:A B ⊆⇔ ; 真子集:A B ≠⊂⇔ ; 补(余)集:A C B ⇔ ;【注意】空集是任意集合的子集,是任意非空集合的真子集。
4.交集:A B ⋂⇔ ; 并集:A B ⋃⇔ 。
笛摩根定律:()U C A B ⋂= ;()U C A B ⋃= 。
性质:A B A ⋂=⇔ ;A B A ⋃=⇔ 。
5.用下列符号填空: "","","","","",""≠∈∉⊂⊂=≠0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {}0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。
x a < (0)a >的解集是 ;x a > (0)a >的解集是 。
(0)ax b c c +<>⇔ a x b <+<;(0)ax b c c +<<⇔ 或 。
7.【注意】的情况可根据不等式的性质化归为的情况进行讨论。
8.一元二次不等式恒成立问题:【注意】二次项系数为0时的讨论。
一元二次不等式20ax bx c ++<(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≤(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++>(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≥(0)a ≠恒成立⇔ 。
9.简单分式不等式的解法:()0()f x g x > ⇔()()0f x g x ⋅>⇔()0()0f x g x >⎧⎨>⎩或()0()0f x g x <⎧⎨<⎩()0()f xg x ≥⇔ ⇔ 。
集合与简易逻辑知识点
集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:A a ∈或A a ∉集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
注:空集是任何集合的子集。
是非空集合的真子集结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。
记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃;9、命题:可以判断真假的语句叫做命题。
(全称命题 特称命题)⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
1集合与简易逻辑知识点梳理.
§1集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
集合元素的互异性:如:A={x,xy,lg(xy)},B={0,|x|,y},求A;(2)集合与元素的关系用符号∈,∉表示。
(3)常用数集的符号表示:自然数集;正整数集、;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。
说说下列集合的区别:A={x|y;B={y|y=;C={(x,y)|y;D={x|x=;E={(x,y)|y=x∈Z,y∈Z}.(5)空集是指不含任何元素的集合{0}、φ和{φ}的区别;0与三者间的关系;空集是任何集合的子集,是任何非空集合的真子集;注意:条件为A⊆B,在讨论的时候不要遗忘了A=φ的情况,如:A={x|ax2-2x-1=0},如果A R+=φ,求a的取值。
二、集合间的关系及其运算(1)符号“∈,∉”是表示元素与集合之间关系的,如立体几何中的体现点与直线(面)的关系;符号“⊂,⊄”或“⊆,”或“”等是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。
(2)切记:A⊆B⇔A⋂B=A;A⊆B⇔A⋃B=B.(3)集合中元素的个数的计算:若集合A中有n个元素,则集合A的所有不同的子集个数为_ __ ,所有真子集的个数是__ _,所有非空真子集的个数是。
基础训练一、选择题1.下列表示方法正确的是A.1⊆{0,1,2}D.φ{0}2.已知A={1,2,a2-3a-1},B={1,3},A⋂B={3,1}则a等于B.{1}∈{1,2}C.{0,1,2}⊆{0,1,3}A.-4或1B.-1或4C.-1D.43.设集合M={3,a},N={x|x2-3x﹤0,x∈Z},M⋂N={1},则M⋃N为A.{1,2,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}4.集合P={(x,y)|x-y=2,x∈R},Q={(x,y)|x+y=2,x∈R},则P⋂QA.(2,0)B.{(2,0)}C.{0,2}D.{y|y≤2}n18.设集合A={x|x=,n∈Z},B={x|x=n+,n∈Z},则下列能较准确表示A、B关22 系的是图是11.已知集合M={x|x≤1},P={x|x﹥t},若M⋂P=φ,则实数t满足条件是A.t﹥1B.t≥1C.t<1D.t≤112.当a﹤0时,关于x的不等式x2-4ax-5a2>0的解集是A.{x|x﹥5a或x﹤-a}B.{x|x﹤5a或x﹥-a}C.{x|-a﹤x﹤5a}D.{x|5a﹤x﹤-a}二、填空题:13.集合M中含有8个元素,N中含有13个元素,(1)若M⋂N有6个元素,则M⋃N含有______个元素;(2)当M⋃N含_______个元素时, M⋂N=φ。
集合与简易逻辑知识点总结- 高三数学一轮复习
知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。
必修1、选修1-1 集合与简易逻辑
作“������或������” ;对于“������ ∨ ������”形式的命题判断真假的方法是:一真则真; (2)且:一般地,用联结词“且”把命题������和命题������联结起来,就得到一个新的命题,记作������ ∧ ������,读 作“������且������” ;对于“������ ∧ ������”形式的命题判断真假的方法是:一假则假; (3)非:一般地,对于一个命题全盘否定,就得到一个新的命题,记作“¬ ������” ,读作“非������”或读作 “������的否定” ;对于“¬ ������”形式的命题判断真假的方法是:真假相对; 4、全称量词与存在量词: (1)全称量词和全称命题: 全称量词:短语“所有的” “任意一个” “任意的”等在逻辑中通常称为全称量词,用符号“∀”表示; 全称命题:含有全称量词的命题称为全称命题; 全称命题的表达形式:������: ∀������ ∈ ������, ������ ������ ; 全称命题的否定形式:¬ ������: ∂������������ ∈ ������, ¬ ������ ������������ ; (全称命题的否定是特称命题) (2)存在量词和特称命题: 存在量词:短语“至少有一个” “存在一个”等在逻辑中通常称为存在量词,用符号“∂”表示; 特称命题:含有存在量词的命题称为特称命题; 特称命题的表达形式:������: ∂������������ ∈ ������, ������ ������������ ; 特称命题的否定形式:¬ ������: ∀������ ∈ ������, ¬ ������ ������ ; (特称命题的否定是全称命题)
(二)集合的运算——交集、并集、补集
1、交集: 一般地, 由所有属于集合������并且属于������的所有元素组成的集合, 称为集合������与集合������的交集, 记作������ ∩ ������, 读作������交������,即������ ∩ ������ = ������ ������ ∈ ������且������ ∈ ������ ;
高中数学《集合与简易逻辑》知识点
集合与简易逻辑知识点知识点内容典型题元素与集合、集合与集合的关系①、∈只能表示元素与集合的关系,而、、?、?、=只能表示集合与集合的关系.②0、{0}、的关系是常见题型,如:数集{0}与空集的关系是()A.{0}=B.{0}∈C.∈{0}D.?{0}③常用数集:R、R*、R+、R+、Q、Z、N.(注意*、+、+的不同含义)④是任何集合的子集,是任何非.空.集合的真.子集.⑤n个元素的集合的真子..集.个数为:2n-1.1.下列关系中正确的是()A.0B.0∈C.0=D.0≠2.已知a=-3,A={x│x2=9},则下列关系正确的是()A.a AB.{a}AC.{a}∈AD.a A3.下列命题为真命题的是()A.3{3}B. 3∈{3}C.3{1,2,3}D. 3∈4.若a=1,集合A={x│x<2},则下列关系中正确的是()A.a AB.{a}AC.{a}∈AD.{a}A集合的运算①掌握好求交、并、补集的基本含义和方法,特别是C U A的含义.②有限元素集之间的运算,常根据定义解答,如:⑴{0,1,2}∩{0,3,5}=.⑵{x∈N│x<3}∩{x∈Z│0<x<10}=.③无限元素集之间的运算,可用数轴法,如:设集合A={x│-1<x≤2},B={x│-2<x≤1}则A∩B=.④点集运算,常联立解方程组,如:A={(x,y)│x+y=2},B={(x , y)│x-y=1},则A∩B=.5.设集合A={x∈Z│0<x<4},B={2,3,4,5,6},则A∩B=.6.已知集合A={x│x>0},B={x│x=0},则A∩B是()A.{x│x≥0}B.{x│x>0}C.{0}D.7.设M={x│2≤x≤5},N={x│-1≤x≤3},则M∪N等于 .8.设集合U=R,A={x│-2<x<3},则集合C U A=.9.若全集U={x∈Z│x≥0},则C U N+=.10.已知全集U=N,集合A={x∈N│x>10},B={x∈N│x≥3},则C U(A∪B)=.知识点内容典型题逻辑连结词且或p q p∧q1 1 11 0 00 1 00 0 0p q p∨q1 1 11 0 10 1 10 0 011.设命题p:2>3,q:-5是有理数,则命题p∧q的真假是.12.命题p:李明是三好学生,命题q:李明不是优秀班干部,则命题p∧q为 .逻辑连结词非蕴含p p1 00 1p q p→q1 1 11 0 00 1 10 0 113.设命题p:甲乙二人至少有一个击中目标,则p:.14.设命题p:一个实数x,使x2-3=0,则p:.15.命题P :一个实数x,使得2x2-2x+1≤0,则P:.两个结论(p∧q)=p∨q(p∨q)=p∧q16.设命题p:他在学校,q:他在家,则(p∨q):.充分必要条件与充要条件对命题p、q有:p→q(真),则称p是q的充分条件,q是p的必要条件.若p?q(真),且q?p(真),则说p是q的充分且必要条件,简称“充要条件”,记作“p q”.p是q的充要条件,又常说q当且仅当p,或p与q等价. 例如:⑴│x│>a的充要条件是.⑵“ab>0”是“a>0且b>0”的条件.17.x=y是x2=xy的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件18.命题p:ab=0,命题q:a=0或b=0,则p是q的()A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件19.x=y是x2=xy的条件.20.x>0是x2>0的条件.简易逻辑常见符号存在()、任意()、使得()、非()、且(∧)、或(∨)、若…则…(→)、推出(?)、等价()。
高考数学专题1 集合与简易逻辑
专题1 集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:; ;; ,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x∈R)点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B 是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x ∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x ∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质A∩A=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A( IV )重要性质①A∩B=A A B; A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q”p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7 当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0 a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素 B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1 ②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤f min(x)a≥f(x)恒成立a≥f max(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立 a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2 ①又不等式恒成立a小于的最小值②+≥=2 ③∴由②、③得 a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2 ④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2 ⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是 a≤-2∴实数a的取值范围为(-∞,-2].例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即 q p ③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q ④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.3.设集合I={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是()A. m>-1,n<5 B m<-1,n<5 C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈ B (※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A. 1个 B 2个 C 3个 D 4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M, (※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M) (※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定 A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-ax<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,∴所求a的取值范围为.点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.。
集合与简单逻辑知识点
一.集合与简单逻辑1.【1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或BA真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U Að{|,}x x U x A∈∉且1()UA A=∅ð2()UA A U=ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=痧()()()U U UA B A B=痧20(0)ax bx c a ++<>的解集12{|}x x x x << ∅ ∅2.简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
集合与简易逻辑基础知识点总结
集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:A a ∈或A a ∉集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
注:空集是任何集合的子集。
是非空集合的真子集结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。
记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃; 9、命题:可以判断真假的语句叫做命题。
(全称命题 特称命题)⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
第1章+集合与简单逻辑知识点汇总
《人教A版必修一知识点汇总》第1章《集合与常用逻辑用语》知识点汇总1.1 《集合的概念》1.集合的概念一般地,由某些确定的对象组成的整体就称为集合,简称为集.组成这个集合的对象称为这个集合的元素。
注:集合通常用大写字母表示,如A,B,C…元素通常用小写字母表示,如a,b,c…2.集合与元素之间的关系(1)如果a是集合A的元素,就说a属于A,记作a ∈ A,读作“a属于A”;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”;3.集合中元素的三种特性(1)确定性:给定的集合,它的元素必须是确定的,也就是说给定一个集合,那么任何一个元素在不在这个集合中就确定了(即x∈A与x∉A必居其一.)(2)互异性:一个给定的集合中的元素是互不相同的,即集合中的元素不能相同.(3)无序性:集合中的元素是无先后顺序的,即集合里的任何两个元素可以交换位置.4.集合的分类根据集合所含有元素的个数,将集合分为:(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:特别的,把不含有任何元素的集合叫做空集,记作∅.5.常用的数集例如1∈N,−5∈Z,π∉ Q6. 用列举法表示集合当集合中元素的个数为有限个(或无限个但呈现出某种规律)时,可以把集合中所有的元素一一列举出来,中间用逗号隔开,并用大括号“{}”把它们括起来,这种表示集合的方法就称为列举法。
例1小于6的所有正整数组成的集合A用列举法可以表示为A={1,2,3,4,5}.7.用描述法表示集合当集合的元素是无穷多个时,我们可以利用元素的特征性质来表示集合,这种表示集合的方法就叫做描述法.注:用描述法表示集合时,在大括号{}中画一条竖线(分隔符),竖线的左侧表示的是组成集合的元素,竖线的右侧是元素所具有的特征性质(或元素满足的条件).解:小于1的所有整数组成的集合A用描述法表示为A={x ∣ x<1,且 x∈Z }1.2集合间的基本关系1.子集与包含关系(1)定义像上面这样,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,并称集合A为B的子集.记作:A⊆B(或者B⊇A),读作:A包含于B(或B包含A).规定:空集是任何集合的子集,即 ∅⊆A.(2)用Venn图表示集合与集合之间的关系例如集合A={1,2,3}与B={1,2,3,4,5}的关系为A⊆B,用Venn图表示为(3)非子集与不包含关系如果集合A不是集合B的子集,记作A⊈B或B⊉A,读作“A不包含于B“(或B不包含A).例如:集合C={2,3},集合D={2,4,5},则集合C不是集合D的子集,即C⊈D.2.集合与集合相等若集合A和集合B的元素完全相同:即A的每个元素都是B的元素,而B的每个元素也都是A的元素,那么就说A和B相等,记作“A=B”例如A={1,2,3} 与B={3 , 1 , 2},则A=B.3.真子集与真包含于一般的,若集合A是集合B的子集,且B中至少有一个元素不属于A,则A叫做B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真包含A)注:空集是任何非空集合的真子集例如A={1,3}与B={1, 3,5},则A⫋B(即A是B的真子集).1.3《集合的基本运算》1.交集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由既属于集合A又属于集合B的所有元素组成的集合,称为集合A与集合B的交集,记作A∩B.读作“A交B”.即 A∩B={ x | x∈A 且 x∈B }.(2)实例运用例1设集合A={2,4,6}, 集合B={0,1,2},则A∩B={2}.例2 设集合A={x | −2<x≤1},集合B ={x|−1≤x < 3},则A∩B={x |−1≤x ≤1}.2.并集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由集合A与集合B的所有元素组成的集合称为集合A与集合B的并集,记作A∪B.读作“A并B”.即A∪B={x|x∈A或x∈B}.(2)实例运用例1 设集合A={1,3,5,7}, 集合B={0,2,3,4,6},则A∪B={0,1,2,3,4,5,6,7}.例2 设集合A={x |−1<x≤2}, 集合B={x |0<x≤3},则 A∪B={x |−1<x≤3}.3.补集的概念及其运算(1)定义一般地,如果集合A是全集U的一个子集,则由集合U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集,记作C U A,即C U A={ x | x∈U且x∉A }(2)实例运用例1设全集U={x∈N|x<7},集合A={1,2,4,6},则C U A={0,3,5}.例2设全集U= R,集合A={x|−2≤x<1},则CA={ x | x<−2或 x≥1 }.U1.4充分条件与必要条件1.充分条件与必要条件(1)定义一般地,“若p, 则q”为真命题,即由“条件p 可以推出条件 q ”,记作:p⇒ q那么就称:“p 是 q 的充分条件, q 是p的必要条件”注:如果“若p, 则 q ”为假命题,即由“条件p不能推出条件 q ”,记作: p⇏ q那么就称:“p不是 q 的充分条件, q 不是p的必要条件”(2)实例运用例1若四边形的两组对角分别相等,则这个四边形是平行四边形;解析:设题设“四边形的两组对角分别相等”为p,结论“这个四边形是平行四边形”为 q∵ p ⇒ q∴p是 q的充分条件, q是p的必要条件例2若x2=1,则x = 1;解:设题设“x2=1”为 p ,结论“x = 1”为 q∵由x2=1可得x=1或x=−1∴p ⇏ q故p不是q的充分条件,q不是p的必要条件2.充要条件(1)定义一般地,如果 p ⇔ q (即情况1:原真逆真)我们就称 p 是 q 的充分必要条件,简称为“ 充要条件”.注1(情况2:原真逆假)如果 p ⇒ q ,且 q ⇏p , 我们就称 p是 q 的充分而不必要条件;注2(情况3:原假逆真)如果 p ⇏ q ,且 q ⇒p , 我们就称 p是 q 的必要而不充分条件;注3(情况4:原假逆假)如果 p ⇏ q ,且 q ⇏p , 我们就称 p是 q 的既不充分也不必要条件;(2)实例运用例1 p:两个三角形相似,q:两个三角形三边成比例;解:①原命题:“若p,则q”∵ 已知两个三角形相似∴ 两个三角形三边成比例即 p ⇒ q (相似三角形的性质)∴ p是q的充分条件②逆命题:“若 q ,则 p ”∵ 已知两个三角形三边成比例∴ 两个三角形相似即 q ⇒ p (三边定理)∴ p 是 q 的必要条件.综上所述,∵ p ⇔ q,即原真逆真,∴ p 是 q 的充要条件例2 p:四边形是正方形,q:四边形的对角线互相垂直且平分;解:①原命题:“若 p ,则 q ”∵ 已知四边形是正方形∴ 四边形的对角线互相垂直且平分即 p ⇒ q∴ p 是 q 的充分条件②逆命题:“若 q ,则 p ”∵ 已知四边形的对角线互相垂直且平分∴ 四边形是菱形,即 q ⇏ p∴ p 不是 q 的必要条件综上所述,∵ 原真逆假,∴ p 是 q 的充分而不必要条件1.5 全称量词与存在量词1.全称量词与全称量词命题一变:∀ (任意)变 ∃(存在) 二变:结论 p(x) 变 它的反面 ¬p(x) 像上面这样,短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示;含有全称量词的命题,叫做全称量词命题.例如,命题“对任意的n ∈Z,2n +1 是奇数”;“所有的正方形都是矩形” 等都是全称量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,全称量词命题“对 M 中任意一个 x , p(x)成立”可用符号简记为:∀x ∈M ,p(x)2.存在量词与存在量词命题像上面这样,短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ∃ ”表示;含有存在量词的命题,叫做存在量词命题.例如,命题“有的平行四边形是菱形”;“有一个素数不是奇数” 等都是存在量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,存在量词命题“存在M 中的元素 x , p(x)成立”可用符号简记为:∃ x ∈M ,p(x)3. 全称量词的否定(1)概念一般地,对于全称量词命题:∀x ∈M , p(x)它的否定为:∃x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ”注2:全称量词命题的否定是存在量词命题(2)实例运用例1所有能被3整除的整数都是奇数;解:原全称量词命题的否定为:“存在一个能被 3 整除的整数不是奇数”一变:∃ (存在)变 ∀(任意) 例2对 ∀ x ∈R , x 2≥0 ;解:原全称量词命题的否定为:“ ∃ x ∈R ,x 2<0 ”4.存在量词命题的否定(1)概念一般地,对于存在量词命题:∃ x ∈M , p(x)它的否定为:∀x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ” 注2:存在量词命题的否定是全称量词命题(2)实例运用例1 ∃x ∈R,x +2 ≤ 0 ;解:原存在量词命题的否定为“ ∀x ∈R,x +2 > 0” 例2 有的三角形是等边三角形;解:原存在量词命题的否定为“ 所有的三角形都不是等边三角形 ”二变:结论 p(x) 变它的反面 ¬p(x)。
高考,数学,集合与简单逻辑,知识点
§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A UA A UA U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;22.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
集合与简易逻辑知识归纳优选版
选版命题:可以判断真假的语句; 逻辑联结词:或、且、非; 简单命题:不含逻辑联结词的命题; 复合命题:由简单命题与逻辑联结词构成的命题。
三种形式:p 或q 、p 且q 、非p真假判断:p或q,同假为假,否则为真;p且q,同真为真;非p,真假相反原命题:若p则q;逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p;互为逆否的两个命题是等价的。
反证法步骤:假设结论不成立→推出矛盾→假设不成立。
第一章《集合与函数概念》主要知识点归纳一、集合 对于以下几个问题,你弄清楚了吗?1、集合中的元素有什么特征?(确定性、互异性、无序性)2、符号“∈”与“⊆”有什么区别?分别怎么用?4、集合的表示方法主要有哪几类?你能用描述法正确表示集合了吗?5、集合之间的关系主要有几种?他们分别怎么表示?各个关系怎么理解?6、下面几个集合中的重要性质,你知道了吗? (1).,,B A B A A B A B A A ⋃⊆⋂⊆⋂⋃⊆. (2)B B A B A =⋃⇔⊆;A B A B A =⋂⇔⊆.7、空集特殊性你知道了吗?(空集是任何集合的子集,空集是任何非空集合的真子集.)8、如何用图像法(韦恩图、数轴法)正确表示集合之间的包含关系? 9、一个有限集有多少个子集?有多少个真子集?10、对于集合,,A B A B C A 的含义,你能正确理解吗?(交集:{}|,A B x x A x B ⋂=∈∈且;并集:{}|,A B x x A x B ⋃=∈∈或; 补集:若{},|,U B U C B x x U x B ⊆=∈∉则且;)11、对有关含参数问题,你能正确运用分类讨论解题了吗?你能正确进行分类吗?书写格式清楚吗?(二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么; 2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3个性质,对互异性要注意检验; 4.正确进行“集合语言”和普通“数学语言”的相互转化.5.求交集、并集、补集,要充分发挥数轴或文氏图的作用,正确运用数形结合解题。
高考数学知识点总结001集合与简易逻辑p
§01. 集合与简易逻辑知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集;如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅).3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题.例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y .解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A ==0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0. 基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定. 特例① 一元一次不等式ax>b 解的讨论;2原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
第一章集合与简易逻辑基础知识
原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互第一章 集合和简易逻辑集合一、集合的有关概念1、 就成为一个集合,集合中的每个对象叫做这个集合的 。
2、集合中元素的三个特性: 、 、 。
3、集合的表示方法: 、 、 。
4、集合的分类: 、 。
5、常用数集:自然数集 ,正整数集 ,整数集 ,有理数集 ,实数集 。
二、元素与集合,集合与集合之间的关系 1、元素与集合: 或 。
2、集合与集合之间的关系(1)子集:如果 ,集合A 是集合B 的 ,记作 或 。
结论:①任何一个集合都是它本身的子集,即②空集是任何集合的子集,即(2)相等集合:对于集合A 、B ,如果 ⇔(3)真子集:对于集合A 、B ,如果 ,我们就说集合A 是集合B 的 ,记作 或 。
结论:空集是任何非空集合的真子集。
二、集合的运算1、交集:A B =2、并集:A B =3、补集: A U C = 四、集合的运算性质1、A B ;B A A B .B A2、A A = ;A A =3、A ∅= ;A ∅=4、A B A A B ; A B B A B5、A ∩A U C = ; A ∪A U C = ;U U C = ; ΦU C = ;()A U U C C =6、U A = ;U A = 。
五、常用结论1、设有限集合A, card(A)=n,则(ⅰ)A 的子集个数为 ; (ⅱ)A 的真子集个数为 ;(ⅲ)A 的非空子集个数为 ;(ⅳ)A 的非空真子集个数为 . 2、A B A = ⇔ A B B ⇔= ;A B A = ⇔ A B B ⇔=3、()A B U C = A U C B U C ()A B U C =A U C B U C 六、注意∅,{}0,{}∅的区别简易逻辑一、逻辑联结词1、命题:可以判断 的语句叫做命题。
2、逻辑联结词“或”——两个简单命题至少有一个成立 “且”——两个简单命题都成立“非”——对一个命题的否定3、简单命题:不含有逻辑联结词的命题是简单命题;复合命题:由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
(完整版)高中数学知识点宝典汇总
①定义法 步骤: a.设 x1, x2 A且 x1 x2 ; b.作差 f (x1 ) f ( x2 ) ; c.判断正负号。
②掌握函数 y ax b a b ac(b ac 0);y x a(a 0) 的图象和性质;
xc
xc
x
函
ax b
b ac
y
a
数
xc
xc
a y x (a 0 )
x
(b –ac≠ 0)
y
图
Y=a
X=-c
象
o X
y
o
x
当 b-ac>0 时 : 单
在 ( , a]和[ a , )
在 ( , c)和 (c, ) 上单调递减;
上单调递增;
调
当 b-ac<0 时 :
在 [ a, 0)和(0, a ] 上单
性
在 ( , c)和 (c, ) 上单调递增。
调递增。
2
③一些有用的结论: .在公共定义域内
五、求函数的值域的常用解题方法: ① 配方法。如函数 y x 4 x 2 1的值域,特点是可化为二次函数的形式;
②换元法:如 y= 1 2 x x ③单调性:如函数 y 2 x log 2 x x ∈ [1,2]
④判别式法(△法)如函数
x 2 2x 3
y=
x2 2x 3
3
⑤利用函数的图像:如函数 ⑦利用基本不等式:如函数
4.等差数列的前 n 项和: ① Sn
n(a1 a n ) 2
② Sn na1 n(n 1) d 2
对于公式②整理后是关于 n 的没有常数项的二次函数(充要条件 )。
5.等差中项 :如果 a , A , b 成等差数列,则有
集合与简易逻辑知识点
集合与简易逻辑知识点在日常生活中,我们经常会用到集合和逻辑。
无论是进行分类、归纳还是推理,我们都需要运用集合和逻辑知识。
本文将为您介绍一些与集合和简易逻辑相关的知识点。
一、集合的定义与运算集合是由一些特定对象组成的整体。
常见的表示集合的方法是用大括号{}将元素列举出来。
例如,集合A={1,2,3,4,5}包含了数字1到5。
集合可以进行交集、并集和补集等运算。
1. 交集:两个集合的交集是包含两个集合共有元素的新集合。
例如,集合A={1,2,3},集合B={2,3,4},它们的交集是集合C={2,3}。
2. 并集:两个集合的并集是包含两个集合所有元素的新集合。
例如,集合A={1,2,3},集合B={2,3,4},它们的并集是集合C={1,2,3,4}。
3. 补集:对于给定的集合A和全集U,集合A的补集是指在全集U 中,不属于A的元素所构成的集合。
例如,全集U={1,2,3,4,5},集合A={1,2,3},它们的补集是集合C={4,5}。
二、逻辑运算与真值表逻辑是用来进行推理和判断的一种方法。
在逻辑中,常见的运算符有与(AND)、或(OR)和非(NOT)。
1. 与运算(AND):当多个条件同时满足时,结果为真(True),否则结果为假(False)。
例如,条件A为真,条件B为假,则A AND B的结果为假。
2. 或运算(OR):当多个条件中至少有一个满足时,结果为真(True),否则结果为假(False)。
例如,条件A为真,条件B为假,则A OR B的结果为真。
3. 非运算(NOT):对给定的条件取反。
例如,条件A为真,则NOT A的结果为假。
逻辑运算可以用真值表来表示,真值表列举了所有可能的条件组合及其结果。
三、包含与推理在集合与逻辑中,我们经常需要进行包含关系的判断和推理。
1. 包含关系:一个集合是否包含于另一个集合,可以通过判断集合中的元素是否满足某个条件来确定。
例如,集合A={1,2,3}是否包含于集合B={1,2,3,4},可以通过判断集合A中的元素是否都属于集合B来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学概念方法题型易误点技巧总结(一)集合与简易逻辑基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。
本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。
1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m );(3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个(答:7) 2.遇到A B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。
如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =______.(答:10,1,2a =) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
(答:7)4.集合的运算性质: ⑴A B A B A =⇔⊆; ⑵A B B B A =⇔⊆;⑶A B ⊆⇔u u A B ⊇痧; ⑷u u A B A B =∅⇔⊆痧; ⑸u A B U A B =⇔⊆ð; ⑹()U C A BU U C A C B =;⑺()U U U C A B C A C B =.如设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =)5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。
如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如(1)设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N =___(答:[4,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+, }R λ∈,则=N M _____(答:)}2,2{(--)6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。
如已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。
(答:3(3,)2-) 7.复合命题真假的判断。
“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。
如在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或q ”为真的充分不必要条件;⑶“p 或q ”为真是“非p ”为假的必要不充分条件;⑷“非p ”为真是“p 且q ”为假的必要不充分条件。
其中正确的是__________(答:⑴⑶)8.四种命题及其相互关系。
若原命题是“若p 则q ”,则逆命题为“若q 则p ”;否命题为“若﹁p 则﹁q ” ;逆否命题为“若﹁q 则﹁p ”。
提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。
但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“A B B A ⇒⇔⇒”判断其真假,这也是反证法的理论依据。
(5)哪些命题宜用反证法?如(1)“在△ABC 中,若∠C=900,则∠A 、∠B 都是锐角”的否命题为(答:在ABC ∆中,若90C ∠≠,则,A B ∠∠不都是锐角);(2)已知函数2(),11x x f x a a x -=+>+,证明方程0)(=x f 没有负数根。
9.充要条件。
关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。
如(1)给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 。
其中正确命题的序号是_______(答:①④);(2)设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x 。
若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 (答:1[0,]2) 10. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为ax b>的形式,若0a >,则b x a >;若0a <,则b x a<;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈∅。
如已知关于x 的不等式0)32()(<-++b a x b a 的解集为)31,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)11. 一元二次不等式的解集(联系图象)。
尤其当0∆=和0∆<时的解集你会正确表示吗?设0a >,,x x 是方程20ax bx c ++=的两实根,且x x <,则其解集如下表:如解关于x 的不等式:01)1(<++-x a ax 。
(答:当0a =时,1x >;当0a <时,1x >或1x a <;当01a <<时,11x a <<;当1a =时,x ∈∅;当1a >时,11x a<<) 12. 对于方程02=++c bx ax 有实数解的问题。
首先要讨论最高次项系数a 是否为0,其次若0≠a ,则一定有042≥-=∆ac b 。
对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)关于x 的方程()f x k =有解的条件是什么?(答:k D ∈,其中D 为()f x 的值域),特别地,若在[0,]2π内有两个不等的实根满足等式cos 221x x k =+,则实数k 的范围是_______.(答:[0,1))13.一元二次方程根的分布理论。
方程2()0(0)f x ax bx c a =++=>在),(+∞k 上有两根、在(,)m n 上有两根、在),(k -∞和),(+∞k 上各有一根的充要条件分别是什么? 0()0()02f m f n b m an ∆≥>><-<⎧⎪⎪⎨⎪⎪⎩、()0f k <)。
根的分布理论成立的(0()02f k b k a∆≥>->⎧⎪⎪⎨⎪⎪⎩、0)(=x f 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,再令n x =和m x =检查端点的情况.如实系数方程220x ax b ++=的一根大于0且小于1,另一根大于1且小于2,则12--a b 的取值范围是_________(答:(41,1)) 14.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程20ax bx c ++=的两个根即为二次不等式20(0)ax bx c ++><的解集的端点值,也是二次函数2y ax bx c =++的图象与x 轴的交点的横坐标。
如(1)32ax >+的解集是(4,)b ,则a =__________(答:18);(2)若关于x 的不等式02<++c bx ax 的解集为),(),(+∞-∞n m ,其中0<<n m ,则关于x 的不等式02<+-a bx cx 的解集为________(答:),1()1,(+∞---∞nm );(3)不等式23210x bx -+≤对[1,2]x ∈-恒成立,则实数b 的取值范围是_______(答:∅)。