液体的表面性质-(2)
液体的表面现象
液体的表面现象液体是物质的三种状态之一,与固体和气体相比,液体具有较高的密度和较低的流动性。
由于液体的分子之间有所谓的“凝聚力”,它们表面会出现一些有趣的现象。
这些现象被称为液体的表面现象,包括表面张力、毛细现象等。
本文将对液体表面现象进行介绍。
1.表面张力表面张力是指液体表面上分子间的相互作用力,使得液体表面能够收缩成一定形状的趋势。
液体的分子间互相吸引,因此在液体内部分子间距离较小。
但是,在液体的表面,分子只能受到内部和液体外部分子的吸引力,这使得表面分子排列紧密,比内部分子间距离要小。
表面分子向内部分子受到的吸引力较大,而向表面和外部分子受到的吸引力较小。
这种不平衡的效应导致了表面分子紧密地附着在一起,形成了所谓的“表面膜”。
因此,液体的表面不趋向平坦,而是减少表面积至最小化。
表面张力是由于表面膜的存在而产生的力,其大小与表面积和表面膜的形状有关。
表面张力的单位是“牛/米(N/m)”,是指当液体表面积为1平方米时,要克服液体表面张力的力量。
2.毛细现象毛细现象是液面在物体上升降不同高度的现象。
液体在将毛细管或细小通道中上升或下降的过程中就会出现毛细现象。
液体分子会被相互吸引而塞进一个毛细管或细小通道中,当管道非常细小时,液体分子就会塞进其中,并且分子外面的表面能量就要比里面的表面能量更多。
因此,在这种情况下就会发生毛细现象。
当管道越细时,液体上升的高度将增加,这是因为表面张力使液体分子的吸引力更加强大(因为液体表面的面积越小,分子之间的吸引力就越强)。
因此,液体分子在管道内被塞进的尺寸越小,液面就会上升得更高。
3.珠形(球形液滴)形状当液体表面张力作用于液滴时,液滴的形状呈现出球形。
这是因为液体表面分子对瓶子、盘子等容器的内部不附着,但对自身和外界的不附着。
由于表面张力,液体分子会倾向于把自己塑造成一个球体,从而减少液体表面积至最小化。
无论容器是什么形状,液滴都会尽可能地缩小表面积并形成一个球形,这就是珠形的形状。
物理学第3版习题解答-第2章液体的表面性质.
第2章 液体的表面性质 2-1 如图金属框架中形成一肥皂膜,金属丝AB 长为5 cm ,可以自由滑动,拉此肥皂膜平衡时,所需的平衡力F =2.5×10-3 N ,求肥皂水的表面张力系数。
解: m N L F /105.222-⨯==α 2-2 在2-1题中,若金属丝AB 向右移动了2 cm ,试计算移动AB 所做的功。
此时肥皂膜的表面能增加了多少? 解: J S E 5105-⨯=∆=∆α 2-3 一半径为5 cm 的金属圆环,从液体中刚能拉出时,测得环的悬线上需要加F =28.3×10-3 N 的向上拉力,求此液体的表面张力系数。
(被拉起的液膜可视为很短的圆柱面)。
解 m N l F /1001.91052103.28223---⨯=⨯⨯⨯⨯==πα 2-4 把一个框架竖直地放着,其上有一条可以移动的横杆以ab ,框架之间有肥皂液膜,如图所示。
今欲使横杆保持平衡,问横杆下面应挂多大重物?已知横杆质量为0.05 g ,长度L 为2.5 cm ,肥皂膜的表面张力系数为45×10-3 N ·m -1。
解: N G l G F G ab ab 31076.12-⨯=-=-=α 2-5 移液管中有1 ml 农用杀虫药液,其密度为0.995×103 kg ·m -3。
今令其从移液管中缓缓滴出,共分30滴全部滴完。
设经过测定,已知药液将要落下时,其颈部的直径为0.189 cm ,求药液的表面张力系数。
解: m N Nd Mg /10589.52-⨯==πα 2-6 在20 km 2的湖面上,下了一场50mm 的大雨,雨滴半径r =1.0mm 。
设过程是等温的,求释放出的表面能量。
水的比表面能α=73×10-3 J ·m -2。
解: J S E 81018.2⨯=∆=∆α 2-7 吹一直径为14 cm 的肥皂泡,问需作多少功?设在吹的过程中温度不变,已知肥皂水的表面张力系数为40×10-3 N ·m -1。
8液体的表面张力现象详解
接触角:在液体、固体壁和空气交界处做液体表面的 切面,此面与固体壁在液体内部所夹的角度就称为这种液 体对该固体的接触角。
q 角为锐角时,液体润湿固体; q 角为钝角时,液体不 润湿固体;如果q = 0,液体将延展在全部固体表面上,这 时液体完全润湿固体;如果q = 180º,则液体完全不润湿固
体。水润湿玻璃,故其接触角是锐角,水与洁净的玻璃润
22:34
15
3、毛细管公式
根据流体静力学原理和弯曲液面下 的附加压强公式,液体在毛细管中上升 (或降低)的高度为:
h 2a cosq gr
此式表明,毛细管中液面上升高度与液体的种类(它决定液
体的密度和表面张力系数a)、组成毛细管的材料(接触角 q与其有关)及管径有关。
22:34
16
22:34
22:34
1
22:34
2
许多现象表明,液体表面具有自动收缩的趋势,液面 的周界上受到一个拉力F,此力
3
二、表面张力和表面张力系数
在液体表面内任一截线两边, 相邻两部分液面之间存在相互作 用的拉力,此力与截线垂直并与 该处液面相切,这种力称为液体 的表面张力。表面张力是液体表 面的内力,通常把液面与固体周 界之间相互作用的拉力也叫表面 张力。因为此力跟粘附在固体周 界上的液体表面与相邻液面之间 的内力在数值上是相等的。
湿程度最大, q = 0。水银不润湿玻璃,接触角为钝角,数值 为q = 138º。
22:34
12
润湿和不润湿现象的产生,主要是由于液体分子间的 引力与固体分子与液体分子间的相互引力间的强弱对比不 同所引起的。在液体与固体接触处,沿固体壁有一层液体 称为附着层,其厚度等于液体分子间引力的有效作用距离 或液体分子与固体分子之间引力的有效作用距离。在附着 层中,液体分子受固体分子引力的合力称为附着力,受其 余液体分子引力的合力称为内聚力。当内聚力大于附着力 时,附着层内较多的液体分子被吸引到液体内部,这与液 体自由表面相类似,附着层有收缩倾向,呈现不润湿现象。 当附着力大于内聚力时,分子在附着层中的势能比在液体 内部要低得,更多的分子进入附着层,使附着层有伸张倾 向,即液体沿固体表面扩展,呈现润湿现象。
大学物理学习指导 第3章 液体的表面性质
第3章 液体的表面性质3.1 内容提要(一)基本概念1. 表面张力:液体的表面犹如张紧的弹性薄膜,具有收缩的趋势,即液体表面存在着张力,称为表面张力。
它是液体表面层内分子力作用的结果。
2.表面张力系数:用于反映液体表面性质的物理量,三种定义如下:(1)表面张力系数表示在单位长度直线两旁液面的相互拉力。
由L f α=得 Lf =α (3.1) 在国际单位制中,α的单位用N ·m -1表示。
(2)表面张力系数α等于增加单位表面积时,外力所做的功。
由△A=α·△S 得SA ∆∆=α (3.2) (3)表面张力系数α在数值等于增大液体单位表面积所增加的表面能,由△E =△A =α△S 得 SE ∆∆=α (3.3) 严格说来,表面能是在温度不变的条件下可转变为机械能的那部分表面能。
3.影响表面张力系数的几个因素(1) 不同液体的表面张力系数不同,它与液体的成分有关,取决于液体分子的性质。
(2) 同一种液体的表面张力系数与温度有关。
温度越高,α就越小。
(3) 液体表面张力系数的大小还与相邻物质的化学性质有关。
(4) 液体表面张力系数还与液体中的杂质有关。
加入杂质能显著改变液体的表面张力系数。
4.表面张力的微观本质微观理论认为,液体的表面张力是由于液体表面层分子之间相互作用力的不对称性引起的。
所谓液体的表面层是指位于液体表面处,与表面平行、厚度等于液体分子有效作用半径(一般不超过6×10-7cm)的那层液体。
从能量的角度出发,分子处于液体表面层时,分子的相互作用热能要比处于液体内部的分子的相互作用热能大,而且越靠近液面,分子的相互作用热能就越大。
而液体处于稳定平衡时,分子的相互作用热能最小,因此,液体表面层中的分子都有挤进液体内部的趋势,结果液体的表面就会尽量地收缩。
从力的观点来看,就是在液体表面内存在一种使其收缩的力,这种力就称为表面张力。
所谓表面张力,无论从力或是从能量的角度来解释,都是表面层内分子相互作用的不对称性所引起的。
02-液体的表面现象解析
2
M1g 1Vg N1d1 N1d1
M 2g 2 Vg N 2d 2 N 2d 2
两者相除得:
2 2Vg N 2d 2 1 1Vg N1d1
由于
1 2
2 1
d1 d 2
N1 N2
所以
得
2
N1 1 N2
水和油边界的表面张力系数 18103 N / m
其中Ps是由表面张力引起的附加压强,这表明 弯曲液面都对液体施加附加压强,其附加压强 总是指向弯曲液面的曲率中心.
1拉普拉斯公式
如图所示:一半径为R,表面张 力系数为 的球形液滴,由于是 凸液面,所以附加压强
ps pi p0
Pi和p0分别是液滴表面层内外的压强,ps为附加压强 该液面在外力作用下表面积增加ds,外力做功为
不同的液体对不同固体润湿与不润湿的程度不 同,为表明液体对固体的润湿程度,引入接触 角这个物理量. 定义:在液体与固体接触处,作液体表面和固 体表面的切线,这两条线间通过液体内部的夹 角,称为接触角
a c b d
应用:农业上制备农药时,要注意使农药润湿农作物
二
毛细现象
1毛细现象;将几根内径不同的细玻璃管插 入水中,可以看到细管中的水面会上升;相 反,如果将细玻璃管插入水银中,管内水银 面会降低,这种液体在细管中上升或下降的 现象,称为毛细现象
三
表面张力系数
1.表面张力系数两种 不同的定义: (1) 定义一;均匀液面的张力处处相等, 直线AB上任一处力的分布均相同.作用在分 界线两侧的表面张力,其大小与分界线长度L 成正比,即:
f L
或
f L
式中
_表面张力系数,它表示作用于液体表 面单位长度线段上的表面张力.(N/m)
第3章(2) 液体的表面层性质讲解
由于表面活性物质在溶液中聚集于极薄 的表面层,所以少量的表面活性物质就 可以显著降低溶液的表面张力系数。反 之,表面非活性物质溶于溶剂后,这些 物质将尽可能离开表面层,进入液体内 部,以减少表面能,结果溶液内部溶质 的浓度比表面层大。
毛细现象
把一块洁净的玻璃浸入水里再取出来, 可以看到玻片的表面带有一层水膜;在 洁净的玻璃板上滴一滴水,水就沿着玻 璃表面向外扩展,在玻璃板上形成一层 水膜,这种液体和固体接触面积趋于扩 大的现象称为浸润现象。对玻璃来说, 水是浸润液体。
液体的表面都有一种缩小的趋势。
表面张力
表面张力,是液体表面层由于分子引 力不均衡而产生的沿表面作用于任一 界线上的张力。
表面张力的方向 方向:表面张力的方向与液面相切,与 液面的任何两部分分界线垂直,并与液 体的表面缩小趋势一致。
表面张力的计算
液体表面张力
表面张力的计算
F L
液体表面张力F的大小与 液体表面分界线的长度L 成正比
液体表面张力
比例系数a 称为液体的表面张力系数,a 在数值上等于作用在液体表面单位长度分 界线上的表面张力。 在国际单位制中,a的单位是牛/米。
表面能的计算
表面张力系数与表面能
表面能的计算
E W S
表面张力系数与表面能
外力克服表面张力做功,使原来处于液体内部的 分子进入表面层,导致液膜的表面积增加,并且 外力克服表面张力所做的功等于液体分子增加的 势能。 我们把液体表面层分子比液体内部分子所多出的 势能的总和称为表面能。
毛细现象
把一块洁净的玻璃浸入水银里再取出来, 可以看到玻片上不附着水银;在洁净的 玻璃板上放一滴水银,水银能够在玻璃 板上滚来滚去,也不附着在上面,这种 液体和固体接触面积趋于缩小的现象称 为不浸润现象。对玻璃来说,水银是不 浸润液体。
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
液体的表面性质
1.接触角:
θ
θ
附着层(即与固体接触的一薄层液体)内
液体分子的运动主要受到两个力影响:
f附:固体分子对液体分子的吸引力称
为附着力。
f附
附 固着
f内
液
f內:液体分子对液体分子的吸引力称
体层 体
为內聚力。
浸湿现象:
当f附> f内时,
附着层扩展, 液体浸湿固体;
<900
θ
f附
水
玻璃
f内
水
不浸湿现象:
第四章分子动理论 第五节 液体的表面性质
一、表面张力和表面能
1、表面与表面层:
液体表面: 液体与气体或固体的接触面。 液体表面层:液体表面下厚度等于分子作用球半径的一层液 层。
r
r
r108m water
Water drop
液体的表面现象例子:
液面面积有缩小到最小值的趋势。
液面宏观上表现为一个被拉紧的弹 性薄膜而具有张力。
A分子受到的分子作用力的合力为零:fi=0
表面层分子B和C的受力分析: 处于表面层的分子受到一个指向液体内部的分子吸引 力作用;宏观上表面层表现为一个被拉紧的弹性薄膜。
2.表面张力
由于液面处于紧张状态,在液面上存在 着起收缩作用的表面张力。这些表面张力的
方向都与液面相切,并且与线段AB 垂直;
它们大小相等,方向相反,分别作用在两部 分液面上。
1.弯曲液面的附加压强
空气
P0
平面液面: P液内=P0 弯曲球面液面:
水
P液内
由于表面张力f产生附加的压强P附,所以P液内 P0
P0
f 凹面
P附
P0 f
P液内 水
大学物理D-01液体的表面性质-参考答案
(A)表面张力与液面垂直 (B) 表面张力与 S 的周边垂直 (C) 表面张力沿周边与表面相切 (D) 表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部 1.2.8 对处于平衡状态的液体,下列叙述不正确的是 ( C ) (A) 凸液面内部分子所受压力大于外部压力 (B) 凹液面内部分子所受压力小于外部压力 (C) 水平液面内部分子所受压力大于外部压力 (D) 水平液面内部分子所受压力等于外部压力 。 1.2.9 对于指定的液体,恒温条件下,有( A )。 (A) 液滴的半径越小,它的蒸气压越大; (C) 液滴的半径与蒸气压无关; 1.2.10 下列叙述不正确的是( D ) (A) 比表面自由能的物理意义是,在定温定压下,可逆地增加单位表面积引起系统吉布斯自由能的增量; (B) 表面张力的物理意义是,在相表面的切面上,垂直作用于表面上任意单位长度边线的表面紧缩力; (C) 比表面自由能与表面张力量纲相同,单位不同; (D) 比表面自由能单位为 J m 2 ,表面张力单位为 N m 时,两者数值不同。
得
3
p
4 4 p0 D d
1 1 4 72.75 103 Pa 100 Kpa 40 Pa 100 Kpa 100.4 Kpa 0.0800 0.0080
1.4.3 一粗细 U 型玻璃管,右端半径 R=1.5mm,左端半径 r=0.50mm,将 U 型管注入适量水(两边
)
1.2.5 通常称为表面活性剂的物质是指将其加入液体中后 ( D )。 (D) 能显著降低液体的表面张力
则毛细管中的水在两不同温度 水中上升的高度: 1.2.6 一个玻璃毛细管分别插入 25C 和 75C 的水中,
3、液体的表面现象
2
附加压强
p
s
f
2
r
2r
2
Rr
2
2 R
——拉普拉斯球面附加压强公式 球形液面附加压强与表面张力系数成正比,与球面半 径R成反比。半径越小,附加压强越大;半径越大,附加 压强越小;半径无限大时,附加压强等于零,这正是水平 液面的情况。
凸液面: p0 + p
2 R 2 R
f
在液体表面上取一小面 积△S ,由于液面水平, 表面张力沿水平方向, △S 平衡时,其边界表 面张力相互抵消,△S 内 外压强相等: P P0
S
fPBiblioteka 2.液面弯曲1)凸液面时,如图 s 周界 上表面张力沿切线方向,合 力指向液面内, s 好象紧 压在液体上,使液体受一附 加压强 s ,由力平衡条件, p 液面下液体的压强:
f内
(1)当 f附 > f内,A 分子所受合力 f 垂 直于附着层指向固体,液体内部分子 势能大于附着层中分子势能,液体内 的分子尽量挤进附着层,使附着层扩 展,宏观上表现为液体润湿固体。
(2)当 f附 < f内,A 分子所受合力 f 垂 直于附着层指向液体内部,液体内部 分子势能小于附着层中分子势能,附 着层中分子尽量挤进液体内部,使附 着层收缩,宏观上表现为液体不润湿 固体。
B
h
C
gr
r
其中 r R cos
完全不润湿, , h 2
R
gR
2
gr
例3.3 如图所示,一根U型玻璃管左右内半径分别为 R=1.5mm和r=0.50mm,试求两管中水面的高度差h。
液体表面的性质
03 液体表面的化学性质
表面活性剂
01
表面活性剂是一种能够显著降低液体表面张力的物质,通常具 有亲水基团和疏水基团。
02
表面活性剂在液体表面形成分子膜,降低表面张力,使得液体
易于润湿和铺展。
表面活性剂在洗涤、化妆品、制药等领域广泛应用,如肥皂、
03
洗发水、沐浴露等产品中都含有表面活性剂。
表面吸附现象
表面张力
液体表面存在一种使液面尽可能缩小 的力,称为表面张力。表面张力的大 小可以用表面张力系数来衡量。
表面能
由于表面张力的存在,液体表面具有 一定的能量,称为表面能。表面能的 大小与液体的种类、温度和压力等因 素有关。
弯曲液面的内外压力差弯曲来自面内外压力差当液体表面弯曲时,液面内侧受到的 压力大于液面外侧受到的压力,形成 一定的压力差。这个压力差的大小与 液体的种类、温度和弯曲程度等因素 有关。
液体表面的性质
目录
• 液体表面的基本概念 • 液体表面的物理性质 • 液体表面的化学性质 • 液体表面的应用 • 液体表面现象的实验研究方法
01 液体表面的基本概念
液体表面的定义
总结词
液体表面是指液体与气体接触的界面。
详细描述
液体表面是液体与气体之间的分界面,它具有特定的物理和化学性质。在这个 界面上,液体的分子与气体分子相互作用,形成了一种特殊的分子排列。
滴重法
在液面上放置一块固体,测量固体因毛细作用上升的高度,结合已知的液体密度和重力 加速度,计算表面张力。
THANKS FOR WATCHING
感谢您的观看
生物医学工程
表面张力在生物医学工程中也有 应用,例如在制备生物材料和药 物传递系统方面。
弯曲液面的应用
第1章液体的表面性质详解
大学物理
处于表面层中的A分子在有效半径内受力不均, 合力不等于零,而是垂直于液面并指向液体内部。
9
大学物理
把分子从液体内部移到表面层,需克服分子间引力做功;
外力做功使分子势能增加,即表面层内分子的势能比液 体内部分子的势能大,表面层为高势能区;各个分子势能增 量的总和称为表面自由能(简称表面能)增量,,用G表示, 单位是J 按能量最低原则,在稳定状态下应该具有最低的表面能, 相应的,液体系统具有最小的表面积,即表层中要包含尽可 能少的分子。表层内的分子有尽量挤入液体内部的趋势,即 液面有收缩的趋势 。 液体的表面张力就是这种趋势在宏观上的表现。表面张力 是宏观力。
S 4r n
2
S0 4R
4 3 3 4 3
2
3
得
R n 3 r
3
r n R
大学物理
E (S S0 ) 4 (r n R )
2 2
R n 3 r
3
R E 4R ( 1) r
2
3 2
2 10 3 4 3.14 (2 10 ) ( 1) 73 10 6 2 10 3 3.6 10 J
大学物理
②温度 实验中观察到随着温度的上升,一般液 体的表面张力都降低,
如表1-1:
表1-1 水的表面张力系数和 温度的关系
温度( ℃ ) 10 20 30
表面张力(10-2N/m )
原因:温度升高时,分子间 距离增大,吸引力减小。当 温度升高至接近临界温度时, 液-气界面消失,表面张力 必趋向于零。故测定表面张 力时,必须固定温度,否则 会造成较大的测量误差。
片对农药的吸收。 需要喷洒表面活性物质,来降低液滴的表面张力系数, 使药液尽量在叶面上延展分布。
大学物理学:液体的表面层性质
毛细现象
把一块洁净的玻璃浸入水银里再取出来,可以看到 玻片上不附着水银;在洁净的玻璃板上放一滴水银, 水银能够在玻璃板上滚来滚去,也不附着在上面, 这种液体和固体接触面积趋于缩小的现象称为不浸 润现象。对玻璃来说,水银是不浸润液体。
接触角为与液面相切的切线和固-液界面之间的夹角
浸润和不浸润现象
接触角为与液面相切的切线和固-液界面之间的夹角
由于表面活性物质在溶液中聚集于极薄的表面层, 所以少量的表面活性物质就可以显著降低溶液的 表面张力系数。反之,表面非活性物质溶于溶剂 后,这些物质将尽可能离开表面层,进入液体内 部,以减少表面能,结果溶液内部溶质的浓度比 表面层大。
表面吸附
表面吸附
表面吸附
表面吸附
由图可以看出,力f1 和f12有使液滴紧缩的趋势;力f2有 使液滴伸展的趋势。当
弯曲液面的附加压强
P0=P
弯曲液面的附加压强
P P0 PS P P0
P0 P PS
P P0
弯曲液面的附加压强
2
PS R
P0=P
弯曲液面的附加压强
P P0 PS P P0
P0 P PS
P P0
肥皂泡内外压强差为:PS
பைடு நூலகம்
4
R
附加压强实验
在玻璃管的两端吹两个半径不 等的肥皂泡A和B。由于小泡的半径 较小,所以泡内的压强就较大。当 打开阀门使两泡连通时,小泡内气 体将流入大泡,小泡逐渐缩小,大 泡逐渐变大,直至小泡缩减为弯曲 液层,且与大泡有相同的曲率半径
表面吸附
表面吸附
由图可以看出,力f1 和f12有使液滴紧缩的趋势;力f2有 使液滴伸展的趋势。当
2 1 12 时,则 f2 f1 f12
大学物理液体表面的性质
1.1 表面张力(surface tension)
1.现象
(1)荷叶上的水珠呈球形; (2)蚊子能够站在水面上; (3)钢针能够放在水面上;
(4)肥皂膜的收缩;
说明:①力的作用是均匀分 布的,力的方向与液面相切;
②液面收缩至最小。
这种使液体表面具有收缩趋势的,存在于液 体表面上的张力称为表面张力。
可知 P1 P0
P1
Ps P内 P外 P1 P0 0
2)凸形液面:分析小薄层液片受力情况, 周界上表面张力沿切线方向, 合力指向液面内,使液体受 一附加压强 Ps 由力平衡条件,液面下液体的压强:
P0
Δs
Ps P2
P2
P0
f合 S
=P0+Ps
附加压强与外部压强相同为正,相反为负。
3)凹形液面:分析小薄层液片受力情况,
的曲率半径成反比。
说 明
Ps
2
R
• 此式只适合球面形状的液面,
1).液面内压强等于空气压强和附加压强之和: P P0 PS . 凸液面PS为正,凹液面为负。
2)应用时可以不管液面是凹是凸,先只考虑大小,
Ps
2
R
;
然后根据实际,凸液面加附加压强,凹液面减去。
例.球形液膜内、外压强差
如图,由于球形液膜很薄,内外 膜半径近似相等,设A、B、C 三
的表面张力系数将显著改变,有的使其γ值增加;有 的使其γ值减小。使γ值减小的物质称为表面活性物
质。
• 表面张力现象在实际中应用举例
农业上为使喷洒在作物叶片上的农药适当展开, 可以在稀释的农业中加入表面活性物质。阴离 子型表面活性物质(农乳500#)和非离子型 表面活性物质(宁乳0204#)具有不使脂类 药物水解的特点。
液体的表面性质
(3)表面张力产生的原因 (3)表面张力产生的原因 ①从分子力和液体微观结构说明 分子作用球molecular sphere of action:在液体内部任取一 分子m’ 为球心, 分子 ,以m’为球心,以分子有效作用半径 为半 为球心 以分子有效作用半径R 径作一球, 球外分子对m’无作 径作一球,称为分子作用球 。球外分子对 无作 用力,球内分子对m’的作用力对称分布,合力为零。 用力,球内分子对 的作用力对称分布,合力为零。
通常意义上的相界面是一个有几个分子直径厚 度的薄层,是两相之间的过渡区。 度的薄层,是两相之间的过渡区。根据形成界面的 物质聚集态可将界面分成气—液 物质聚集态可将界面分成气 液、气—固、液—液、 固 液 固界面。 液—固、固—固界面。 固 固界面 习惯上称一相为气体的相界面为表面 习惯上称一相为气体的相界面为表面 surface),其他称为界面(interface), ),其他称为界面 ),也可以 (surface),其他称为界面(interface),也可以 统称为表面。 统称为表面。 表面现象( phenomena) 表面现象(surface phenomena)是自然界随处 可见的现象,其原理广泛应用在化工、环保、采矿、 可见的现象,其原理广泛应用在化工、环保、采矿、 材料、土壤、食品、医药等行业。对于药学专业, 材料、土壤、食品、医药等行业。对于药学专业,从 药物的合成、提取、分离、分析、制剂、 药物的合成、提取、分离、分析、制剂、保存直到药 物在体内的作用、代谢等,都涉及到该问题。 物在体内的作用、代谢等,都涉及到该问题。
抗真菌药, 抗真菌药,临床上主要用 于头癣、严重体股癣、 于头癣、严重体股癣、叠 瓦癣、手足甲癣等, 瓦癣、手足甲癣等,对头 癣的疗效较明显。 癣的疗效较明显。
物理学第3版习题解答_第2章液体的表面性质
p1V1 p2V2
得:
p0 LS ( P0
x 14mm
2 )( L x) S R
2—22 将长为 L,上端密封的竖直毛细管与液面接触,则液面上升高度为 h。液体密度为ρ,毛细管内 径为 d,接触角为θ,大气压强为 P0,求液体的表面张力系数。
3
解:根据理想气体的状态方程:
p1V1 p2V2
pC p A
4 1.0016 105 Pa R 2 pB p A 1.0008 105 Pa R
2-15
有两根竖直毛细管,一根直径 d1=0.50 mm,另一根直径 d2=1.0 mm,将它们插入水银中,若接
触角 =138°,求两水银柱的高度差。
h
2 cos 1 1 ( ) 10.4mm g r1 r2
第2章
液体的表面性质
2-1 如图金属框架中形成一肥皂膜,金属丝 AB 长为 5 cm,可以自由滑动,拉此肥皂膜平衡时,所需 的平衡力 F=2.5×10-3 N,求肥皂水的表面张力系数。 解:
题 2-1 图
题 2-4 图
F 2.5 10 2 N / m 2L
2-2 在 2-1 题中,若金属丝 AB 向右移动了 2 cm,试计算移动 AB 所做的功。此时肥皂膜的表面能增 加了多少? 解:
2 2 465 10 3 ) Pa (1.013 105 1.0 103 10 10 2 0.5 10 3 R 1.0326 105 Pa
p p0 gh
(2)
2 cos gh p0 r 2 cos gh p0 p r h 0.15m p
4
2 cos gh 2.37 105 Pa r
液体的表面性质-(2)
§6-10 液体的表面性质
一、表面张力 (surface tension) 在液体中,虽然每个分子与最邻近分子之间的斥力
表面能的增加量E应等于外力所作的功A,即
E = A = S
表面张力系数 A E
S S
表面张力系数等于增加单位液体表面积时外力所 作的功,或等于增加单位液体表面积时液体表面能 的增量。
3
对于同一种液体,有些杂质的加入会使表面张力
系数减小或增大。能使表面张力系数减小的杂质, 称为这种液体的表面活性物质。
2 1 1 4 1 1
h ( ) ( )
g rA rB g d A d B
式中dA和dB分别是细管和粗管的内直径。
将常温下水的表面张力系数 = 7310-3 Nm -1、
dA = 1.0mm 和dB = 3.0 mm 代入上式,可求得
h
4 73103 1000 9.8
dF = dL
4
dF 的竖直分量 dF1 和水平分量 dF2 可分别表示为
dF1 dF sin dL sin
dF2 dF cos dL cos
对水平分力dF2 沿周界叠加的结果应互相抵消。 而对于竖直分力dF1 ,因各处的方向相同,沿周界 叠加就可以求得液面S所受竖直方向的合力。其 合力的大小为
D
用表面能来定义表面张力系数。
假如 AB边移动x,到达AB,
则力F 所作的功为 A=Fx
C
A A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
9
接触角 与毛细管内径 r
r
cos
之间的关系为
R
将上式代入
gh 2
R
得到毛细管内液面 上升的高度为
h 2 cos gr
如果液体不润湿毛细管,管内液面要比管外的 液面低 h,用同样的方法可以证明 此时 h 仍然可 由上式表示。
10
例1 如图所示的U形玻璃管,两臂的内直径分别为 1.0 mm和3.0 mm。若水与管壁完全润湿,求两臂 的水面高度差。
解 以pA表示细管内凹状水面下的 压强,以pB表示粗管内凹状水面下 的压强。压强pB应等于细管中与B同 深度的C点的压强pC,设液面上方的 气压为p0,应有p源自 = pC = pA + gh
即
p0
2
rB
p0
2
rA
gh
式中rA和rB分别为细管和粗管的内半径。 11
由上式可以解出两管水面的高度差
框架上所形成的液膜有前、后两个液面,所以 在上式中应有因子2。力 F 的功为
A =Fx =2xL = S
表面能的增加量E应等于外力所作的功A,即
E = A = S
表面张力系数 A E
S S
表面张力系数等于增加单位液体表面积时外力所 作的功,或等于增加单位液体表面积时液体表面能 的增量。
四、毛细现象 (capillarity) 当把管径很细的管子插入液体时,管子内外的液
面会出现高度差,这种现象称为毛细现象。毛细现 象是由表面张力和润湿(或不润湿)现象共同引起的。 如果液体润湿管壁,管内液面较管外高;如果液体 不润湿管壁,管内液面较管外低。
8
在右图中如液体润湿
管壁,管内液面呈现凹
状,由于存在负的附加
§6-10 液体的表面性质
一、表面张力 (surface tension) 在液体中,虽然每个分子与最邻近分子之间的斥力
和引力相抵消,但其它分子对这个分子的作用却都表 现为大小不等的引力作用。
液体中两个分子 和 受周围分子 液面 引力作用的情形:分子处于液体内 表面层
部,受到的引力必定是球对称的,合
1
( 1.0
103
1 3.0 103
)m
2.0 102m
12
力等于零;处于表面层中的分子 所 受的引力作用不再是球对称的,合力
液 体 内
不等于零。所以,处于表面层中的液
部
体分子都受到垂直于液面并指向液体
内部的力的作用。
1
表面层中的分子与内部分子相比具有较高的势 能。表面层中所有分子高出内部分子的那部分势 能的总和,称为液体的表面能。液体表面通常总 具有收缩的趋势,表现为液体表面张力。
F1
L dF1
sin dL 2πr sin
L
由上图知 sin r
R
2πr 2
F1 R
5
液面S所受竖直方向的合力
F1
2πr 2
R
由上式可求得凸状球形液面下液体所受到的
附加压强为
pS
F1 πr 2
2πr 2
Rπr 2
2
R
对于凹状球形液面,用同样的方法可以求得其
表面张力的大小F与表面分界线的长度L成正比,
即
F=L
式中比例系数 称为表面张力系数,单位是 Nm-1。
D
用表面能来定义表面张力系数。
假如 AB边移动x,到达AB,
则力F 所作的功为 A=Fx
C
A A
FL
B
Δx
B
2
力F 的大小可以表示为 F 2 AB 2 L
(b)
7
润湿和不润湿现象是固-液之间和液-液之间分 子力不同所致。当附着力大于内聚力,这就导致了 液体与固体接触处的液面沿固体表面延展,即向上 弯曲,当附着力小于内聚力时,附着层中的液体分 子所受的合力垂直于固-液界面并指向液体,因而 就导致了液体与固体的接触处的液面沿固体表面收 缩,即向下弯曲。
2 1 1 4 1 1
h ( ) ( )
g rA rB g d A d B
式中dA和dB分别是细管和粗管的内直径。
将常温下水的表面张力系数 = 7310-3 Nm -1、
dA = 1.0mm 和dB = 3.0 mm 代入上式,可求得
h
4 73103 1000 9.8
附加压强为:
pS
2
R
6
三、与固体接触处液面的性质
在液面与固体的接触处,分 别作液体表面和固体表面的切 面,两个切面在液体内部的夹
角称为液体与固体的接触角。
接触角为锐角时,表示液体 润湿固体,如图(a)所示。若接 触角等于零,就称液体完全润 湿固体。当接触角为钝角时, (a) 表示液体不润湿固体,如图(b) 所示。若接触角等于,称液 体完全不润湿固体。
压强,所以图(a)的情形
是不能维持的,管外液
体的压力使管内液柱上
升到某一高度h, 致使B点 和C点的压强相等而达到
(a)
(b)
平衡,如图(b) 所示: pB = pA + g h = pC
若管内液面近似为半径为R的球面,附加压强可
表示为
pS
联立上两式得
pA pC
gh 2
2
3
对于同一种液体,有些杂质的加入会使表面张力
系数减小或增大。能使表面张力系数减小的杂质, 称为这种液体的表面活性物质。
二、弯曲液面下的附加压强 由于液体表面张力的存在,弯
曲液面下液体的压强不同于平坦 液面下液体的压强,这两者压强 之差就称为附加压强。在凸状弯
dF2 dF dF1
ΔS
ro
R
φ φ
曲液面的附加压强为正值,在凹
状弯曲液面附加压强为负值 。
如果dF是周界以外的液面通过周界线元dL作用于
液面S的表面张力,那么其大小可以表示为
dF = dL
4
dF 的竖直分量 dF1 和水平分量 dF2 可分别表示为
dF1 dF sin dL sin
dF2 dF cos dL cos
对水平分力dF2 沿周界叠加的结果应互相抵消。 而对于竖直分力dF1 ,因各处的方向相同,沿周界 叠加就可以求得液面S所受竖直方向的合力。其 合力的大小为