第四章 气体动理论 总结

合集下载

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体分子的运动规律和性质的科学理论。

在研究气体动理论时,我们常常会用到一些重要的公式来描述气体的状态和性质。

下面我们将对一些常用的气体动理论公式进行总结和归纳,以便更好地理解和应用这些公式。

1. 理想气体状态方程。

理想气体状态方程是描述气体状态的重要公式之一,它表达了气体的压强、体积和温度之间的关系。

理想气体状态方程的数学表达式为:PV = nRT。

其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量,R为气体常数,T表示气体的温度。

这个方程描述了理想气体在一定条件下的状态,对于理想气体的研究和应用具有重要意义。

2. 理想气体内能公式。

理想气体内能是气体分子的平均动能,它与气体的温度有直接的关系。

理想气体内能的数学表达式为:U = (3/2)nRT。

其中,U表示气体的内能,n表示气体的物质量,R为气体常数,T表示气体的温度。

这个公式表明了理想气体内能与温度的关系,对于研究气体的热力学性质和能量转化具有重要意义。

3. 理想气体压强公式。

理想气体的压强是描述气体状态的重要参数之一,它与气体的温度和体积有直接的关系。

理想气体压强的数学表达式为:P = (nRT)/V。

其中,P表示气体的压强,n表示气体的物质量,R为气体常数,T表示气体的温度,V表示气体的体积。

这个公式描述了理想气体的压强与温度、体积的关系,对于理想气体的状态和性质具有重要意义。

4. 理想气体密度公式。

理想气体的密度是描述气体物质分布的重要参数,它与气体的压强和温度有直接的关系。

理想气体密度的数学表达式为:ρ = (nM)/V。

其中,ρ表示气体的密度,n表示气体的物质量,M表示气体的摩尔质量,V 表示气体的体积。

这个公式描述了理想气体的密度与物质量、摩尔质量、体积的关系,对于理想气体的物质分布和性质具有重要意义。

5. 理想气体平均速度公式。

理想气体分子的平均速度是描述气体分子运动规律的重要参数,它与气体的温度和摩尔质量有直接的关系。

第四章气体动理论总结

第四章气体动理论总结

第四章⽓体动理论总结第四章⽓体动理论单个分⼦的运动具有⽆序性布朗运动⼤量分⼦的运动具有规律性伽尔顿板热平衡定律(热⼒学第零定律)实验表明:若 A 与C 热平衡 B 与C 热平衡则 A 与B 热平衡意义:互为热平衡的物体必然存在⼀个相同的特征--- 它们的温度相同定义温度:处于同⼀热平衡态下的热⼒学系统所具有的共同的宏观性质,称为温度。

⼀切处于同⼀热平衡态的系统有相同的温度。

理想⽓体状态⽅程: 形式1:mol M PV =RT =νRTM形式2:222111T V p T V p =形式3: nkT P =n ----分⼦数密度(单位体积中的分⼦数) k = R/NA = 1.38*10 –23 J/K----玻⽿兹曼常数在通常的压强与温度下,各种实际⽓体都服从理想⽓体状态⽅程。

§4-2 ⽓体动理论的压强公式VNV N n ==d d 1)分⼦按位置的分布是均匀的2)分⼦各⽅向运动概率均等、速度各种平均值相等kj i iz iy ix iv v v v ++=分⼦运动速度单个分⼦碰撞器壁的作⽤⼒是不连续的、偶然的、不均匀的。

从总的效果上来看,⼀个持续的平均作⽤⼒。

2213212()323p nmvp n mv n ω===v----摩尔数R--普适⽓体恒量描述⽓体状态三个物理量: P,V T 压强公式122ω=mv理想⽓体的压强公式揭⽰了宏观量与微观量统计平均值之间的关系,说明压强具有统计意义;压强公式指出:有两个途径可以增加压强 1)增加分⼦数密度n 即增加碰壁的个数2)增加分⼦运动的平均平动能即增加每次碰壁的强度思考题:对于⼀定量的⽓体来说,当温度不变时,⽓体的压强随体积的减⼩⽽增⼤(玻意⽿定律);当体积不变时,压强随温度的升⾼⽽增⼤(查理定律)。

从宏观来看,这两种变化同样使压强增⼤,从微观(分⼦运动)来看,它们有什么区别?对⼀定量的⽓体,在温度不变时,体积减⼩使单位体积内的分⼦数增多,则单位时间内与器壁碰撞的分⼦数增多,器壁所受的平均冲⼒增⼤,因⽽压强增⼤。

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体分子在微观层面上的运动规律的一门学科。

它主要研究气体分子的速度、能量、碰撞等方面的性质。

气体动理论公式是描述气体分子运动规律的数学表达式,可以用来计算气体分子的平均速度、平均能量等参数。

下面将总结一些常见的气体动理论公式。

1. 理想气体状态方程理想气体状态方程描述了理想气体在一定温度、压力和体积下的状态关系。

它的数学表达式为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。

2. 平均动能公式平均动能公式描述了气体分子的平均动能与温度之间的关系。

它的数学表达式为:K = (3/2)kT其中,K为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。

3. 动量-速度关系动量-速度关系描述了气体分子的动量与速度之间的关系。

它的数学表达式为:p = mv其中,p为气体分子的动量,m为气体分子的质量,v为气体分子的速度。

4. 均方根速度公式均方根速度公式描述了气体分子的速度分布规律。

它的数学表达式为:v = √(3kT/m)其中,v为气体分子的均方根速度,k为玻尔兹曼常数,T为气体的温度,m为气体分子的质量。

5. 平均自由程公式平均自由程公式描述了气体分子在运动过程中与其他分子或壁面碰撞的平均距离。

它的数学表达式为:λ = (1/√2πd^2n)其中,λ为气体分子的平均自由程,d为气体分子的直径,n 为气体分子的密度。

6. 分子碰撞频率公式分子碰撞频率公式描述了气体分子碰撞的频率与气体分子数密度之间的关系。

它的数学表达式为:Z = 4πn(d^2)v其中,Z为气体分子的碰撞频率,n为气体分子的数密度,d 为气体分子的直径,v为气体分子的速度。

以上是一些常见的气体动理论公式总结,它们可以用来描述气体分子的运动规律和性质。

利用这些公式,我们可以进行气体的热力学计算和分析,深入理解气体的特性和行为。

同时,这些公式也为相关实验提供了理论基础,促进了气体动理论的发展。

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结注意:本章所有用到的温度指热力学温度,国际单位开尔文。

T=273.15+t 物态方程A NPV NkT P kT nkT VmPV NkT PV vN kT vRT RTM=→=='=→===(常用)一、 压强公式11()33P mn mn ==ρρ=22v v二、 自由度*单原子分子:平均能量=平均平动动能=(3/2)kT *刚性双原子分子:平均能量=平均平动动能+平均平动动能=325222kT kT kT += *刚性多原子分子:平均能量=平均平动动能+平均平动动能=33322kT kT kT +=能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2k ikT ε= 气体的内能为k E N =ε1 mol 气体的内能22k A i i E N N kT RT =ε== 四、三种速率p =≈v=≈v=≈ 三、 平均自由程和平均碰撞次数平均碰撞次数:2Z d n =v 平均自由程:zλ==v根据物态方程:p p nkT n kT=⇒=平均自由程:zλ==v练习一1.关于温度的意义,有下列几种说法:(1)气体的温度是分子平均平动动能的量度。

(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。

(3)温度的高低反映物质内部分子热运动剧烈程度的不同。

(4)从微观上看,气体的温度表示每个气体分子的冷热程度。

(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。

3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT =2112273150.9627327N T N T +===+ 1210.04N N N N ∆=-=则此时室内的分子数减少了4%.4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A )(A )两种气体分子的平均平动动能相等。

气体动理论总结

气体动理论总结

f(v)的物理意义 任一分子其速率处于v附近的单位速率区间内的几率
f (v ) 几率密度
1860年,麦克斯韦导出理想气体f(v)的表达式
m 32 f (v ) 4 ( ) e 2kT
T----温度
mv 2 2 kT
v
2
m----气体分子质量 k----玻尔兹曼常数
由此,得在速率间隔v—v+dv内的分子数占总分子数的 百分比为: mv 2
N 7 N 27
(4)速率介于0~v0/3之间的气体分子的平均速率为:
v 0 ~ v0
3


v0 3 0 v0 3 0
vdN dN


v0 3 0
6 2 N 3 v (v0 v )dv v0 3v0 7 N 27 14
八、气体分子平均碰撞次数和平均自由程
氮气分子在270C时的平均速率为476m.s-1.
理想气体的内能=所有分子的热运动动能之总和 1mol理想气体的内能为:
i i E0 N A ( kT ) RT 2 2
i 一定质量理想气体的内能为 E RT 2
温度改变引起的内能改变量为:
i E RT 2
内能或内能的改变都仅与温度有关,而 与压强和体积无关。这个结论与热力学 的实验结果是一致的。
讨论
一瓶氦气和一瓶氮气密度相同,分子平均 平动动能相同,而且都处于平衡状态,则:
(A)温度相同、压强相同. (B)温度、压强都不同. (C)温度相同,氦气压强大于氮气压强. (D)温度相同,氦气压强小于氮气压强. N k 解 p nkT kT T V m
五、能量按自由度均分定理
自由度 i(Degree of freedom) 确定一个物体的空间位置 所需要的独立坐标数目。 以刚性分子(分子内原子间距离保持不变)为例

气体流动知识点总结

气体流动知识点总结

气体流动知识点总结一、气体流动的基本特性1.1 气体的基本特性气体是一种物态,具有一些特殊的基本性质,如可压缩性、弹性、可扩散性等。

这些特性决定了气体在流动过程中表现出的独特行为。

在理想气体状态下,气体具有简单的状态方程,即PV=RT,其中P为压力,V为体积,T为温度,R为气体常数。

这个方程描述了理想气体的状态,但在实际工程中,气体流动往往还受到多种因素的影响,因此需要更复杂的流动方程来描述。

1.2 气体的流动特性气体流动具有一些与其特性相关的基本规律。

首先是密度的不连续性。

在压缩气体流动的过程中,气体密度会发生突变,导致流场中密度的不连续性。

此外,由于气体分子的热运动,气体流动具有一定的湍流性质,因此在实际的气体流动过程中,需要考虑湍流的影响。

1.3 气体流动的基本方程描述气体流动的基本方程为流体力学方程,即连续性方程、动量方程和能量方程。

这些方程描述了气体流动的守恒性质,分别描述了质量、动量和能量在流动过程中的传递和转化关系。

了解这些方程对于分析和控制气体流动具有重要意义。

二、气体流动的流动方程2.1 连续性方程连续性方程描述了流场中流体的质量守恒关系,它可以用来描述气体流动中流体的流动速度和密度的变化关系。

连续性方程的数学表达形式为:∂ρ/∂t + ∇·(ρu) = 0其中,ρ为流体密度,t为时间,u为流速矢量。

这个方程表明了流体密度的变化与流速的关系,对于描述气体流动的密度分布和流速分布具有重要意义。

2.2 动量方程动量方程描述了流场中流体的动量守恒关系,它可以用来描述气体流动中流体的受力和流动的加速度关系。

动量方程的数学表达形式为:∂(ρu)/∂t + ∇·(ρuu) = -∇p + ∇·τ + ρg其中,p为压力,τ为应力张量,g为重力加速度。

这个方程描述了流体在流动过程中受到的压力、应力和重力等力的作用,对于描述气体流动的力学特性具有重要意义。

2.3 能量方程能量方程描述了流场中流体的能量守恒关系,它可以用来描述气体流动中能量的传递和转化关系。

第四章 气体动理论

第四章 气体动理论

§4-1
分子动理论的基本观点
一、物质微观结构的物理图象 1、物质是由大量的微观粒子——原子或分子组 成的; 2、分子在作永不停息的无规则运动; 3、分子之间有相互作用力。 综上所述,一切宏观物体(不论它是气体、 液体、还是固体)都是由大量的原子或分子组 成的;所有分子都在不停的、无规则运动中; 分子之间有相互作用力。这就是关于物质微观 结构的三个基本观点。
(s t )
C2 引力: f1 t , C2、t均 0 r 斥力: f C 1 , C 、s均 0 2 1 s r t:4 ~ 7 s : 9 ~ 13
2、图线
(f—r图线)
三、分子间的势能曲线(Ep—r图线)
1、分子间的势能: dE p fdr
C1 C2 E p fdr ( s t )dr r r C1 C2 s 1 t 1 ( s 1)r (t 1)r
N pV RT NA
p nkT
温度 T 的物理意义
1 2 3 平 m v kT 2 2
1) 温度是分子平均平动动能的量度 平 T (反映热运动的剧烈程度).
2)温度是大量分子的集体表现,个别分子无意义.
3)在同一温度下,各种气体分子平均平动动能均 相等。 注意 热运动与宏观运动的区别:温度所反 映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有 分子的一种有规则运动的表现.
由于热力学方法的局限性,我们对平衡态下系统内 部的情况不了解,从而对温度和理想 气体的理解 也很肤浅,对气体的压强更是一无所知,因此,为 了全面了解平衡态下的基本热学信息,我们必须用 分子物理学的方法从微观本质上加以认识。
• 气体动理论是统计物理学的基础; • 气体动理论是从微观的观点来研究气体的热学 性质; • 解释气体的温度、压强、热容、内能等的微观 本质; • 建立统计的概念。

大一气体动理论知识点总结

大一气体动理论知识点总结

大一气体动理论知识点总结气体动理论是物理学中研究气体分子运动规律和性质的一门学科,广泛应用于工程、天文学、化学等领域。

下面将对大一气体动理论课程的关键知识点进行总结。

一、气体分子模型1. 理想气体模型理想气体模型基于分子动理论,认为气体由大量分子组成,分子之间相互作用力可以忽略不计,分子之间碰撞是弹性碰撞。

2. 热力学气体模型热力学气体模型基于气体分子之间存在吸引力或斥力的作用,分子之间碰撞非弹性碰撞。

二、气体分子运动规律1. 压强和温度压强是气体分子对容器壁单位面积施加的力,与分子速度的平方成正比,与温度成正比。

温度是气体分子平均动能的度量。

2. 状态方程状态方程描述气体在不同温度、压强和体积下的关系。

常见的状态方程有理想气体状态方程、范德瓦尔斯状态方程等。

3. 状态参量状态参量是气体的基本性质,包括体积、压强、温度等。

状态参量可以通过热力学过程进行改变。

三、气体的物态变化1. 等压过程等压过程表示气体在恒定压强下进行的热力学过程,例如等压膨胀和等压加热。

2. 等温过程等温过程表示气体在恒定温度下进行的热力学过程,例如等温膨胀和等温压缩。

3. 等体过程等体过程表示气体在恒定体积下进行的热力学过程,例如等体加热和等体压缩。

4. 绝热过程绝热过程表示气体在没有热量交换的情况下进行的热力学过程,例如绝热膨胀和绝热压缩。

四、气体的能量转化1. 比热容比热容是气体单位质量在温度变化下吸收或释放的热量。

常见的比热容有定压比热容和定容比热容。

2. 等熵过程等熵过程表示气体在熵保持不变的情况下进行的热力学过程,例如等熵膨胀和等熵压缩。

3. 等焓过程等焓过程表示气体在焓保持不变的情况下进行的热力学过程,例如等焓膨胀和等焓压缩。

五、理想气体的性质1. 理想气体状态方程理想气体状态方程PV=nRT表明气体的体积、压强、摩尔数和温度之间的关系。

2. 理想气体的分子速率分布理想气体的分子速率分布服从麦克斯韦速率分布定律,速率与分子质量和温度有关。

第四章气体动理论

第四章气体动理论
特点或假设: 特点或假设: 1 d ——分子线度 分子线度
r
d
d →0
分子可看成质点
2 除碰撞的瞬间外,分子间及分子与器壁间无作用力 除碰撞的瞬间外, * 高度变化不大,分子受的重力忽略不计 高度变化不大,
f →0
3 分子间及分子与器壁间的碰撞为完全弹性碰撞 理想气体的无引力的弹性质点模型: 理想气体的无引力的弹性质点模型:
例2]
氧气的温度是300K,求(1)氧分子的 ε t ;(2)氧分子的方均 , 氧气的温度是 ) ( ) 根速率;( ) 根速率 (3)以此方均根速率运动的氧分子的动量 v 2 ;(4)设 ( ) m 在边长为0.1m的立方容器中 以 2 的立方容器中,以 在边长为 的立方容器中 v 运动的一个氧分子在两个相对 的器壁之间往返作弹性碰撞,试求器壁所受到的平均作用力 器壁 的器壁之间往返作弹性碰撞 试求器壁所受到的平均作用力;(5)器壁 试求器壁所受到的平均作用力 的单位面积上所受一个氧分子的平均作用力是多少,( 需要有多少 的单位面积上所受一个氧分子的平均作用力是多少 6)需要有多少 个以方均根速率运动的分子才能在器壁上产生1个大气压的压强 个以方均根速率运动的分子才能在器壁上产生 个大气压的压强,(7) 个大气压的压强 将上面所求的分子数与同一大小的容器中的氧气在300K和1个 大 和 个 将上面所求的分子数与同一大小的容器中的氧气在 气压下实际所含的分子数作一比较. 气压下实际所含的分子数作一比较
9
2. 压强公式的推导
ur vi
N个同类分子组成的 个同类分子组成的 气体,分子质量为m 气体,分子质量为
10
dI p 气体的压强: 气体的压强: = dAdt
v p = nm 3 2 p = nε t 3

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体运动的基本理论,涉及到气体的压力、体积、温度等性质。

在研究气态物质的行为和性质时,气体动理论公式是非常重要的工具。

本文将对一些常用的气体动理论公式进行总结和解析。

1. 状态方程公式状态方程是描述气体状态的物理方程,常见的状态方程包括理想气体状态方程和范德华方程。

理想气体状态方程:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R为气体常数,T表示气体的绝对温度。

范德华方程:(P + an^2/V^2)(V - nb) = nRT其中,a和b为范德华常数,和实际气体分子之间的作用有关。

2. 理想气体状态方程的推导理想气体状态方程可以通过气体分子的平均动能推导得到。

根据气体分子的平均运动能量定理,可得到以下公式:KE = (3/2)kT其中,KE表示气体分子的平均动能,k为玻尔兹曼常数,T表示气体的绝对温度。

另外,气体分子的动能与气体分子的速度和质量有关:KE = (1/2)mv^2其中,m为气体分子的质量,v为气体分子的速度。

将上述两个公式相等,可以得到:(1/2)mv^2 = (3/2)kT由此,可以推导出理想气体状态方程:PV = (1/3)Nm<v^2>其中,N为气体分子的个数,<v^2>表示气体分子速度的平方的平均值。

3. 分子平均自由程公式分子平均自由程是指气体分子在碰撞间隔期间所飞过的平均距离。

分子平均自由程与气体分子的摩尔数、体积和气体分子直径有关。

分子平均自由程的公式为:λ = (1/√2) * (V/nπd^2)其中,λ表示分子平均自由程,V表示气体的体积,n表示气体的摩尔数,d表示气体分子的直径。

4. 均方根速度公式气体分子的运动速度可以用均方根速度来描述,均方根速度是指所有气体分子速度平方的平均值的平方根。

均方根速度的公式为:v(rms) = √(3kT/m)其中,v(rms)表示气体分子的均方根速度。

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结简介气体动理论是研究气体分子运动和相应的宏观性质的一门学科,它为气体力学、热力学、物理化学等学科提供了理论基础。

本文将从气体分子运动、状态方程、麦克斯韦速度分布定律、运动学理论、能量分配等方面进行详细阐述。

气体分子运动气体分子运动是气体动理论研究的核心内容,它是气体宏观性质的微观基础。

气体分子的运动状态大致可以由速度、位置、能量和运动方向等参数确定。

其中,气体分子的平均速度和平均动能是气体动理论所研究的重要内容。

气体的平均速度可以通过麦克斯韦速度分布定律求解,它描述了气体分子速度在不同方向上的分布情况。

麦克斯韦速度分布定律表明,气体分子的速度服从麦克斯韦-波尔兹曼分布,即$$f(v)=4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}v^2e^{-\frac{mv^2}{2kT}},$$其中,$f(v)$表示速度为$v$的气体分子在速度空间中的密度,$m$为分子质量,$k$为玻尔兹曼常数,$T$为温度。

气体分子的平均速度可以用麦克斯韦速度分布定律求算,它的表达式为$$\bar{v}=\sqrt{\frac{8kT}{\pi m}}.$$气体分子的平均动能同样可以用温度、分子质量和玻尔兹曼常数表示为$$\bar{E_k}=\frac{3}{2}kT.$$状态方程状态方程是气体动理论研究的另一个重要内容,它描述了气体在不同温度、压强下的状态。

热力学气体状态方程的一般形式为$$PV=nRT,$$其中,$P$表示气体压强,$V$为气体体积,$n$表示气体摩尔数,$T$为气体温度,$R$为气体常数。

可以通过研究气体微观特性,推导出不同热力学气体状态方程。

对于理想气体,由于气体分子之间没有相互作用力,可以用下列状态方程来描述$$PV=nRT,$$其中,$P$表示气体压强,$V$表示气体体积,$n$为摩尔数,$R$为气体常数,$T$为气体的热力学温度。

麦克斯韦速度分布定律麦克斯韦速度分布定律是描述气体分子运动速度分布的定律,在研究气体分子运动性质、气体热力学性质等方面有重要的应用。

气体动理论总结

气体动理论总结


1013 1.013105 760 1.38 1023 273
3.54 109 / m 3 十亿
大量、无规
统计方法
数学基础---概率论
12-2 物质的微观模型 统计规律性
气体动理论的基本观点
•分子的观点:宏观物体是由大量微粒——分子(或原子)组
成的。
•分子运动的观点:物体中的分子处于永不停息的无规则运动
气体分子
器 壁
大量气体分子对器壁持 续不断的碰撞产生压力
密集雨点对雨 伞的冲击力
单个分子
多个分子
平均效果
单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从大 量分子碰撞的总效果上来看,一个恒定的、持续的平均作用力。
2 理想气体压强公式简单推导
设 边长分别为 x、y 及 z 的长方体中
有 N 个全同的质量为 m 的气体分子,计
比例接近1/2
所谓统计规律,是指大量偶然事件整体所遵循的规律。 方法——求统计平均值
•统计规律有以下几个特点: (1)只对大量偶然的事件才有意义 (2)它是不同于个体规律的整体规律 (3)总是伴随着涨落
设 N i 为第 i格中的粒子数
粒子总数 N Ni
i
概率 粒子在第 i 格中出现的可能性大小
.. ..
.. ..
.. ..
.. ..
.. ..
.. ..
.. ..
.. ..
. .
.........
........
i
limNi N N
归一化条件
i
i
Ni iN
1
12-3 理想气体的压强公式
一 理想气体的微观模型
(1)分子可视为质点; 线度 d1010m

第四章气体动理论

第四章气体动理论

第四章气体动理论4.1 关于理想气体的基本假设是什么?【答】理想气体是气体分子运动论和热学所研究的,由大量做无规则热运动的分子组成的最简单的系统,它是客观实际存在的许多真实气体的理想化的物理模型。

关于理想气体的基本假设如下:(1)气体的密度很小,因而气体分子问的平均距离比,分子本身的几何线度大很多’(2)气体分子之间的相互作用力随分子间距离的增大,而急剧地减小,当分子问的距离超过分子本身的几何线度很。

多时,分子间的相互作用力变得非常小,以至于可以忽略不-计;(3)气体分子是完全弹性的刚性球,因此,气体分子之间的相互碰撞以及气体分子与容器壁的碰撞都是完全的弹-性碰撞;(4)气体分子之间的相互碰撞很少,即在绝大部分时间内,气体分子都是自由运动的。

也就是说,气体分子的运动轨道是由许多直线段组成的不规则的折线,各直线线段的长度比分子本身的几何线度大很多;(5)气体分子的运动速度很大,因此单位时间内气体分子之间的相互碰撞次数很多,在标准状态下,一般气体分子的运动速度为500米/秒左右,一个分子在1秒内所经历的碰撞次数为大约810次。

上述五条即是关于理想气体的基本假设,做了这样的基本假设后,气体的许多主要性质被突出了,例如,理想气体服从状态方程: PV=nRT这就为我们研究气体各状态参量——压强P、体积V和温度T之间的关系提供了方便。

做了上述基本假定之后,这样的理想气体虽然并不真实存在,它只是客观存在的真实气体的理想模型,但它与一般状态下的气体,例如,氢气、氨气和氧气等非常接近。

实际上,在压强不太高,温度不特别低的情况下,很多种真实气体都可以用理想气体来近似。

换句话说,由于对理想气体的基本假设是抓住了问题的本质,忽略了次要因素,因此,理想气体具有很好的普遍性和适用性,成为气体分子运动论和热学的典型的研究对象。

4.2 什么是动力学规律性?什么是统计规律性?【答】动力学规律性是从经典力学、经典电磁场理论以及其他物理学科的研究中总结出来的。

气体动理论 章节总结

气体动理论  章节总结

气体动理论 章节总结第四章 气体动理论1.平衡态 在没有外界影响的条件下,系统的宏观物理性质不随时间变化的状态。

2.热力学第零定律系统A和系统B分别与系统C处于热平衡,那么当系统A和系统B接触时,它们也必定处于热平衡。

3.理想气体的状态方程RT M m pV =式中,普适气体常量8.31J /(mol K)R ∙=玻耳兹曼常量231.3810J /Kk -=⨯NkT pV =或4.理想气体的压强公式k n p ε32=压强是单位时间单位面积所受大量分子的平均冲量。

5.理想气体的温度公式kT k 23=ε 温度是分子的平均平动动能的统计平均值,反映了系统内大量分子无规则运动的剧烈程度。

6.自由度确定物体位置的独立坐标数目。

单原子分子 3 0 3双原子分子 3 2 5多原子分子 3 3 6t r i 分子自由度平动转动总刚性气体分子的自由度7.能量均分定理温度为T的平衡态下,气体分子每个自由度的平均能量都相等,而且等于kT 21根据能量均分定理,如果一个气体分子的自由度是 ,则它的平均能量就是i kT i 2=ε理想气体的内能为8.理想气体的内能mol μRT i E 2μ=9.麦克斯韦速率分布律速率分布函数NdvdN v f =)(物理意义:速率在v 附近的单位速率区间的分子数占分子总数的百分比麦克斯韦速率分布函数222/32)2(4)(v e kT m v f kT mv -=ππ三种统计速率最概然速率M RT M RT m kT v p 41.122≈==平均速率M RT M RT m kT v 60.188≈==ππ方均根速率M RTM RTm kT v v 73.1332rms ≈===。

气体动理论知识点总结

气体动理论知识点总结

气体动理论知识点总结气体动理论是研究气体的微观运动状态及宏观性质的一门物理学理论,是现代物理学中较为重要的分支之一。

气体动理论不仅对实际问题的探究有着重要的作用,它的理论体系及方法也为其他学科提供了有力的支持。

下面将围绕着气体运动状态、气体的性质以及气体的热力学定律三个方面,介绍气体动理论中的相关知识点。

一、气体运动状态气体动理论认为,气体分子的运动状态决定了气体的宏观控制状态。

因此,研究气体分子的运动状态对于了解气体的性质及可控性具有重要的意义。

1.分子移动气体分子无序地、自由地运动,并且分子的速度是高度非一致性的。

分子的速度与温度、分子的种类有关。

分子受温度影响,速度随温度的升高而增加。

2.分子运动轨迹气体分子在空间中做无规则运动,但可以将其平均运动速度视为直线运动。

分子的运动具有随机性,在时间、位置上无法精确定位。

3.分子碰撞气体分子之间存在碰撞,碰撞时能量和动量都会发生变化,同时碰撞前和碰撞后分子的速度方向也会发生改变。

二、气体的性质气体的性质不仅涉及气体的物理状态,还涉及气体的化学性质,气体与其他物质的相互作用,气体的电学性质等方面,其中,最为重要的性质包括以下几个方面:1.流动性:气体具有流动性,能够流动并具有一定的流动性质。

2.扩散性:气体分子具有无序运动状态,具有自由的运动方式。

在一定条件下,气体分子能够通过物质间的空隙扩散到其他区域。

3.压缩性:气体分子间的间隔较大,气体分子之间的相互作用力较弱,分子之间可以变形并发生相对位移,气体具有较好的压缩性。

4.热膨胀性:在一定温度下,气体分子具有较大的运动能,随着温度的升高,气体分子之间的反向作用力会减小,会引起体积的增加。

5.气体的状态方程:气体在不同温度下具有不同的压强、体积关系,可以利用理想气体状态方程(P V/ nRT)来描述气体的状态。

三、气体的热力学定律气体动理论依据物理实验,建立了气体的热力学学说体系,包括状态方程、热力学过程、热力学定律等。

气体动理知识点总结

气体动理知识点总结

气体动理知识点总结1. 气体的运动气体是由大量微观粒子(分子或原子)组成的,这些微观粒子在空间中不断地做着无规则的热运动。

由于气体分子之间的热运动,气体具有压力、温度和体积等宏观性质。

气体的运动包括普通热运动和自由运动两种。

普通热运动是指气体分子在外力作用下做规则的运动,包括扩散、扩散误差和漂移等。

自由运动是气体分子在不受外力作用下的无规则运动。

气体分子的自由运动是非常快速和混乱的,其具体运动状态取决于气体的温度和压力。

2. 理想气体的状态方程理想气体是指在标准条件下(温度为0℃,压力为1大气压,体积为1摩尔),气体分子之间没有相互作用的气体。

理想气体的状态方程描述了气体的体积、压力和温度之间的关系:PV = nRT其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的绝对温度。

根据理想气体状态方程,当气体的温度和压力发生变化时,气体的体积也会相应发生变化。

3. 气体的分子速率气体分子的速率是指气体分子在空间中的速度。

根据气体分子速率分布定律,气体分子的速率服从麦克斯韦尔-玻尔兹曼分布,即速率的分布呈现高速和低速分子的形态。

麦克斯韦尔-玻尔兹曼分布可以用以下公式表示:f(v) = 4π(2πRT/M)^(1/2) × v^2 × exp(-Mv^2/2RT)其中,f(v)是速率为v的分子在速率范围内的概率密度,R是气体常数,T是气体的绝对温度,M是气体分子的摩尔质量。

从分布定律可以看出,气体分子的速率与气体的温度和摩尔质量有关,速率较高的分子比较少,速率较低的分子比较多。

4. 气体的分子碰撞在气体中,分子之间会不断地发生碰撞,并且碰撞的频率和能量会随着气体的温度和压力而发生变化。

气体分子碰撞的规律可以用分子平均自由程和碰撞概率来描述。

分子平均自由程是指气体分子在两次碰撞之间平均所走过的距离,它与气体的密度和分子速率有关。

碰撞概率是指在单位时间内,某个分子发生碰撞的概率,它与气体的密度和分子速率有关。

第4章气体动理论

第4章气体动理论

小球每次落入哪个狭槽是不
完全相同的,这表明在一次
实验中小球落入哪个狭槽中 是偶然的。 尽管一个小球落入哪个槽中 是偶然的,但大量小球的分 布规律则是确定的,即遵从
统计分布规律。
7
统计规律:当小球数N 足够大时小球的分布具有统计规律。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
子,如果分子有 t 个平动自由度,r 个转动自由度,则气体分 子的平均动能为
1 i ( t r ) kT kT 2 2
单原子分子
双原子分子
多原子分子
3 kT 2
5 kT 2
6 kT 2
27
★ 理想气体的内能 实际气体的内能 气体分子热运动的各种形式的动能和势能的总和。 平动动能 分子动能 转动动能 振动动能 分子振动势能
i i
于1,称为概率的归一化条件。
6
小球在伽尔顿板中的分布规律
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
单位: 8.31J · mol-1 · K-1
4
★ 统计规律
一定条件下,大量偶然随机事件的整体具有确定的规律
性,这种规律称为统计规律。
对单个分子运用力学规律,对大量分子求统计平均值, 从而建立大量分子微观量的统计平均值与系统宏观量之 间的关系。这种关系就是所要寻求的统计规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章
气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板
热平衡定律(
热力学第零定律)
实验表明:若 A 与C 热平衡 B 与C 热平衡
则 A 与B 热平衡
意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同
定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。

一切处于同一热平衡态的系统有相同的温度。

理想气体状态方程: 形式形式 n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数
在通常的压强与温度下,各种实际气体都服从理想气体状态方程。

§4-2 气体动理论的压强公式
1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等
k
j i iz iy ix i
v v v v ++=分子运动速度
单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。

从总的效果上来看,一个持续的平均作用力。

描述气体状态三个物理量: P,V T
12
2
ω=mv
有统计意义;
压强公式指出:有两个途径可以增加压强
1)增加分子数密度n 即增加碰壁的个数
2)增加分子运动的平均平动能 即增加每次碰壁的强度
思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。

从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区
别?
对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。

而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多;
另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。

§4-3 理想气体的温度公式
nkT
p =23
p =n ω
1. 反映了宏观量 T 与微观量w 之间
的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集
体行为 ,少数分子的温度无意义。

2. 温度的实质:分子热运动剧烈程度的宏观表现。

3. 温度平衡过程就是能量平衡过程。

二.气体分子运动的方均根速率
kT v m 2
32
1
2
=在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比
当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。

然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息
的。

m k T v v
x
===2231温度的微观本质:理想气体的温度是分子平均平动动能的量度
v nm P 2)3/1(=解:v 2)3/1(ρ=
§4-4 能量均分定理 理想气体内能
各种运动形式的能量分布、平均总能量均遵守统计规律。

各种平均能量按自由度均分 一.自由度
定义:确定一个物体的空间方位所需的最少的独立坐标数 二. 能量按自由度均分定理
分子的平均总动能:
温度公式
2222
113()222
x y z mv m v v v kT
ω==++=
单原子分子 i=3 ε=3kT/2 双原子分子 i=5 ε=5kT/2 多原子分子
i=6 ε
=6kT/2=3kT 三. 理想气体的内能 1)实际气体的内能:
所有分子的动能+所有分子内原子振动势能
+分子间相互作用势能: 与体积 有关
2) 理想气体内能:(分子数 N )模型:分子间无相互作用~无分子相互作用势能 理想气体内能是分子平动动能与转动动能之和
分子的自由度为i ,则一个分子能量为ikT/2, 1mol 理想气体,有个NA 分子,内能
M/M mol 摩尔的理想气体,其内能为
单原子分子3
2
mol M E RT
M =
5
2mol M E RT
M =刚性双原子分子刚性多原子分子3mol
M
E RT
M =温度 T 的单值函数

明:
理想气体的内能与温度和分子的自由度有关。

内能仅是温度的函数,即E=E(T),与P ,V 无关。

状态从T1→T2,
小 结
•理想气体的温度
kT v m 2
3
212=•
理想气体的内能
分子的平均动量
§4-5 麦克斯韦气体分子速率分布律 二. 分子的速率分布函数
N
N υd 用d v 去除得到一个新的关系
υ
υd ⎰

)(f 1
=2)f (v ) 的归一化条件
窄条:
N
N
v v N N v v f d d d d d )(=⋅=
分子速率在 v ——v +d v 区间内的概率
部分:
N
N N
N
v v f v v v v v v 2
12
1
2
1
d d )(→=
=

⎰区间的概率
—分子速率在21v v 3) 曲线下的面积
v+v 总面积:
1
d d )(0
===⎰
⎰∞

N
N
N N
v v f 归一化条件
v+
v 四.分子速率的三种统计平均值
1、最可几速率: 定义:与 f(v)极大值相对应的速率,称为最概然速率。

物理意义:若把整个速率范围划分为许多相等的小区间,则分布在vP 所在区间
的分子数比率最大。

v P
v
f(v)
vP 的值:
2. 平均速率: 大量气体分子速率的算术平均值叫做平均速率。

μ
πμ
πRT
RT
m
kT
v v vf v 60
.188d )(0
≈==
=
⎰∞
3 方均根速率:
m
kT v v f v v
3d )(0
22
==


μ
μ
RT
RT
m
kT
v 73
.1332≈==
三者关系:
2
v
v v p <
<分布曲线随 m ,T 变化讨论:
T 升高曲线峰值右移
,总面积不变,曲线变平坦
)
(v f 1P 2
P m 2
T 1
1
T v
1P 2
P T 2
T 一定,
m ↑
曲线峰值左移,总面积不变,曲线变尖锐。

()d Nf v v
()d
nf v v 的物理意义?
v v v d +→单位体积内,处于
速率间隔内的分子数;v 附近 速率间隔内的分子数
v v v
d +→p 分子速率在0
→v 区间的分子数
()d p
v Nf v v
⎰(())
N dN dN nf v dv V
N
V
=⋅=。

相关文档
最新文档