橡胶快速硫化技术
橡胶硫化原理
橡胶硫化原理橡胶硫化是指将橡胶原料加入一定量的硫化剂,在一定的温度和时间下,使其产生化学反应,从而使橡胶原料发生交联,形成橡胶制品的过程。
橡胶硫化的目的是提高橡胶原料的物理力学性能、抗老化性能和耐热性能,从而保证橡胶制品的使用寿命和安全性。
硫化剂的种类及作用常见的硫化剂包括硫、硫代硫酸酯、硫化氢、过硫酸盐、亚硝基化合物等。
其中硫化氢为典型的亲核试剂,为硫化反应提供活化的硫端;过硫酸盐为一种自由基引发剂,可以加速硫化反应的进行。
不同的硫化剂具有不同的反应机理和反应速度,且选用的硫化剂与橡胶种类和用途有关。
一般情况下,硫化速度越快、交联密度越高,橡胶制品的物理力学性能越优良。
硫化工艺的参数橡胶硫化的工艺参数包括硫化温度、硫化时间、硫化剂用量、交联密度、交联结构等。
这些参数之间相互影响,必须合理协调,才能得到优良的橡胶制品。
硫化温度是指橡胶制品在硫化过程中所经历的温度。
温度过高会导致硫化过程过快,造成橡胶制品内部交联密度不均、外部硫化层脆化;温度过低则会导致硫化速度缓慢、硫化程度不足、物理力学性能不好。
一般情况下,橡胶硫化的温度范围为120℃-180℃,不同的硫化剂对应不同的合理温度范围。
硫化剂用量是指在一定的温度、时间下,为了达到预定的交联密度所需的硫化剂量。
硫化剂的用量和硫化剂种类、硫化温度、硫化时间、交联密度等参数有关。
硫化剂用量过多会导致硫化密度过高、物理力学性能不足、成本增加;硫化剂用量过少则会导致硫化程度低、交联密度不足、物理力学性能不好。
一般情况下,硫化剂用量为1%-10%左右。
交联密度是指在橡胶硫化过程中,橡胶分子链之间所形成的交联点的数量和密度。
交联密度直接影响橡胶制品的物理力学性能、热化学性能和耐磨性能等。
交联密度越高,橡胶制品的物理力学性能越好,但过高的交联密度可能导致橡胶制品在低温下脆化;交联密度越低,橡胶制品的导电性和热传导性等性能越好,但是物理力学性能不好,容易脱层、开裂等。
橡胶硫化转移膜
橡胶硫化转移膜橡胶硫化转移膜是一种用于研究橡胶硫化反应的技术。
在橡胶制品的生产中,硫化是必不可少的步骤,它可以使橡胶具有良好的弹性和耐热性。
然而,硫化反应是一个复杂的过程,需要对其进行深入的研究。
橡胶硫化转移膜技术可以帮助我们更好地理解这个过程。
一、什么是橡胶硫化转移膜橡胶硫化转移膜是一种实验技术,用于研究橡胶硫化反应中发生的物质转移过程。
在这个过程中,将一层聚四氟乙烯(PTFE)或其他材料涂在未固化的橡胶表面上,并在其上施加压力和温度。
随着时间的推移,未固化的橡胶将通过扭曲、拉伸和压缩等形变方式与PTFE接触,并将其中一些成分转移到PTFE上形成一个“转移膜”。
二、为什么要使用橡胶硫化转移膜使用橡胶硫化转移膜技术可以帮助我们更好地理解橡胶硫化反应中发生的物质转移过程。
这些转移过程包括:1. 橡胶分子与硫化剂之间的反应,形成交联结构。
2. 硫化剂和其他添加剂在橡胶中的扩散和迁移。
3. 不同种类的橡胶分子之间的相互作用,如交联、聚集和分散等。
通过使用橡胶硫化转移膜技术,可以直接观察这些过程,并对它们进行定量分析。
这有助于我们更好地了解橡胶硫化反应的机理,并为优化生产工艺提供指导。
三、如何制备橡胶硫化转移膜制备橡胶硫化转移膜需要以下步骤:1. 准备未固化的橡胶样品。
通常使用未加工或未热压缩的样品。
2. 准备PTFE片。
PTFE片应该足够大,以覆盖整个样品表面,并且要保证表面光滑平整。
3. 将PTFE片放在未固化的橡胶表面上,并施加适当的压力和温度。
压力和温度的选择应该根据橡胶样品的性质和硫化反应的要求进行调整。
4. 在一定时间内,将PTFE片从橡胶表面上取下,并将其放入适当的溶剂中进行分析。
五、如何分析橡胶硫化转移膜对于制备好的橡胶硫化转移膜,可以通过以下方法进行分析:1. 扫描电子显微镜(SEM):SEM可以用来观察转移膜表面的形貌和结构,并提供有关橡胶硫化反应机理的信息。
2. 能谱分析(EDS):EDS可以用来确定转移膜中不同元素的含量和分布情况。
衬胶硫化的工艺
衬胶硫化的工艺衬胶硫化的工艺是一种常用于制备橡胶制品的重要技术方法。
在工业生产中,衬胶硫化技术被广泛应用于汽车轮胎、橡胶管、胶鞋等橡胶制品的生产过程中。
通过在橡胶基材的表面或内部涂覆一层硫化胶层,并在一定条件下进行硫化处理,可以有效增强橡胶制品的物理性能和耐磨性能,延长其使用寿命。
本文将对衬胶硫化的工艺过程、原理及应用进行详细介绍和分析。
首先,衬胶硫化的工艺过程涉及到几个关键步骤。
首先是橡胶基材的准备工作,包括橡胶材料的选取、清洗和干燥。
其次是衬胶的制备,通常采用硫化剂、促进剂、活性填料等原料混合制备成胶体状,然后涂覆在橡胶基材表面或内部。
接着是硫化处理,通过加热硫化胶层,使其在一定温度和压力下发生交联反应,从而与橡胶基材牢固结合。
最后是冷却和整理,将硫化后的橡胶制品进行冷却处理,去除多余的硫化胶层并进行修整,以达到最终的产品要求。
衬胶硫化的工艺过程基于硫化原理。
硫化是橡胶加工中的一种重要化学反应,主要通过硫化剂与橡胶中的双键形成交联结构,使橡胶分子链发生交联,提高了其强度、弹性和耐磨性。
硫化胶层的涂覆和硫化处理可以有效地提高橡胶制品的耐磨性能和耐老化性能,延长其使用寿命。
衬胶硫化的工艺在橡胶制品的生产中起着重要作用,有效地改善了橡胶制品的性能和品质。
衬胶硫化的工艺在橡胶制品行业有着广泛的应用。
汽车轮胎是应用衬胶硫化工艺最广泛的领域之一。
汽车轮胎是汽车的重要零部件,其性能直接影响到汽车的行驶安全和舒适性。
衬胶硫化技术可以有效地提高轮胎的抓地力、耐磨性和耐冲击性,延长了轮胎的使用寿命,提高了汽车的性能和安全性。
此外,在橡胶管、胶鞋等橡胶制品的生产中,衬胶硫化技术也被广泛应用,有效提高了这些制品的性能和品质,满足了不同领域的需求。
总的来说,衬胶硫化的工艺是一种重要的橡胶加工技术,通过涂覆硫化胶层、硫化处理等步骤,可以有效提高橡胶制品的性能和品质。
在橡胶制品的生产中,衬胶硫化技术得到了广泛应用,其中汽车轮胎是最主要的应用领域之一。
橡胶硫化过程的四阶段:起硫、欠硫、正硫和过硫
橡胶硫化过程的四阶段:起硫、欠硫、正硫和过硫胶料在硫化时,其性能随硫化时间变化而变化的曲线,称为硫化曲线。
从硫化时间影响胶料定伸强度的过程来看,可以将整个硫化时间分为四个阶段:硫化起步阶段、欠硫阶段、正硫阶段和过硫阶段。
1)硫化起步阶段(又称焦烧期或硫化诱导期)硫化起步的意思是指硫化时间胶料开始变硬而后不能进行热塑性流动那一点的时间。
硫起步阶段即此点以前的硫化时间。
在这一阶段内,交联尚未开始,胶料在模型内有良好的流动性。
胶料硫化起步的快慢,直接影响胶料的焦烧和操作安全性。
这一阶段的长短取决于所用配合剂,特别是促进剂的种类。
用有超速促进剂的胶料,其焦烧比较短,此时胶料较易发生焦烧,操作安全性差。
在使用迟效性促进剂(如亚磺酰胺)或与少许秋兰姆促进剂并用时,均可取得较长的焦烧期和良好的操作安全性。
但是,不同的硫化方法和制品,对焦烧时间的长短亦有不同要求。
在硫化模压制品时,总是希望有较长的焦烧期,使胶料有充分时间在模型内进行流动,而不致使制品出现花纹不清晰或缺胶等到缺陷。
在非模型硫化中,则应要求硫化起步应尽可能早一些,因为胶料起步快而迅速变硬,有利于防止制品因受热变软而发生变形。
不过在大多数情况下仍希望有较长的焦烧时间以保证操作的。
2)欠硫阶段(又称预硫阶段)硫化起步与正硫化之间的阶段称为欠硫阶段。
在此阶段,由于交联度低,橡胶制品应具备的性能大多还不明显。
尤其是此阶段初期,胶料的交联度很低,其性能变化甚微,制品没有实用意义。
但是到了此阶段的后期,制品轻微欠硫时,尽管制品的抗张强度、弹性、伸长率等尚未达到预想的水平,但其抗撕裂性耐磨性和抗动态裂口性等则优于正硫化胶料。
因此,如果着重要求后几种性能时,制品可以轻微欠硫。
3)正硫阶段大多数情况下,制品在硫化时都必须使之达到适当的交联度,达到适当的我联度的阶段叫做正硫化阶段,即正硫阶段。
在此阶段,硫化胶的各项物理机械性能并非在同一时都达到最高值,而是分别达到或接近最佳值,其综合性能最好。
橡胶怎么快速凝固的原理
橡胶怎么快速凝固的原理一、原料制备
1. 选择好质量的天然橡胶或合成橡胶作为主要原料。
2. 加入硫化剂、促进剂、老化防护剂等配料。
3. 使用开式混炼机充分混炼,使配料均匀分散。
二、加速硫化原理
1. 硫化反应是形成橡胶网络结构的关键过程。
2. 加入硫化促进剂,可以缩短硫化反应时间,提高硫化速率。
3. 常用的硫化促进剂有肽类、硫脲类等有机物。
4. 促进剂可与硫化剂生成活性硫化中间体,加速硫化反应。
三、提高温度
1. 硫化反应属于化学反应,反应速率随温度升高而加快。
2. 通过选择高温硫化工艺,可以大幅缩减硫化用时。
3. 一般采用140-160C进行高温硫化,速度比常温快数倍。
4. 但温度过高会引起橡胶TEXTURE劣化,需控制适宜温度。
四、使用高能辐射
1. 采用电子束或γ射线辐照混炼橡胶,可引发硫化反应。
2. 高能辐射产生的自由基可直接发生硫化反应。
3. 辐射硫化法快速、环保,可精确调控,是新兴的快速硫化技术。
五、注意事项
1. 硫化速率过快会影响产品质量,需要控制适宜。
2. 不同配方及硫化工艺要进行定制优化。
3. 保证硫化均匀一致非常关键,否则会影响制品性能。
4. 快速硫化技术投入使用还需大量数据支撑。
高温快速硫化技术
高温快速硫化技术随着橡胶工业生产的自动化,联动化,高温快速硫化体系被广泛应用。
如注射硫化,电缆的硫化等。
所谓高温硫化是指在180-240度下进行硫化,一般硫化温度每升高10度,硫化时间大约缩短一半。
产量大大提高,但硫化温度升高会使硫化胶物性性能下降。
这和高温硫化时交联密度的下降有关,温度高于160度时,交联密度下降最为明显。
所以硫化温度不是越高越好。
采用多高的硫化温度要综合结合;1,高温硫化体系配合原则;(1),选择耐热胶种,为了减少或消除硫化胶的返原现象,应选则双键含量低的橡胶,各种橡胶的热稳定性不同,极限硫化温度也不同,适用于高温硫化得胶种有,EPDM,IIR,NBR,SBR等。
(2),采用有效或半有效硫化体系,因为CV硫化体系中多硫交联键含量高,在高温下容易产生硫化返原现象。
所以CV 不适于高温快速硫化体系,高温莪快速硫化体系多用于单硫和双硫键含量高的有效EV和伴有效SEV硫化体系。
其硫化胶耐热老化性能好。
一般使用高促低硫和硫载体硫化配合,其中后者采用DTDM最好,胶烧时间和硫化特性范围比较宽,容易满足加工要求,TMTD因为胶烧时间短且诶喷霜严重而受限制。
虽然EV和SEV对高温硫化的效果比CV好但还不够理想。
仍无法彻底解决高温硫化所产生的硫化返原现象和抗屈挠性能差的缺点,应寻找更好的解决方法。
(3),硫化胶的特种配合,为了保持高温下硫化胶的交联密度不变,可以采取增加硫用量,促进剂用量或2者同时增加的方法,但是增加硫的用量会降低硫化效果,并使多硫交联键的含量增加,同时增加硫和促进剂,可使硫化效果不变,可提高硫化效果,这种方法比较好。
在轮胎得到广泛应用。
合成橡胶硫化体系对温度的敏感性比NR低,因此NR和合成橡胶并用显得格外重要,并用后体系即保持了高温硫化时交联密度的稳定性,又保持硫化胶最佳物性,是橡胶制品采用高温硫化、缩短硫化时间,提高生产的有效办法。
2,高温硫化的其它配合特点;高温硫化体系要求硫化速度快,胶烧倾向小,无喷霜现象,所以配合时最好采用耐热胶种,及常量硫磺,高促进剂的方法,另外,对防胶焦,防老系统都有较高得要求。
橡胶硫化工艺技术的对比
橡胶硫化工艺技术的对比橡胶硫化是指将橡胶原料经过一系列的加工工艺,使其在一定的温度和压力下与硫化剂发生化学反应,从而形成交联结构,使橡胶具有良好的弹性和耐用性。
橡胶硫化工艺技术的发展经历了多个阶段,目前主要的硫化工艺技术有热硫化、自发硫化和微波硫化。
热硫化是最早使用的硫化工艺技术,其原理是将橡胶材料和硫化剂混合均匀后,放入硫化机内进行硫化处理。
硫化机会提供一定的温度和压力,使橡胶与硫化剂发生化学反应,形成交联结构。
热硫化的优点是成本低、工艺简单,并且可以用于各种类型的橡胶材料。
但是,热硫化的缺点是硫化时间较长,硫化温度相对较高,容易导致橡胶老化,对环境也有一定的污染。
自发硫化是一种新兴的硫化工艺技术,其原理是利用自发生成的硫化剂来进行硫化。
自发硫化的优点是硫化速度快、硫化温度低,对橡胶材料的老化影响小。
同时,自发硫化还能减少硫化机的能耗和环境污染。
然而,自发硫化的缺点是硫化剂的自发性不稳定,需要进行严密的控制和监测工作。
微波硫化是一种新型的硫化工艺技术,其原理是利用微波加热橡胶材料,使其快速硫化。
微波硫化的优点是硫化速度非常快,能够在数分钟内完成硫化过程;而且微波加热橡胶材料时可以实现内外均匀加热,减少加热不均匀导致的硫化不良问题。
微波硫化还能节约能源和减少环境污染。
不过,微波硫化设备的成本相对较高,操作技术要求更高,需要注意橡胶材料的选择和硫化时间的控制。
综上所述,不同的橡胶硫化工艺技术各有优缺点。
热硫化工艺技术成本低、工艺简单,但是硫化时间长,环境污染较大;自发硫化工艺技术硫化速度快,对橡胶材料老化影响小,但是硫化剂自发性不稳定,需要进行严密的控制;微波硫化工艺技术硫化速度快,能够内外均匀加热橡胶材料,节约能源和减少环境污染,但操作技术要求高和设备成本高。
根据不同的应用场景和要求,可以选择适合的硫化工艺技术。
橡胶硫化促进剂m工艺
橡胶硫化促进剂m工艺橡胶硫化促进剂M工艺是一种在橡胶制品生产中广泛使用的技术。
该工艺通过添加特定的硫化促进剂,能够有效地促进橡胶的硫化反应,从而提高橡胶制品的质量和性能,同时也能够提高生产效率和降低成本。
本文将详细介绍橡胶硫化促进剂M工艺的原理、应用和优缺点等方面。
1.原理橡胶硫化是指在一定温度下,将橡胶与硫化剂加热混合,使其发生交联反应,从而形成硫化橡胶的过程。
硫化促进剂M是一种高效的硫化促进剂,能够在低温下催化硫化反应,缩短硫化时间,提高硫化效率,同时也能够增强橡胶的物理和化学性能。
2.应用橡胶硫化促进剂M通常用于橡胶轮胎、橡胶密封件、橡胶管等大型橡胶制品的生产中。
在实际应用中,通常将硫化促进剂M与其他硫化剂混合使用,以达到更好的效果。
例如,多数生产硫磺橡胶轮胎都会采用硫磺和硫醇或硫吡啶作为硫化剂,并加入硫化促进剂M。
3.优缺点优点:(1)硫化促进剂M能够缩短硫化时间,提高硫化效率,从而缩短生产周期。
(2)硫化促进剂M能够增强橡胶的物理和化学性能,使橡胶制品具有更好的耐磨、耐老化、耐热等性能,从而提高产品质量和使用寿命。
(3)硫化促进剂M使用方便,容易加工,不会对环境造成污染,符合环保要求。
缺点:(1)硫化促进剂M对一些橡胶品种的硫化效果并不理想,可能会出现硫化不良、硫化不完全等情况。
(2)硫化促进剂M价格较高,成本相对较高,对企业的经济效益有一定的影响。
4.注意事项在使用橡胶硫化促进剂M的过程中,需要注意以下一些事项:(1)硫化促进剂M应按照生产工艺要求控制加入量,过量使用或不当使用会造成反效果。
(2)硫化促进剂M与硫化剂、填料等混合物的过程中应注意搅拌均匀,以避免硫化不均、硫化不完全等现象。
(3)硫化促进剂M在存储和使用过程中应避免受潮、受热或受阳光直射,以保持其良好的性能。
总之,橡胶硫化促进剂M工艺在橡胶制品生产中具有重要的应用价值,能够提高橡胶制品的质量和性能,缩短生产周期,同时也存在一定的局限性和注意事项。
鼓式硫化机硫化工艺
鼓式硫化机硫化工艺鼓式硫化机硫化工艺是一种广泛应用于橡胶制品生产中的硫化技术。
与其他硫化机械相比,鼓式硫化机具有硫化效率高、操作简便、硫化品质稳定等优点。
下面将详细介绍鼓式硫化机硫化工艺的原理、特点以及操作流程。
一、鼓式硫化机硫化工艺的原理鼓式硫化机硫化工艺的原理和其他硫化机械的硫化原理基本相同,都是将橡胶制品放入硫化室中,在高温高压的条件下与硫化剂反应,从而使橡胶分子产生交联,形成硬度高、强度大的橡胶制品。
不同之处在于,鼓式硫化机采用了旋转硫化方式。
具体来说,它将橡胶制品放入一个旋转的鼓式硫化室中,通过转动鼓体,使橡胶制品在整个硫化过程中不断地翻转,从而实现了均匀的硫化与加热,提高了硫化效率。
二、鼓式硫化机硫化工艺的特点1、硫化效率高:由于旋转硫化方式的采用,鼓式硫化机可以实现快速而均匀的硫化与加热。
因此,它的硫化效率比其他硫化机械更高,节省了时间和成本。
2、操作简便:鼓式硫化机采用了自动化控制系统,操作非常简便,无需专业技能。
3、硫化品质稳定:由于硫化室的旋转设计,鼓式硫化机可以保证橡胶制品在硫化过程中均匀加热,从而实现硫化品质的稳定。
4、适用范围广:鼓式硫化机可适用于不同形状的橡胶制品的硫化,如轮胎、密封圈、管子等。
三、鼓式硫化机硫化工艺的操作流程1、将橡胶制品放入硫化室中。
2、设置硫化温度、时间、压力等参数,启动自动化控制系统。
3、启动鼓体,使硫化室内的橡胶制品开始旋转。
4、在硫化过程中,可以根据需要对硫化参数进行调整。
5、硫化结束后,停止旋转,将硫化好的橡胶制品取出。
总之,鼓式硫化机硫化工艺是一种高效、稳定的硫化方法,已被广泛应用于橡胶制品生产中。
对于生产厂家而言,选择适当的硫化机械及科学的硫化工艺,都能够有效提高生产效率及质量,促进产品的质量不断提高。
衬胶硫化方法
衬胶硫化是一种常见的胶接技术,用于将橡胶衬里(衬胶)与金属衬套(衬胶件)牢固粘接在一起。
这种方法使用硫化剂(如硫化硫)将橡胶衬里固化,并与金属衬套形成化学键,从而形成强大的粘结力。
以下是衬胶硫化的一般步骤:
准备工作:首先,准备橡胶衬里和金属衬套。
确保表面干净,无油污、灰尘或杂质。
涂胶料:在橡胶衬里和金属衬套的接触面上涂布胶料。
胶料通常是硫化橡胶混合物,其中包含橡胶基础材料、填料、增塑剂和硫化剂等。
胶料的选择应根据具体的应用需求进行。
组合和压合:将涂有胶料的橡胶衬里和金属衬套按照要求的位置和方向组合在一起。
然后,使用适当的压力将两者紧密压合在一起,以确保接触面充分接触和贴合。
硫化过程:在组合和压合后,将衬胶件置于硫化室或硫化设备中,进行硫化处理。
硫化剂的添加和硫化条件的控制将触发橡胶中的交联反应,形成化学键,使胶料固化和胶接加固。
硫化时间和温度根据具体胶料和工艺要求进行调节。
后处理:硫化完成后,取出衬胶件,并根据需要进行后处理,如修整、清洁或检验。
确保衬胶件的质量和尺寸符合要求。
衬胶硫化方法的优点包括胶接强度高、耐磨损、耐腐蚀以及在较宽的温度范围内保持良好的粘结性能。
这使得衬胶硫化在许多工业领域中被广泛应用,如汽车制造、机械工程、化工等。
同时,该方法还能适应各种形状和尺寸的衬套和衬里,提供可靠的衬胶粘接解决方案。
橡胶硫化压力、温度、(厚制品)时间计算(公式全,收藏)
橡胶硫化压力、温度、(厚制品)时间计算(公式全,收藏)工匠智造:品质、绿色、节能、循环(橡胶网络教育平台)一、硫化基本概念和工艺要素硫化是橡胶制品生产的最后一个工艺过程。
在这个过程中,胶料中的生胶与硫化剂发生化学发应,由线型结构的大分子交联成为立体的网状结构的大分子,使塑性状态的橡胶转变为弹性状态的橡胶制品,从而获得完善的物理性能和机械性能和化学性能,成为有使用价值的高分子材料。
在工业生产中,这种交联反应是在一定温度,时间和压力条件下完成的,这些条件称为硫化条件。
1、 橡胶的硫化反应过程诱导阶段,交联反应阶段,网状形成阶段。
2、 硫化历程图烧焦阶段,热硫化阶段,平坦硫化阶段,过硫化阶段3、 硫化压力一般橡胶制品在硫化时要施以压力,目的在于:1) 防止制品在硫化过程产生气泡,提高胶料的致密性。
2) 使胶料易于流动和充满模槽3) 提高胶料与胶料的密着力4) 有助于提高硫化的物理机械性能硫化工艺 加压方式 压力Mpa 硫化工艺 加压方式 压力Mpa汽车外胎硫化水胎过热水加压 外模加压2.2-4.815 注压硫化 注压机加压 120-150 模型制品硫化 平板加压 24.5 汽车内胎蒸汽硫化 胶管直接蒸汽硫化蒸汽加压 蒸汽加压 0.5-0.7 0.3-0.5传动带硫化 平板加压 0.9-1.6 胶鞋硫化 热空气加压 0.2-0.4输送带硫化平板加压 1.5-2.5 胶布直接蒸汽硫化蒸汽加压0.1-0.3硫化加压的方式通常有下列几种:一是用液压泵通过平板硫化机把压力传递给模型,再由模型传递给胶料;二是硫化介质直接加压(如蒸汽加压);三是以压缩空气加压;四是由注压机注压等。
4、硫化温度和硫化时间硫化温度是橡胶发生硫化反应的基本条件,它直接影响硫化速度和产品质量。
硫化温度高,硫化速度快,生产效率高。
反之,硫化速度慢,生产效率低。
硫化温度高低应取决于胶料配方,其中最重要的是取决于橡胶种类和硫化体系。
但应注意的是,高温橡胶分子链裂解,至发生硫化返原现象,结果导致强伸性能下降,困此硫化温度不宜太高。
《橡胶硫化》课件
02
CATALOGUE
橡胶硫化原理
橡胶的分子结构与硫化反应
橡胶的分子结构
橡胶分子链由碳、氢等元素组成,具 有弹性。
硫化反应
在硫化过程中,橡胶分子与硫磺、促 进剂等物质发生化学反应,使橡胶分 子之间形成交联结构,提高橡胶的弹 性和耐久性。
硫化过程中的化学反应
硫磺与橡胶分子之间的反应
硫磺与橡胶分子中的不饱和碳碳双键发生反应,形成交联键。
硫化压力与传热
硫化压力
硫化压力对橡胶的硫化和性能也有重要 影响。在高温下,适当的压力可以促进 橡胶分子间的交联,提高橡胶的物理性 能。但过高的压力会导致橡胶产生变形 和裂纹。因此,选择合适的硫化压力是 必要的。
VS
传热
在橡胶硫化过程中,传热也是一个重要的 因素。良好的传热可以保证橡胶各部分受 热均匀,避免局部过热或过冷,从而保证 硫化的质量和橡胶的性能。
橡胶配方与硫化剂选择
橡胶配方
不同的橡胶配方对硫化的效果和橡胶的性能 有显著影响。了解和掌握各种橡胶配方的特 点,根据实际需求选择合适的配方,是实现 良好硫化和性能的关键。
硫化剂选择
硫化剂是影响橡胶硫化的重要因素之一。选 择合适的硫化剂可以促进橡胶的交联,提高 橡胶的物理性能。了解各种硫化剂的特点和 适用范围,根据实际需求进行选择,是实现 良好硫化的重要步骤。
硫化的历史与发展
硫化技术的起源
硫化技术最早起源于19世纪中叶,当时人们 发现硫化后的橡胶具有更好的弹性和耐热性 。
硫化技术的发展
随着人们对橡胶材料和硫化技术的不断深入研究, 硫化技术不断得到改进和发展,提高了橡胶制品的 性能和质量。
现代硫化技术
现代硫化技术采用了先进的工艺和设备,实 现了自动化、智能化的生产方式,提高了生 产效率和产品质量。
橡胶的硫化及成型加工简介
橡胶的硫化及成型加工工艺【摘要】随着我国经济的高速发展,我国橡胶工业的技术水平和生产工艺得到很大程度上的提高。
硫化是橡胶加工的主要工艺之一,在这道工艺中,橡胶经过一系列复杂的化学反应及成型加工,失去了混炼胶的可塑性具有了交联橡胶的高弹性,仅为获得优良的物理机械性能、耐热性、耐溶剂性、及耐腐蚀性能,提高橡胶制品的使用价值和应用范围。
本文以氯丁橡胶为例,介绍橡胶的硫化及成型加工工艺。
【关键字】橡胶硫化行为成型加工工艺氯丁橡胶硫化是橡胶加工最后也是最重要的一个工艺过程。
在硫化过程中,由于橡胶的化学结构发生变化,导致其物理机械性能和化学性能得到显著改进,从而成为有价值的宝贵材料。
1 硫化对结构与性能的影响未硫化时,橡胶分子是呈卷曲状的线形结构,其分子链具有运动的独立性,大分子之间是以范德华力相互作用的。
当受外力作用时,大分子链段易发生位移,在性能上表现出较大的变形,可塑性大,强度不大,具有可溶性。
硫化后,橡胶大分子被交联成网状结构,大分子链之间有主价键力的作用,使大分子链的相对运动受到一定的限制。
在外力作用下,不易发生较大的位移,变形减小,强度增大,失去可溶性。
橡胶在硫化过程中,其分子结构是连续变化的,如交联密度在一定的硫化时间内是逐渐增加的。
硫化时所发生的化学反应是比较复杂的,交联反应和降解反应都在发生,交联反应使橡胶分子成为网状结构,降解反应使橡胶分子断键。
在硫化初期以交联为主,交联密度增加,到一定程度降解反应增加,交联密度又会下降。
硫化过程的橡胶分子结构的变化显著地影响着橡胶各种性能。
橡胶的各种性能随硫化时间的增加而有一定规律的变化。
上图说明在一定硫化时间内,永久变形随硫化时间的增加而逐渐下降;硬度随硫化时间的增加而逐渐增高;拉伸强度、定伸应力、弹性当增高到一定值后边便开始下降。
这些规律都是由于在硫化过程中橡胶分子链产生交联度不同所致。
以氯丁橡胶(CR)为例,随硫化程度的提高:1)力学性能:弹性、定伸强度、撕裂强度、硬度提高。
橡胶硫化原理工艺课件讲解
3.专用仪器法 (1)硫化仪法 (2)门尼粘度仪 门尼焦烧时间t5:随硫化时间增加,胶料门尼值下降到最低点又 开始上升,一般由最低点上升至5个门尼值的时间称为门尼焦烧 时间。 硫化特性曲线 ⎯ 初始粘度、最低粘度、焦烧时间、硫 化速度、 正硫化时间、活化能。 + 测定原理:胶料的剪切模量与交联密度成正比。 G = D ·R ·T
首页 上一页 下一页 末页 32
(2)利用阿累尼乌斯方程计算等效硫化时间
阿累尼乌斯方程式如下: ln(τ1/τ2)=E/R((t2- t1)/ t2 t1) 式中 τ1—温度为t1的正硫化时间,min; τ2—温度为t2的正硫化时间,min; R—气体常数,R=8.3143J/(mol.k); E—硫化反应活化能,kJ/mol。 利用以上公式可求出不同温度下的等效硫化时间。 例如,已知胶料的硫化反应活化能E=92kJ/mol,在140℃时正硫 化时间为30min,利用公式计算150℃时等效硫化时间。 已知: τ1=30min;t1=(273+140)=413K;t2=(273+150)=423K; τ2 =? log(30/τ2)=(92/(2.303×0.008314)) ×(423-413)/423×413 τ2=15.7min
首页
上一页
下一页
末页
9
硫化起步——硫化时,胶料开始变硬而后不能进行热塑 性流动
的那一点时间(焦烧)。
焦烧期的长短:决定了胶料的焦烧性及操作安全性。 取决于配
方,特别是促进剂。可用迟效性促进剂:CZ。
焦烧时间的起点:实际上是从混炼时加入硫磺的那一时刻开始。 焦烧阶段的终点胶料开始发硬并丧失流动性。
首页
分子被引发,发生化学交联反应 网状结构,分子间主要已以化学键结合
用四丁基溴化铵诱导环氧化乙烯-乙酸乙烯酯橡胶的快速硫化
EVM -GMA,牌 号 为 Levapren@ 600NPG,乙
酸乙烯酯质量分数为 60%,甲 基 丙 烯 酸 缩 水 甘 油 酯 质 量 分 数 为 3%,德 国 Arlanxeo Deutschland GmbH公 司 产 品;MHHPA,常 州 市 润 翔 化 工 有 限 公司产品;2,4,6-三(二 甲 氨 基 甲 基 )苯 酚 (DMP 30)、三 苯 基 膦 (TPP)、二 乙 基 四 甲 基 咪 唑 (2E4MI)、乙 酰 丙 酮 锌 (ZAA)、1,8-二 氮 杂 二 环十 一 碳 -7 -烯 (DBU)和 四 丁 基 溴 化 铵 (TBAB),均 由 上 海 阿 拉 丁 生 化 科 技 股 份 有 限 公 司提 供;三 氯 甲 烷,分 析 纯,国 药 集 团 化 学 试 剂 有 限公司提供。 12 试 样 制 备
(1江南大学 化学与材料工程学院,江苏 无锡 214122; 2阿郎新科高性能弹性体(常州)有限公司 上海分公司,上海 200021)
摘要:为 了 提 高 环 氧 化 乙 烯 -乙 酸 乙 烯 酯 橡 胶 (EVM -GMA)的 硫 化 速 率,以 甲 基 六 氢 苯 酐 (MHHPA)为硫化剂,研究了促进剂种类、四丁基 溴 化 铵 (TBAB)用 量 和 MHHPA用 量 对 EVM -GMA硫 化性能的影响,同时考察了 MHHPA用量对EVM -GMA物理机械性能的影响。结果表明,以 TBAB作为 促进剂时,EVM -GMA的硫化速率最快,正硫化时间最短。当 MHHPA用量为 5份、TBAB用量为15份 时,EVM -GMA的硫化速率最快,正硫化时间小于 1min,硫化胶的拉伸强度和邵尔 A硬度最高,溶胀比 最低。 关键词:环氧化乙烯 -乙酸乙烯酯橡胶;甲基六氢苯酐;四丁基溴化铵;硫化性能;物理机械性能 中 图 分 类 号 :TQ33399 文 献 标 志 码 :B 文 章 编 号 :1000-1255(2019)03-0194-05
丁腈橡胶快速硫化体系
丁腈橡胶快速硫化体系
丁腈橡胶快速硫化体系是一种用于丁腈橡胶的加硫工艺,能够在较短的时间内实现橡胶的硫化。
该体系通常包括以下成分:
1. 主硫化剂:主要指硫化剂,常用的有硫磺和加速器硫化铜。
2. 辅助硫化剂:常用的辅助硫化剂有加速剂和促进剂。
加速剂可提高硫化反应速度,常用的加速剂有硫化氮、硫化羰基、硫醇等。
促进剂主要用于提高硫化效率,常用的促进剂有金属氧化物和有机化合物。
3. 防老剂:常用的防老剂有抗氧化剂和紫外线吸收剂,用于延缓橡胶老化过程。
丁腈橡胶快速硫化体系的实现需要合适的工艺条件,如适宜的温度和时间。
此外,体系中各成分的配比也需要经过实验和优化,以保证最佳的硫化效果和橡胶性能。
胶辊硫化工艺
胶辊硫化工艺胶辊硫化工艺是一种常用的橡胶制品生产工艺,通过加热和压力作用,将橡胶材料硫化成固态,从而赋予其良好的弹性和耐磨性能。
本文将从胶辊硫化工艺的原理、工艺流程和应用领域等方面进行阐述。
一、胶辊硫化工艺的原理胶辊硫化工艺是利用热量和压力来使橡胶材料发生化学变化的过程。
在硫化过程中,橡胶中的双键被硫化剂和促进剂作用下断裂,形成交联结构,使橡胶变得坚韧且具有弹性。
而胶辊作为硫化的工具之一,通过对橡胶制品施加恰当的压力,使橡胶材料在加热的同时得到塑性变形,从而使其成为所需形状。
胶辊硫化工艺主要包括以下几个步骤:1. 原料准备:将橡胶材料和硫化剂、促进剂等配方中的化学原料按一定比例混合均匀,制备成橡胶混炼胶料。
2. 制胶:将混炼胶料通过橡胶挤出机或橡胶开炼机制成所需形状的橡胶制品,如橡胶管、橡胶板等。
3. 胶辊硫化:将制得的橡胶制品放置在胶辊之间,加热胶辊并施加适当的压力,使橡胶材料在一定温度和时间条件下进行硫化反应。
4. 冷却:将硫化后的橡胶制品从胶辊上取下,进行自然冷却或通过冷却装置进行快速冷却,使其固化成型。
三、胶辊硫化工艺的应用领域胶辊硫化工艺广泛应用于橡胶制品的生产中,特别是对于一些需要具备弹性和耐磨性能的橡胶制品,胶辊硫化工艺具有重要的作用。
以下是一些常见的应用领域:1. 汽车工业:胶辊硫化工艺用于制造汽车轮胎、橡胶密封件、橡胶管道等橡胶制品,提高其耐磨性和使用寿命。
2. 机械工业:胶辊硫化工艺用于制造橡胶输送带、橡胶滚筒、橡胶衬套等机械配件,提供更好的耐磨性和减震性能。
3. 化工工业:胶辊硫化工艺用于制造橡胶管道、橡胶垫片等化工设备配件,提供更好的耐腐蚀性和密封性能。
4. 建筑工业:胶辊硫化工艺用于制造橡胶挡水板、橡胶密封条等建筑材料,提供更好的防水性和抗震性能。
总结:胶辊硫化工艺是一种常用的橡胶制品生产工艺,通过加热和压力作用,使橡胶材料硫化成固态,从而赋予其良好的弹性和耐磨性能。
该工艺的原理简单明了,流程清晰,应用广泛,为橡胶制品的生产提供了重要的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
橡胶快速硫化技术
中国废塑胶网
对橡胶工业而言,硫化时间长成为提高橡胶工业生产率的瓶颈,并限制了橡胶工业应用领域的迅速发展。
随着各种热塑性弹性体技术的不断成熟,使人们不禁怀疑,是否有一天,热塑性弹性体会成为高弹性橡胶的替代品,而使橡胶退出历史的舞台?对于新技术可能带来的变化今天我们不敢枉下断论,但是,从目前的市场来看,橡胶工业不但没有退缩迹象,反而表现出异常顽强的爆发力。
伴随着市场的快速发展,橡胶加工技术不断成熟,尤其是橡胶快速硫化技术的不断成熟正在弥补橡胶以往硫化时间漫长等不足。
橡胶硫化过程中,温度、压力与时间是三个共同作用的因素。
由于橡胶过热会发生焦烧、性能下降等状况,如何实现高温硫化,进而缩短硫化时间成为不同企业研发的重点。
改善硫化体系以加速硫化过程为越来越多厂家所重视。
各助剂企业也积极推出相应的快速硫化促进剂以抢占市场。
本文特别介绍部分厂家开发的新型加速硫化的助剂产品。
新型硫化剂DTDC
上海京海化工有限公司是中国最早、也是现今最大的不溶性硫磺生产企业。
近年来,公司在完成不溶性硫磺新工艺开发和硫化剂DTDM扩产的同时,分析国际硫化技术的现状和发展趋势,积极研发现代硫化技术前沿的产品。
该公司开发的新型硫化剂DTDC不久将进入市场。
新型硫化剂DTDC因在硫化过程中不产生亚硝胺而备受国际关注,被认为是硫化剂DTDM和二硫化或六硫化秋兰姆的最佳替代品。
由于硫化剂DTDM和秋兰姆产品在硫化温度下裂解释放出的仲胺基分子残片(吗基二甲胺基、二乙胺基、二丁胺基、二戊胺基等)可与亚硝基供给体结合,产生致癌性亚硝胺物质,因此硫化剂DTDM和秋兰姆产品的生产和应用受到欧美国家、政府、国际组织及环境法规的限定与警告。
特别是在2003年5月,在欧盟发表的《未来化学品政策战略》白皮书中将硫化剂DTDM和秋兰姆产品列入限期淘汰的有致癌作用的化学品。
上海京海化工有限公司根据近年来国际橡胶同行对硫化剂DTDM的毒性及其对环境影响的研究成果,正在研制硫化剂DTDM的替代品。
目前,对硫化剂DTDC 的开发已进入环境试验阶段,不久将投放市场。
硫化剂DTDC呈白色结晶形,熔点为120~122℃,活性硫质量分数大于0.19。
用其等量替代硫化剂DTDM,无需改变胶料的配方和工艺。
与硫化剂DTDM相同,硫化剂DTDC可以全部或部分替代硫磺组成有效或半有效硫化体系。
由于硫化剂DTDC在一般硫化条件下可以释放出活性硫,与加入的硫磺在橡胶分子间形成单硫键和双硫键,这种橡胶硫化网络结构可赋予硫化胶优良的耐热性、耐压缩性和高定伸应力。
硫化剂DTDC还具有不喷霜、焦烧安全、硫化速度快的特点,是轮胎等大型模型橡胶制品、耐热橡胶制品、卫生橡胶制品及彩色橡胶制品的最佳硫化剂。
Vulcuren新型硫化剂
要将厚重的橡胶制品硫化,并不是一件容易的事。
因为橡胶的传热性较差,为了迅速使橡胶内部的区域完全硫化,通常需要长时间加热才能实现。
也就是说橡胶材料的表面会过度硫化,并可能在产品内部完全硫化前分解。
橡胶在低温下的硫化是一个可行的方法,虽然这个方法比较温和,但费时较久,而且也不经济。
拜耳橡胶事业处经过长期的不断研究,开发出硫化剂Vulcuren以解决高温硫化问题。
提高硫化温度,而不会造成橡胶制品在长时间加热下的分解,因此缩短了制造过程并提高生产力。
在橡胶硫化时,弹性体会由线型结构变为稳定的交联结构,从而形成橡胶优异的高弹性能。
但是这种交联结构的热稳定性并非特别的好,他们会因长期暴露在高温下而分解。
这种逆转反应会使体积较大的橡胶的硫化失败,而使其物理和化学性质劣化。
与此不同的是,在硫化温度下,Vulcuren会形成奇特的架桥键,在实质上有更好的热稳定性,因此以Vulcuren 来取代部分硫磺,明显地减少了逆转反应。
目前制造体积较大的橡胶制品,例如工程车的橡胶实心轮胎或宽大输送带,因使用Vulcuren,可以使橡胶制品的生产比较快速而且更经济。
此外,产品的物性,例如耐磨性、抗张强度和抗撕裂强度等都可维持在很高的标准。
Pckacil TBzTD
化学名为二硫化四基秋兰姆,是尤尼罗伊尔公司新开发的秋兰姆类促进剂,可替代TMTD(四甲基二硫化秋兰姆)、TMTM(一硫化四甲基秋兰姆)、TETD(二硫化四乙基秋兰姆),加工安全性更好,比TMTD有更长的焦烧时间,可作为天然橡胶、丁橡胶和丁苯橡胶的快速硫化主促进剂或助促进剂,有时也用于PVC橡胶硫化抑制剂。
TBzTD分子量大,熔点高,不易分解,故不产生亚硝胺;其硫化速度稍低于TMTD,其他物性与TMTD几乎相同,目前已成为极具发展潜力的秋兰姆类硫化促进剂新品种。
Santocure TBBS
化学名为N-叔丁基-2-苯并唑次磺胺类促进剂,是一种性能很好的次磺胺类促进剂,由孟山都公司开发。
在天然橡胶、丁苯橡胶、丁二烯橡胶和其并用胶种中使用时,具有硫化速度快和模量高等特点。
一般可单独使用或与少量促进剂一起使用;在轮胎和工业橡胶制品中使用时,需配用氧化锌和硬脂酸,也可用秋兰姆、二硫代氨基甲酸盐、醛胺、胍类促进剂和酸性物质活化。
TBBS以叔丁胺和促进剂M为原料合成,不存在亚硝胺致癌问题,是全球主导的促进剂品种,消费量占全球促进剂消费量的35%以上。
中国也有部分企业进行小规模生产,但由于受原料叔丁胺的制约,未能大规模生产与应用,但其作为环保高效的新型次磺胺类促进剂发展前景很好。
Santocure TBSI
化学名为N-叔丁基双-2-苯并唑次磺胺类促进剂,由孟山都公司开发,在操作温度下非常安全,不产生致癌亚硝胺。
与TBBS相比,TBSI具有分子量大、熔点高30℃以上、热稳定性能好、焦烧时间长、硫化速度快等优点,通常与防焦剂CTP共用,可完全替代TBBS。
另外,TBSI还具有遇水稳定、易于贮存;在硫化天然胶时,可明显提高橡胶的抗硫化返原性;在橡胶与钢丝粘接的化合物中表现良好的性能。
TBSI可用于天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶等,尤其适用于硷性较强的炉法炭黑混炼胶料及对抗返原要求很高的厚制品,活性大于目前广泛使用的CBS、NOBS等促进剂。
多功能促进剂TiBTM
化学名为N,N,N’-硫化四异丁基秋兰姆,由美国固持里奇公司开发,为一种既具有次磺胺类促进剂的助促进剂作用,又具有防焦剂作用的多功能促进剂。
在SBR/BR胶料中,TiBTM和CTP分别与TBBS和CBS并用时,两种防焦剂对焦烧延迟作用相同;但TiBTM 还可明显加快硫化速度,而CTP则没有加速硫化的作用,甚至有时会引起硫化速度下降。
试验表明,在SBR/BR之类的合成橡胶体系中,TiBTM可同时发挥防焦剂和助促进剂两种功能。
但在天然橡胶中,TiBTM的防焦效果明显比CTP差,TiBTM主要用作助促进剂;但TiBTM可增加天然橡胶的抗硫化返原性,提高硫化温度、变化硫磺用量及加入白炭黑都不会影响TiBTM防焦烧和加速硫化速度的效果,而且对硫化橡胶的物理性能无不良影响。
不断提高生产效率将是各种技术竞争中不变的主题之一。
在橡胶加工与橡胶助剂的各种技术之中,加速硫化的促进剂技术在推动橡胶工业及其加工技术发展的同时,并将成为各助剂供应商继续研发的重点。