北师大版七年级数学上第三章整式及其加减测试题(满分120分)

合集下载

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)

北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.代数式1x , 2x +y , 13a 2b , x y π-, 54y x , 0.5 中整式的个数( ) A .3个 B .4个 C .5个 D .6个3.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,05.若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .116.设a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于自身的有理数,则a b c -+的值为 ( )A .2B .0C .0或2D .0或-27.如果0xy ≠,22103xy axy +=,那么a 的值为( ) A .-3 B .13- C .0 D .38.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-9.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )A .-4x 3y 2+3x 2y-5xy 3-1B .-5xy 3+3x 2y-4x 3y 2-1C .-1+3x 2y-4x 3y 2-5xy 3D .-1-5xy 3+3x 2y-4x 3y 210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m -二、填空题11.多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________. 12.计算42a a a +-的结果等于_____.13.已知2310x x -+=,则2395x x -+=_________.14.张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩___________________元钱(用含a ,b 的代数式表示). 15.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.16.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.三、解答题17.计算(1)()()33223410310a b b a b b -+-+; (2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.18.化简:(1)()()193213x x --+ (2)()()222233a b ab ab a b --+19.定义:若a b 2+=,则称a 与b 是关于1 的平衡数.()1 5与_________是关于1的平衡数;()273x -与________是关于1的平衡数;(用含x 的代数式表示)()3若()22a 2x 3x x =-+,()2b 43x 6x x =-++,判断a 与b 是否是关于1的平衡数,并说明理由.20.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________.(1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +- 118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.22.观察下列各式的计算结果:2113131124422-=-==⨯; 2118241139933-=-==⨯; 2111535114161644-=-==⨯; 2112446115252555-=-==⨯… (1)用你发现的规律填写下列式子的结果:1﹣216= × ;1﹣2110= × . (2)用你发现的规律计算:(1﹣212)×(1﹣213)×(1﹣214)×…×(1﹣212020)×(1﹣212021)×21(1)2022-.23.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.24.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.25.观察算式:213142⨯+==;224193⨯+==;2351164⨯+==;2461255⨯+==,…(1)请根据你发现的规律填空:681⨯+=()2;(2)用含n的等式表示上面的规律:;(n为正整数)(3)利用找到的规律解决下面的问题:计算:11111111132********⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭.26.如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是参考答案1.A2.B3.A4.A5.D6.C7.B8.D9.D10.B11.35ab4-12.5a13.214.(100-3a-2b)15.-316.−1或517.(1)32243a b a b-;(2)293 2x x--18.(1)3x-;(2)22ab-19.(1)-3;(2)3x5-;(3)20.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432121.(1)2687.y y x -+-(2)92.-22.(1)56,76,910,1110; (2)2023404423.(1)5xy +3y -1(2)-5 (3)35x =- 24.(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2; 25.(1)7;(2)n •(n +2)+1=(n +1)2;(3)9950. 26.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5。

北师大版七年级数学上册 第三章 整式及其加减 单元测试题(解析版)

北师大版七年级数学上册 第三章 整式及其加减 单元测试题(解析版)

北师大版七年级数学上册 第三章 整式及其加减 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.用含有字母的式子表示下面的数量关系:a 与b 的差除以4的商正确的是( )A . 4(a -b )B .C . 4abD . 2.给出下列式子:0,3a ,π,,1,3a 2+1,−,x1+y .其中单项式的个数是( ) A . 5 B . 1 C . 2 D . 33.单项式-3πxy 2z 3的系数和次数分别是( )A . -π,5B . -1,6C . -3π,6D . -3,7 4.如果单项式2anb 2c 是六次单项式,那么n 等于( )A . 6B . 5C . 4D . 35.多项式1+2xy -3xy 2的次数为( )A . 1B . 2C . 3D . 56.已知多项式5x 2ym +1+xy 2-3是六次多项式,单项式-7x 2n y 5-m 的次数也是6,则nm 等于( ) A . -8 B . 6 C . 8 D . 97.若-x 3ym 与xny 是同类项,则m +n 的值为( )A . 1B . 2C . 3D . 4 8.计算2m 2n -3nm 2的结果为( )A . -1B . -5m 2nC . -m 2nD . 不能合并9.-(2x -y )+(-y +3)去括号后的结果为( )A . -2x -y -y +3B . -2x +3C . 2x +3D . -2x -2y +3 10.李老师做了个长方形教具,其中一边长为2a +b ,另一边为a -b ,则该长方形周长为( ) A . 6a +b B . 6a C . 3a D . 10a -b二、填空题(共8小题,每小题3分,共24分)11.用含有字母的式子表示下面的数量关系:比x 的2倍少3的数.___________.12.一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为___________. 13.在a 2+(2k -6)ab +b 2+9中,不含ab 项,则k =___________.14.若单项式2xmy 与−x 2y 是同类项,则m =___________.15.单项式-4ab 、2ab 、-b 2的和是___________.16.化简:3(a -31b )-2(a +21b )=___________. 17.七年级一班有2a -b 个男生和3a +b 个女生,则男生比女生少___________人.18.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.三、解答题(共9小题,共66分)19.(12分)化简:(1)(-3x +y )+(4x -3y );(2)31mn 2−m 2n −21mn 2+2m 2n ; (3)(2xy -y )-(-y +yx );(4)5(3a 2b -ab 2)-(ab 2+3a 2b ).20.(6分)先化简2(a 2b +3ab 2)-3(a 2b -1)-2a 2b -2,再求值,其中a =-2,b =2.21. (8分)已知A =2xy -2y 2+8x 2,B =9x 2+3xy -5y 2.求:(1)A -B ;(2)-3A +2B .22. (6分)有理数a ,b ,c 在数轴上如图所示,试化简|2c -b |+|a +b |-|2a -c |.23. (6分)已知单项式−21x 4y 3的次数与多项式a 2+8am +1b +a 2b 2的次数相同,求m 的值.24. (6分)若|m -2|+(3n -1)2=0,试问:单项式4a 2bm+n-1与31a 2m-n+1b 4是否是同类项.25. (6分)有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =21,y =−1”.甲同学把“x =21”错抄成“x =−21”,但他计算的结果也是正确的,试说明理由,并求出这个结果.26. (8分)已知三角形的第一边长为3a +2b ,第二边比第一边短2a ,第三条边比第二边的2倍还多a-b.(1)求第二条边和第三条边;(2)求这个三角形的周长.27. (8分)已知多项式(2x2+ax-y+6)-(bx2-2x+5y-1).①若多项式的值与字母x的取值无关,求a、b的值;②在①的条件下,先化简多项式2(a2-ab+b2)-(a2+ab+2b2),再求它的值.答案解析1.【答案】D【解析】(a-b)÷4=.2.【答案】A【解析】单项式有:0,3a,π,1,−,共5个.3.【答案】C【解析】根据单项式系数、次数的定义,单项式-3πxy2z3的系数和次数分别是-3π,6.4.【答案】D【解析】因为单项式2anb2c是六次单项式,所以n+2+1=6,解得:n=3.5.【答案】C【解析】多项式1+2xy-3xy2的次数为3.6.【答案】C【解析】因为多项式5x2ym+1+xy2-3是六次多项式,单项式-7x2n y5-m的次数也是6,所以2+m+1=6,m=3,当m=3时,2n+5−m=6,n=2,故nm=23=8.7.【答案】D【解析】根据题意得:n=3,m=1,则m+n=4.8.【答案】C【解析】2m2n-3nm2=-m2n.9.【答案】B【解析】原式=-2x+y-y+3=-2x+3.10.【答案】B【解析】根据题意,长方形周长=2[(2a +b )+(a -b )]=2(2a +b +a -b )=2×3a =6a. 11.【答案】2x -3【解析】x ×2-3=2x -3. 12.【答案】-13x 8【解析】第7个单项式的系数为-(2×7-1)=-13,x 的指数为8,所以,第7个单项式为-13x 8. 13.【答案】3【解析】因为多项式a 2+(2k -6)ab +b 2+9不含ab 的项,所以2k -6=0,解得k =3.14.【答案】2【解析】因为单项式2xmy 与−x 2y 是同类项,所以m =2.15.【答案】-2ab -b 2【解析】-4ab +2ab +(-b 2)=-2ab -b 2.16.【答案】a -2b【解析】3(a -31b )-2(a +21b )=3a -b -2a -b =a -2b . 17.【答案】a +2b【解析】因为年级一班有2a -b 个男生和3a +b 个女生,所以3a +b -(2a -b )=(a +2b ).18.【答案】4x +6【解析】依题意得:第二队种的树的棵数为2x +8, 第三队种的树的棵数为21(2x +8)-6=x -2, 所以三队共种树x +(2x +8)+(x -2)=(4x +6)棵.19.【答案】解:(1)原式=-3x +y +4x -3y =x -2y ;(2)原式=-61mn 2+m 2n ; (3)原式=2xy -y +y -xy =xy ;(4)原式=15a 2b -5ab 2-ab 2-3a 2b =12a 2b -6ab 2.【解析】(1)(3)先去括号,然后合并同类项求解;(2)直接合并同类项求解.(4)先去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.20.【答案】解:原式=2a 2b +6ab 2-3a 2b +3-2a 2b -2=6ab 2-3a 2b +1,当a =-2,b =2时,原式=-48-24+1=-71.【解析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.21.【答案】解:由题意得:(1)A -B =(2xy -2y 2+8x 2)-(9x 2+3xy -5y 2)=2xy -2y 2+8x 2-9x 2-3xy +5y 2=-x 2-xy +3y 2;(2)-3A +2B =-3(2xy -2y 2+8x 2)+2(9x 2+3xy -5y 2)=-6xy +6y 2-24x 2+18x 2+6xy -10y 2=-4y 2-6x 2.【解析】根据题意可得:A -B =(2xy -2y 2+8x 2)-(9x 2+3xy -5y 2),-3A +2B =-3(2xy -2y 2+8x 2)+2(9x 2+3xy -5y 2),先去括号,然后合并即可.22.【答案】解:因为由数轴可知2c -b >0,a +b <0,2a -c <0,所以原式=(2c -b )+(-a -b )-(c -2a )=a -2b +c .【解析】先根据各点在数轴上的位置判断出各点的符号,再根据绝对值的性质去绝对值符号,合并同类项即可.23.【答案】解:因为单项式−21x 4y 3的次数与多项式a 2+8am +1b +a 2b 2的次数相同, 所以m +1+1=4+3,解得m =5.【解析】让多项式的最高次项的次数等于7即可.24.【答案】解:由题意得,m -2=0,3n -1=0,解得m =2,n =3, 则单项式4a 2bm+n-1为4a 2b 4,31a 2m-n+1b 4是31a 2b 4, 所以单项式4a 2bm+n-1与31a 2m-n+1b 4是同类项. 【解析】根据非负数的性质求出m 、n 的值,代入各个单项式,根据同类项的概念进行判断即可.25.【答案】解:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3,因为化简的结果中不含x,所以原式的值与x值无关,所以原式=-2×(-1)3=2.【解析】首先将原代数式去括号,合并同类项,化为最简整式为-2y3,与x无关.26.【答案】解:(1)第二条边长为3a+2b-2a=a+2b,第三条边长为2(a+2b)+(a-b)=2a+4b+a-b=3a+3b;(2)周长为3a+2b+a+2b+3a+3b=7a+7b.【解析】(1)根据三角形的第一边长为3a+2b,第二边比第一边短2a,可得第二条边=3a+2b-2a,合并同类项即可;根据第三条边比第二边的2倍还多a-b,可得第三条边=2(a+2b)+(a-b),去括号、合并同类项即可;(2)将这个三角形的三边相加即可.27.【答案】解:①(2x2+ax-y+6)-(bx2-2x+5y-1)=2x2+ax-y+6-bx2+2x-5y+1 =(2-b)x2+(a+2)x-6y+7,因为多项式的值与字母x的取值无关,所以a+2=0,2-b=0,解得a=-2,b=2.②2(a2-ab+b2)-(a2+ab+2b2)=2a2-2ab+2b2-a2-ab-2b2=a2-3ab,当a=-2,b=2时,原式=4-3×(-2)×2=16.【解析】①先把原式去括号,合并同类项,求出a、b的值即可;②先去括号合并,进一步代入数值求得答案即可.。

北师大版七年级上册数学第三章整式及其加减同步测试题

北师大版七年级上册数学第三章整式及其加减同步测试题

单元测试(三)整式及其加减(时刻:120分钟总分值:150分) 一、选择题(本大题共15小题,每题3分,共45分)1.以下各式中不是单项式的是( ) A.-a3B.-15C .0 D.-3a2.单项式-3xy2z3的系数是( ) A.-1 B.5 C.6 D.-3 3.某班数学爱好小组共有a人,其中女生占30%,那么女生人数是( )A.30%a B.(1-30%)a C.a30% D.a1-30%4.以下各组式子中,为同类项的是( )A.5x2y与-2xy2 B.4x与4x2 C.-3xy与32yx D.6x3y4与-6x3z45.当a=-1,b=2时,代数式a2b的值是( ) A.-2 B.1 C.2 D.-1 6.列式表示“比m的平方的3倍大1的数”是( )A.(3m)2+1 B.3m2+1 C.3(m+1)2 D.(3m+1)27.假设m,n为自然数,多项式x m+y n+4m+n的次数应是( )A.m B.n C.m,n中的较大数 D.m+n8.化简2x-(x-y)-y的结果是( ) A.3x B.x C.x-2y D.2x-2y 9.(玉林中考)以下运算中,正确的选项是( )A.3a+2b=5ab B.2a3+3a2=5a5 C.3a2b-3ba2=0 D.5a2-4a2=1 10.一个多项式减去x2-2y2等于x2-2y2,那么那个多项式是( )A.-2x2+y2 B.x2-2y2 C.2x2-4y2 D.-x2+2y211.以下判定错误的选项是( )A.多项式5x2-2x+4是二次三项式 B.单项式-a2b3c4的系数是-1,次数是9C.式子m+5,ab,-2,sv都是代数式D.多项式与多项式的和必然是多项式12.十位数字是x,个位数字是y的两位数是 ( )A.xy B.x+10y C.x+y D.10x+y13.(厦门中考)某商店举行促销活动,促销的方式是将原价x元的衣服以(45x-10)元出售,那么以下说法中,能正确表达该商店促销方式的是( )A.原价减去10元后再打8折 B.原价打8折后再减去10元C.原价减去10元后再打2折 D.原价打2折后再减去10元14.(湘西中考)已知x-2y=3,那么代数式6-2x+4y的值为( )A.0 B.-1 C.-3 D.315.下面一组按规律排列的数:0,2,8,26,80,…,那么第2 016个数是( ) A.32 016 B.32 015 C.32 016-1 D.32 015-1二、填空题(本大题共5小题,每题5分,共25分)16.去括号:-(3x-2)=________.17.请你结合生活实际,设计具体情境,说明以下代数式30a的意义:________________.18.关于有理数a,b,概念a⊙b=3a+2b,那么(x+y)⊙(x-y)化简后得________.19.当m=________时,代数式 2x2+(m+2)xy-5x不含xy项.20.假设用围棋子摆出以下一组图形:…(1) (2) (3)依照这种方式摆下去,第n个图形共用________枚棋子.三、解答题(本大题共7小题,共80分)21.(8分)化简以下各式:(1)a+2b+3a-2b; (2)2(a-1)-(2a-3)+3.22.(8分)先化简,再求值:(2m2-3mn+8)-(5mn-4m2+8),其中m=2,n=1.23.(10分)如下图:(1) 用代数式表示阴影部份的面积;(2) 当a=10,b=4时,求阴影部份的面积(π取3.14,结果精准到0.01).24.(12分)已知a,b,c在数轴上的位置如下图,求|b+c|-|a-b|-|c-b|的值.25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.(1)求3A+6B;(2)假设3A+6B的值与a的取值无关,求b的值.27.(16分)某农户承包荒山假设干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均天天出售1 000千克,需8人帮忙,每人天天付工资25元,农用车运费及其他各项税费平均天天100元.(1)别离用a,b表示两种方式出售水果的收入;(2)假设a=1.3元,b=1.1元,且两种出售水果方式都在相同的时刻内售完全数水果,请你通过计算说明选择哪一种出售方式较好.。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。

北师大版七年级数学上第三章整式及其加减测试题(满分120分)

北师大版七年级数学上第三章整式及其加减测试题(满分120分)

初中数学试卷七年级上数学第三章整式及其加减测试题(满分120分)学校 班级 座号 姓名 得分 一、填空题(每题3分,共28分)1. x 平方的3倍与5的差,用代数式表示为 . 2.化简)2(0y x --的结果是 . 3.代数式2421y xy +-是 项的和,各项的系数 . 4.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是 .5.请写出一个..系数为-7,且只含有字母x ,y 的四次单项式__________. 6.单项式232x y z -的系数是_______,次数是_______;7.代数式3457613a b ab ab ---+是_____次____项式,二次项是______,常数项是_____.8.如图是一数值运算程序,若输入的x 为5-,则输出的结果为_______.9.若225a b +=,则代数式()()22223223a ab b a ab b -----的值是_______.10当k=_______时,多项式2224335x xy y kxy -+-+与的和中不含xy 项。

11、当1x =时,代数式31px qx ++的值为2005,则当1x =-时,代数式31px qx ++的值为_________. 12.15-xa -1y 与-3x 2y b +3是同类项,则a +3b =__________.13.当242a ba b-=+时,代数式3(2)3(2)4(2)2a b a b a b a b -+++-的值是 . 14.376-+-y x 的相反数是 .二、选择题(每题3分,共30分)1、下面的式子中正确的是( )A 2321a a -= B. 527a b ab += C. 22322a a a -= D. 22256xy xy xy -=-2、下列各组中的两项不是同类项的是( )A. 223223x x -和 B.22a b ab 和 C.23232x y x y -和 D.5683-和3、下列去括号错误的是( ) A 、()22325325a a b c a a b c --+=-+-B.()()22523523x x y z u x x y z u +-+--=-+-+ C.()22231231m m m m --=--D.()()222222x y x y x y x y ----+=-++- 4、在31y +,31m +,2x y -,1abc-,8z -,0中,整式的个数是( ) A.6 B.3 C.4 D.5 5、已知623123m nx y x y -和是同类项,则29517m mn --的值是( ) A 、-1 B.-2 C.-3 D.-4 6.已知A=53a b -,B=64a b -+,则A-B 等于( ) A 、a b -+ B.11a b + C.117a b - D.7a b -- 7.在下列式子12ab ,2a b +,ab 2+b +1,32x y +,x 2+x 3-6中,多项式有( ).A .2个B .3个C .4个D .5个8A.861B.863C.865D.8679.已知a -7b =-2,则4-2a +14b 的值是( ).A .0B .2C .4D .810.已知A =a 3-2ab 2+1,B =a 3+ab 2-3a 2b ,则A +B =( ).A .2a 3-3ab 2-3a 2b +1B .2a 3+ab 2-3a 2b +1C .2a 3+ab 2-3a 2b +1D .2a 3-ab 2-3a 2b +111.数学课上,老师讲了多项式的加减,放学后,小刚回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题22221131342222x xy y x xy y ⎛⎫⎛⎫-+---+-=- ⎪ ⎪⎝⎭⎝⎭x 2+________+y 2空格的地方被钢笔水弄污了,那么空格中的一项是( ).A .-7xyB .7xyC .-xyD .xy12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n 边形“扩展”而来的多边形的边数为( ).A .n (n -1)B .n (n +1)C .(n +1)(n -1)D .n 2+213.下列各说法中,错误的是( ) A.代数式的意义是的平方和 B.代数式的意义是5与的积C.的5倍与的和的一半,用代数式表示为25y x + D.比的2倍多3的数,用代数式表示为14.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( ) A.1B.23b +C.23a -D.-115.在排成每行七天的日历表中取下一个33⨯方块,若所有日期数之和为189,则的值为( ) A.21B.11C.15D.9三、解答题(共62分)1化简:(每小题7分,共28分) (1)()22112532ab a b ab a b ⎛⎫-+-+-⎪⎝⎭(2)()32645x x x ⎡⎤---+⎣⎦(3)()()5273410x y x y --- (4)2222225334532a b ab ab a b ab a b ⎡⎤⎛⎫--+-- ⎪⎢⎥⎝⎭⎣⎦2.、先化简,后求值:(每小题8分,共16分) (1)()()()()22113224a b a b a b a b ---+-+-,其中4a b -=(2)()()22232235x y xy x y xy x y ----,其中11,6x y =-=3.已知()()22210a b -++=,求代数式22222133542a b ab a b ab ab ab a b +-++-+的值。

2022学年北师大版七年级数学上册第三章《整式及其加减》测试卷附答案解析

2022学年北师大版七年级数学上册第三章《整式及其加减》测试卷附答案解析

2022-2023学年七年级数学上册第三章《整式及其加减》测试卷一、单选题1.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到+++a b c d 的值为()A .355B .356C .435D .4362.若单项式25m x y +-与单项式2136n y x -的和仍为单项式,则2m n -的值为()A .6B .1C .3D .1-3.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是()A .51x --B .51x +C .131x --D .131x +4.下列结论正确的个数是()①2-不是单项式②多项式3527x y xy --是三次三项式③232π3a b c的系数是23,次数是6④233m n -的次数为4A .0个B .1个C .2个D .3个5.多项式23211332x y xy -+的次数为()A .5B .3C .7D .86.已知53x y -=-,则55x y -+的值为()A .0B .2C .5D .87.一本笔记本的原价为a 元,降价后每本比原来便宜了b 元,小明买了4本这样的笔记本,则他一共花费了()A .()44a b -元B .()4a b -元C .()4a b -元D .4b 元8.按如图所示的运算程序,当输入3x =,6y =时,输出的结果为()A .1B .6C .45D .819.若()22m -与3n +互为相反数,则m n 的值是()A .8-B .8C .9-D .910.当=1x -时,3238ax bx -+的值为18,则1282b a -+的值为()A .40B .42C .46D .56二、填空题11.在式子1x,1x y ++,2022,a -,23x y -,13x +中,整式的个数是______个.12.已知520a b ++-=,则27a b -+的值为___________13.a ,b 两数平方的和除以3的商可以表示为______.14.已知有理数a 、b 、c 满足1,2,3a b c ===,且a b c a b c +-=+-,则a b c ++=__________.15.如关于x ,y 的多项式2347514x y mxy y xy +-+化简后不含二次项,则m =______.16.已知关于x 的多项式||2(4)31m m x x ---+是二次三项式,则m =________,当=1x -时,该多项式的值为________.17.对于任何有理数,我们规定符号a b cd的意义是a b ad bc c d =-,如121423234=⨯-⨯=-,当23(1)0x y -++=时,2221x y x --值为______.18.规定:()3f x x =-,()2g y y =+,例如()2235f -=--=,()2220g -=-+=.则式子()()11f x g x -++的最小值是__________.三、解答题19.已知()2230a b -++=,求代数式2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦的值.20.已知代数式2=2+3+21A x xy y -,22B x xy x -=++.(1)当=1x -,2y =时,求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.21.某超市销售茶壶、茶杯,每只茶壶定价20元,每只茶杯定价4元.今年“双十一”期间开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到这家超市购买6只茶壶和x 只茶杯茶(杯数多于6只).(1)用含x 的代数式分别表示方案一与方案二各需付款多少元?(2)当25x =时,若规定每位顾客只能在以上两种方案中任选一种,请通过计算说明该顾客选择上面两种购买方案中哪一种更省钱?22.某超市新进了一批百香果,进价为每斤8元,为了合理定价,在前五天试行机动价格,售出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录的前五天百香果的销售单价和销售数量如下表所示,第1天第2天第3天第4天第5天销售单价(元)1+2-3+1-2+销售数量(斤)2035103015(1)前5天售卖中,单价最高的是第___________天;单价最高的一天比单价最低的一天多___________元;(2)求前5天售出百香果的总利润;(3)该超市为了促销这种百香果,决定推出一种优惠方案:购买不超过6斤百香果,每斤12元,超出6斤的部分,每斤9.6元.若嘉嘉在该超市买(6)x x >斤百香果,用含x 的式子表示嘉嘉的付款金额.23.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过10吨,则每吨水收费2.6元;若每户每月用水超过10吨,则超过的部分按每吨3元收费.8月份李老师家里用水a 吨(10a >).(1)请用含a 的代数式表示李老师8月份应交的水费.(2)当13a =时,求李老师8月份应交水费多少元?24.已知若a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022.(1)直接写出a b +,cd ,m 的值;(2)求a bm cd m+++的值.25.已知多项式2134331m x y x y x +-+--是五次四项式,单项式333n m x y z -与该多项式的次数相同.(1)求m 、n 的值.(2)若2|1|(2)0x y -+-=,求这个多项式的值.26.阅读下面的材料,完成相关的问题.在学习绝对值时,我们已经知道绝对值的几何含义,如|5-1|表示5,1在数轴上对应的两点之间的距离;|5+1|=|5-(-1)|,所以|5+1|表示5,-1在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A 、B 在数轴上分别表示数m ,n ,那么点m ,n 之间的距离等于|m -n |.(1)利用数轴探究:①若点P 表示数2,则在同一数轴上到点P 的距离为5个单位长度的点表示的数是;②|x +3|+|x -2|有最值(填“大”或“小”),此时整数x 的值为;(2)若点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x .若12PM PN +=,则x 的值为;(3)已知多项式32235x y xy --的常数项是a ,次数是b ,a 、b 两数在数轴上所对应的点分别为A 、B ,若点A ,点B 同时沿数轴正方向运动,点A 的速度是点B 的3倍,且2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,求点B 的速度.27.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如表(注:水费按一个月结算一次):请根据价目表的内容解答下列问题:每月用水量(m 3)单价(元/m 3)不超出26m 3的部分3超出26m 3不超出34m 3的部分4超出34m 3的部分7(1)填空:若该户居民1月份用水20立方米,则应收水费元;若该户2月份用水30立方米,则应收水费元;(2)若该户居民3月份用水x 立方米(其中2634x £<),则应收水费多少元?(结果用含x 的代数式表示)(3)若该户居民3月份用水a 立方米(其中34a >),则应收水费多少元?(结果用含a 的代数式表示)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】.【提出问题】两个不为0的有理数a ,b 满足a ,b 同号,求a a b b+的值.【解决问题】解:由a 、b 同号且都不为0可知a 、b 有两种可能:①a 、b 都是正数:②a 、b 都是负数.①若a 、b 都是正数,即0a >,0b >,有a a =及b b =,则112aa bba b++==+=;②若a 、b 都是负数,即0a <,0b <,有a a =-及b b =-,()()()()112a b a b a b a b--+=+=-+-=-;所以a a bb+的值为2或2-.【探究】请根据上面的解题思路解答下面的问题:(1)已知3a =且7b =,且a b <,求a b +的值.(2)两个不为0的有理数a ,b 满足a ,b 异号,求a a b b+的值.(3)若0abc >,则||||||a b c a b c++的值可能是多少?参考答案:1.D2.D3.A4.B5.A6.D7.A8.A9.D10.B11.512.-513.223a b +14.4-或0或615.2-16.4-4-17.28-18.719.解:2222332232a b ab ab a b ab ab⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦()222232233a b ab ab a b ab ab =--+++222232233a b ab ab a b ab ab =-+--+2ab ab =+,∵()2230a b -++=,()22030a b -≥+≥,,∴()22030a b -=+=,,∴2030a b -=+=,,∴23a b ==-,,∴原式()()2232318612=⨯-+⨯-=-=.20.(1)解:由题意可得,22223212(2)A B x xy y x xy x -=++---++2223212224x xy y x xy x =++--+--5225xy x y =-+-,当=1x -,2y =时,252255(1)22(1)225102459A B xy x y -=-+-=⨯-⨯-⨯-+⨯-=-++-=-;(2)解:由题意可得,2(52)25A B x y y -=-+-,∵2A B -的值与x 的取值无关,∴520y -=,解得:25y =;21.(1)解:某顾客计划到这家超市购买6只茶壶和x 只茶杯(茶杯数多于6只),根据题意可得:方案一:()()62046496x x ⨯+-=+元;方案二:()()620490% 3.6108x x ⨯+⨯=+元;(2)当25x =时,方案一需付款42596196⨯+=(元),方案二需付款3.625108198⨯+=(元),∵196198<,∴选择方案一更省钱.22.、(1)解:∵+3+2+1>1>2>>--,∴前5天售卖中,单价最高的是第3天;∵+3(2)=5--∴价最高的一天比单价最低的一天多5元,故答案为:3,5;(2)解:以10元为标准每斤百香果所获的利润为108=2-(元),前5天售出百香果的总利润为:20(12)35(22)10(32)30(12)15(22)⨯++⨯-++⨯++⨯-++⨯+=203350105301154⨯+⨯+⨯+⨯+⨯=200(元),答:前5天售出百香果的总利润为200元;(3)解:根据题意得,()()1269.669.614.4x x ⨯+-=+元,即嘉嘉在该超市买(6)x x >斤百香果,付款金额为()9.614.4x +元.23.、(1)()26310a +-(2)当13a =时())26310(35a +-=元24.(1)解: a b 、互为相反数,、c d 互为倒数,m 的绝对值为2022,012022a b cd m ∴+===±,,;(2)解:当2022m =时,02022120232022a b m cd m +++=++=,当2022m =-时,02022120212022a b m cd m +++=-++=--,∴a bm cd m+++的值为2023或2021-.25.、解:(1)∵多项式2134331m x y x y x +-+--是五次四项式,∴13m +=,解得2m =,∵单项式333n m x y z -与该多项式的次数相同,∴3315n m +-+=,即33215n +-+=,解得1n =,∴2m =,1n =;(2)∵2|1|(2)0x y -+-=,∴10x -=,20y -=,∴1x =,2y =,由(1)得这个多项式为:2334331x y x y x -+--,∴2334331x y x y x -+--=233431212311-⨯⨯+⨯-⨯-=24231-+--=26-,所以这个多项式的值为26-.26.、解:(1)①设在同一数轴上到点P 的距离为5个单位长度的点表示的数是x ,由题意得:25x -=,∴25x -=±,∴3x =-或7x =,故答案为:-3或7;②当2x >时,3232215x x x x x ++-=++-=+>;当3x <-时,()()3232215x x x x x ++-=-+--=-->;当32x -≤≤时,()32325x x x x ++-=+--=;∴32x x ++-有最小值,此时32x -≤≤;故答案为:小,32x -≤≤;(2)∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-2,动点P 表示的数为x ,∴4PM x =-,2PN x =+,∵12PM PN +=,∴4212x x -++=,当>4x 时,42422212x x x x x -++=-++=-=,解得7x =;当<2x -时,()()42422212x x x x x -++=---+=-+=,解得5x =-;当24x -≤≤时,()()4242612x x x x -++=--++=≠;∴综上所述,5x =-或7x =,故答案为:-5或7;(3)∵多项式32235x y xy --的常数项是a ,次数是b ,∴53a b =-⎧⎨=⎩,设B 的运动速度为v ,则A 的运动速度为3v ,则2s 后A 表示的数为56v -+,B 表示的数为32v +,∴B 到原点的距离32v =+,A 到原点的距离为56v -+,∵2秒后,使点B 到原点的距离是点A 到原点的距离的2倍,∴32=256v v +-+,解得12v =或1310v =.27.(1)∵2026<∴用水20立方米,则应收水费为20360⨯=元;∵263034<<∴用水30立方米,则应收水费为()2633026494⨯+-⨯=元;故答案为:60;94.(2)依题意得:应收水费为326426x ´+´-()426x -=()元.故应收水费426x -()元;(3)依题意得:应收水费为32643426734a ´+´-+-()()7128a -=()元.故应收水费7128a -()元.28.(1)解:∵3a =,7b =,∴3a =或3-,7b =或7-,∵a b <,∴3a =,7b =或3a =-,7b =,当3a =,7b =时3710a b +=+=,当3a =-,7b =时374a b +=-+=,综上,a b +的值10或4;(2)解:由a 、b 异号,可知:①0a >,0b <;②a<0,0b >,当0a >,0b <时,110a ba b +=-=;当a<0,0b >时,110a ba b+=-+=,综上,a ab b+的值为0;(3)解:由题意得:a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:||||||1113a b c a b ca b c a b c++=+=++=;②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:||||||1111a b c a b c a b c a b c --++=++=--=-所以:||||||a b c a b c++的值为3或1-.。

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案一、单选题 1.按照如图所示的运算程序,能使输出y 的值为5的是( )A .m =1,n =4B .2,5m n ==C .m =5,n =3D .m =2,n =2 2.关于代数式353a +,下列说法中正确的是( ) A .它的一次项系数是1B .它的常数项是5C .它是一个单项式D .它的次数是33.下列各组代数式:(1)a b -与a b --;(2)a b +与a b --;(3)1a +与1a -;(4)a b -+与a b -,其中互为相反数的有( )A .(2)(4)B .(1)(2)C .(1)(3)D .(3)(4)4.下列说法中正确的是( )A .a -表示负数;B .若x x =,则x 为正数C .单项式22xy 9-的系数为2- D .多项式2223a b 7a b 2ab 1-+-+的次数是45.若单项式3a m+1b 与-b n -1a 2m -2的和仍是单项式,则m ,n 的值分别为( )A .1,0B .3,0C .3,2D .1,26.下列从左到右的变形是因式分解的是( )A .B .C .D .7.1x 与2x ,3x …202x 是202个由1和1-组成的数,且满足12320222x x x x +++⋅⋅⋅+=,则()()()()22221232021111x x x x -+-+-+⋅⋅⋅+-的值为( ) A .408 B .462 C .360 D .3688.下列各组代数式中是同类项的是( )A .234a b -34ab -B .232x y -与323x yC .3512m n -与537n m - D .a 与c 9.某服装店出售一件衣服,标价为m 元,由于市场行情的变化,服装店进行了一次调价,在此基础上又进行了第二次调价,下列四种方案中,两次调价后售价最低的是( )A .第一次打八折,第二次打八折B .第一次提价30%,第二次打六折C .第一次提价50%,第二次降价50%D .第一次提价20%,第二次降价30%10.观察下列等式:133= 239= 3327= 4381= 53243= 63729= 732187=…解答下列问题:234202333333++++的末位数字是( )A .0B .2C .3D .9二、填空题11.观察2,﹣3,4,﹣5,6,﹣7,…这一列数,你能发现它们排列的规律吗?请根据你发现的规律,试写出第)21x ++=322221+-+-+23,12-…第10个数字是的值是、d 互为倒数,m 的绝对值等于.已知一个两位数,它的个位数字是x ,十位数字是三、解答题19.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?20.观察下列按一定规律排列的三行数:第一行:﹣2,4,﹣8,16,﹣32,64,﹣128…第二行:3,9,﹣3,21,﹣27,69,﹣123…第三行:4,﹣2,10,﹣14,34,﹣62,130…(1)第一行数中的第11个数是 ;(2)第三行数中的第n 个数是 (用含n 的式子表示);(3)取每行数中的第m 个数,是否存在m 的值,使这三个数的和等于255?若存在,求出m 的值,若不存在,说明理由.21.已知:有理数a 、b 、c 在数轴上的位置如图所示,且c a >.(1)填空:a =___________;c =___________;ac =___________(2)化简:b c a c a b -++--22.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为m r ,广场长为m a ,宽为m b .(m 为单位米)(1)列式表示广场空地的面积;参考答案: 1.D2.A3.A4.D5.C6.D7.C8.C9.A10.D11.﹣10112.113.1或3-/3-或1 14. 11n x +-/11n x +-+ 21213+ 15.15- 16.1617.13或7 18.11x +11y/11y+11x 19.(1)阴影部分面积为()2244a b a a b ππ+--;(2)阴影部分面积为17402π- 20.(1)-2048;(2)()22n --+;(3)不存在21.(1),,a c ac --(2)2c -22.(1)()22m ab r π-(2)()220000100m π- 23.(1)968-;(2)252ab -24.(1)666x y xy +-(2)9(3)6。

北师大版初中数学七年级上册《第3章 整式及其加减》单元测试卷(含答案解析

北师大版初中数学七年级上册《第3章 整式及其加减》单元测试卷(含答案解析

北师大新版七年级上学期《第3章整式及其加减》单元测试卷一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是人.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为.8.如图,图中阴影部分的面积是.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=.10.按照如图操作,若输入x的值是9,则输出的值是.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需元.12.用代数式表示:x的30%除5a的商.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有个.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=.18.单项式πr3h的系数是,次数是.多项式9x2y3﹣2x3y+5的次数是.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有(填序号).20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为.22.多项式2x4﹣3x5﹣5是次项式,最高次项的系数是,常数项是.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:.24.多项式2ab﹣a2b的次数是,单项式的系数是,﹣1的倒数是.25.当自然数a<b时,x a+y b+3a+b是次多项式.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有个.27.单项式﹣的系数是.28.单项式的次数是.系数是.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有.(填序号)30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有个.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为.44.去括号:2xy﹣(3xy﹣3y2+5).45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是.北师大新版七年级上学期《第3章整式及其加减》单元测试卷参考答案与试题解析一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有①②(填写序号)【分析】根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c,书写正确;⑤;书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②共2个.故答案为:①②.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是5.【分析】直接利用三次二项式的定义进而分析得出答案.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.【点评】此题主要考查了代数式,正确把握代数式的次数与系数的确定方法是解题关键.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义连续三个整数的乘积.【分析】根据代数式的结构即可得出答案.【解答】解:由于n为整数,所以n(n+1)(n+2)表示连续三个整数的乘积故答案为:连续三个整数的乘积【点评】本题考查代数式,解题的关键是正确理解题意,本题属于基础题型.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是3.【分析】先求出3x2﹣5x=﹣2,再变形后代入,即可求出答案.【解答】解:根据题意得:3x2﹣5x+3=1,3x2﹣5x=﹣2,所以6x2﹣10x+7=2(3x2﹣5x)+7=2×(﹣2)+7=3,故答案为:3;【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于6.【分析】对题意进行分析,x=﹣2,mx3+2x2+nx+4=18,可求出8m+2n的值,然后将x=2代入,即可求得结果.【解答】解:当x=﹣2,mx3+2x2+nx+4=18,则8m+2n=﹣6,将8m+n=﹣6,x=2代入,可得:mx3+2x2+nx+4=6,故答案为:6.【点评】本题考查整式的加减,看清题中,弄清各个量的关系即可.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是4a人.【分析】直接利用女生人数除以所占百分比进而得出答案.【解答】解:∵体校里男生人数占学生总数的75%,女生人数是a,∴学生总数是:a÷(1﹣75%)=4a.故答案为:4a.【点评】此题主要考查了列代数式,正确理解题意是解题关键.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为1.【分析】根据题意找出规律即可求出答案.【解答】解:第一次输出为2,第二次输出为1,第三次输出为4,第四次输出为2,第五次输出为1,第六次输出为4,……从第三次起开始循环,∴(2018﹣2)÷3=672 (2)故第2018次输出的结果为:1故答案为:1.【点评】本题考查数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.8.如图,图中阴影部分的面积是 5.7mn.【分析】直接利用总面积减去空白面积进而得出答案.【解答】解:阴影部分面积为:6mn﹣0.3nm=5.7mn.故答案为:5.7mn.【点评】此题主要考查了列代数式,正确表示矩形面积是解题关键.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=2.【分析】把a﹣b=﹣2代入计算即可求出值.【解答】解:把a﹣b=﹣2代入(a﹣b)2﹣(b﹣a)=4﹣2=2,故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.按照如图操作,若输入x的值是9,则输出的值是193.【分析】根据题意列出代数式,将x=9代入计算即可求出值.【解答】解:根据题意得:(x+5)2﹣3,当x=9时,原式=(9+5)2﹣3=196﹣3=193.故答案为:193.【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需(4m+7n)元.【分析】买一个篮球需要m元,则买4个篮球需要4m元,买一个足球需要n 元,则买7个足球需要7n元,然后将它们相加即可.【解答】解:∵买一个篮球需要m元,买一个足球需要n元,∴买4个篮球和7个足球共需(4m+7n)元.故答案为(4m+7n).【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.12.用代数式表示:x的30%除5a的商.【分析】根据题意列出代数式即可得出答案【解答】解:x的30%可表示为30%x,x的30%除5a的用代数式可表示为:.故答案为:可表示为:.【点评】本题主要考查了列代数式,正确理解题意是关键.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有6个.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:题中的代数式有:0,,2x2﹣3x+11,,﹣y,6π,共6个.故答案为:6.【点评】考查了代数式,注意:代数式中不含有“>”,“=”号.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=3.【分析】将x2﹣2x=1代入多项式5+4x﹣2x2即可求出答案.【解答】解:由题意可知:x2﹣2x=1,∴原式=5+2(2x﹣x2)=5﹣2(x2﹣2x)=5﹣2×1=3,故答案为:3【点评】本题考查代数式求值,解题的关键是将x2﹣2x看成一个整体,本题属于基础题型.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为﹣2018.【分析】将x=1代入多项式px3+qx+1后可求出p+q的值,然后将x=﹣1代入px3+qx+1即可求出答案.【解答】解:将x=1代入多项式px3+qx+1,得:p+q+1=2020,∴p+q=2019,将x=﹣1代入多项式px3+qx+1,∴﹣p﹣q+1=﹣(p+q)+1=﹣2018.故答案为:﹣2018【点评】本题考查代数式求值,解题的关键是熟练运用有理数的运算,本题属于基础题型.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为﹣m3n+2m2n3+3mn2﹣2.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【解答】解:多项式2m2n3+3mn2﹣2﹣m3n的各项为:2m2n3,3mn2,﹣2,﹣m3n按m降幂排列为:﹣m3n+2m2n3+3mn2﹣2.故答案为:﹣m3n+2m2n3+3mn2﹣2.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=﹣2.【分析】直接利用多项式的定义分析得出答案.【解答】解:∵多项式3a4b m﹣a2b+1是六次三项式,∴4+m=2,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.18.单项式πr3h的系数是π,次数是4.多项式9x2y3﹣2x3y+5的次数是5.【分析】直接利用单项式以及多项式的次数确定方法分析得出答案.【解答】解:单项式πr3h的系数是:π,次数是:4;多项式9x2y3﹣2x3y+5的次数是:5.故答案为:π,4,5.【点评】此题主要考查了多项式以及单项式,正确把握相关次数确定方法是解题关键.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有①③④⑥(填序号).【分析】直接利用多项式的定义分析得出答案.【解答】解:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有:①a+2b;③;④+5;⑥x2+x,故答案为:①③④⑥.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为1.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,∴b=4,a=1,则a b的值为:1.故答案为:1.【点评】此题主要考查了多项式,正确把握多项式的次数是解题关键.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为28•x7.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2=(﹣1)1•21•x0;4x=(﹣1)2•22•x1;﹣8x3=(﹣1)3•23•x2;16x4=(﹣1)4•24•x3;∴第8个单项式为:(﹣1)8•28•x7=28•x7.故答案为:28•x7.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.22.多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5.【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.【解答】解:多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5;故答案为:五;三;﹣3;﹣5【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:﹣y3+xy2﹣x3y+2x2.【分析】按字母y的指数从大到小排列即可.【解答】解:多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列为:﹣y3+xy2﹣x3y+2x2故答案为:﹣y3+xy2﹣x3y+2x2【点评】此题主要考查了多项式,关键是掌握降幂排列的定义.24.多项式2ab﹣a2b的次数是3,单项式的系数是,﹣1的倒数是﹣.【分析】直接利用多项式的次数确定方法以及系数的确定方法和倒数的定义分别分析得出答案.【解答】解:多项式2ab﹣a2b的次数是:3,单项式的系数是:,﹣1的倒数是:﹣.故答案为:3,,﹣.【点评】此题主要考查了多项式以及倒数和单项式,正确把握相关定义是解题关键.25.当自然数a<b时,x a+y b+3a+b是b次多项式.【分析】直接利用多项式的次数确定方法得出答案.【解答】解:当自然数a<b时,x a+y b+3a+b是b次多项式.故答案为:b.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有3个.【分析】根据几个单项式的和叫做多项式进行分析即可.【解答】解:多项式有1﹣x﹣5xy2、6xy+1、a2+b2这3个,故答案为:3.【点评】此题主要考查了多项式,关键是掌握多项式定义.27.单项式﹣的系数是﹣.【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.28.单项式的次数是6.系数是.【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式的次数是:6,系数是:.故答案为:6,.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有(1)、(2)、(3)、(5)、(6)、(8).(填序号)【分析】利用整式的定义判断得出即可.【解答】解:(1),(2)m,(3),(5)2m+1,(6),(8)x2+2x+都是整式,故整式有(1)、(2)、(3)、(5)、(6)、(8).故答案为:(1)、(2)、(3)、(5)、(6)、(8).【点评】此题主要考查了整式的定义,正确把握整式的定义是解题关键.30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有两个.【分析】根据单项式与多项式统称为整式,可得答案.【解答】解:①m是整式;②x+5=7是方程,不是整式;③2x+3y是整式;④m>3是不等式;⑤是分式,不是整式,故答案为:两.【点评】本题考查了整式,单项式与多项式统称为整式,注意等式、不等式都不是整式,是分式,不是整式.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为6.【分析】直接利用同类项的定义得出m,n的值进而得出答案.【解答】解:∵单项式5x4y和7x n﹣1y m是同类项,∴4=n﹣1,1=m,解得:n=5,则m+n的值为:6.故答案为:6.【点评】此题主要考查了同类项,正确把握定义是解题关键.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为x﹣1.【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:∵一个多项式加上多项式2x﹣1后得3x﹣2,∴这个多项式为:3x﹣2﹣(2x﹣1)=x﹣1.故答案为:x﹣1.【点评】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为﹣2.【分析】原式去括号变形后,将已知等式代入计算即可求出值.【解答】解:∵a+b=5,c﹣d=﹣3,∴原式=d﹣a﹣b﹣c=﹣(a+b)﹣(c﹣d)=﹣5+3=﹣2,故答案为:﹣2【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=5或﹣1.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,即可求得m、n的值,然后代入数值计算即可求解.【解答】解:∵单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,∴单项式(n+3)x3y2m和单项式﹣2x|n|y4是同类项,则|n|=3,2m=4,∴n=±3,m=2,∴m+n=5或﹣1,故答案为:5或﹣1.【点评】本题主要考查合并同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是2.【分析】直接利用多项式中不含xy项,得出k﹣2=0,进而得出答案.【解答】解:∵多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,∴kxy﹣2xy=0,解得:k=2.故答案为:2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为9.【分析】直接利用合并同类项法则将原式变形,进而把已知代入求出答案.【解答】解:(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6=(+0.75)(x﹣y)2+(﹣2.3+)(x﹣y)﹣6=(x﹣y)2﹣2(x﹣y)﹣6,∵x=y﹣3,∴x﹣y=﹣3,∴原式=(﹣3)2﹣2×(﹣3)﹣6=9+6﹣6=9.故答案为:9.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为x3﹣3x2y.【分析】根据题意列出多项式相减的式子,再去括号,合并同类项即可.【解答】解:∵一个多项式加上3x2y﹣3xy2得x3﹣3xy2,∴这个多项式=(x3﹣3xy2)﹣(3x2y﹣3xy2)=x3﹣3xy2﹣3x2y+3xy2=x3﹣3x2y.故答案为:x3﹣3x2y.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.【分析】(1)先化简4A﹣(3A﹣2B),再把A、B的值代入计算即可;(2)根据“式子的值与a的取值无关”得到关于b的一元一次方程,求解即可.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+;(2)因为4ab﹣2a+=(4b﹣2)a+,又因为4ab﹣2a+的值与a的取值无关,所以4b﹣2=0,所以b=.【点评】本题考查了整式的加减.解决本题(2)的关键是理解结果与a无关.与a无关的意思是含该未知数的项的系数为0.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)【分析】先去括号,再合并同类项即可求解.【解答】解:3(4x2﹣3x+2)﹣2(1﹣4x2+x)=12x2﹣9x+6﹣2+8x2﹣2x=20x2﹣11x+4.【点评】考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于 4.5.【分析】此题可根据多项式3x2﹣2(5+y﹣3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.【解答】解:∵3x2﹣2(5+y﹣3x2+mx2)=3x2﹣10﹣2y+6x2﹣2mx2,=(3+6﹣2m)x2﹣2y﹣10,此式的值与x的值无关,则3+6﹣2m=0,解得m=4.5.故答案为:4.5.【点评】本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是﹣5x+3y.【分析】先根据题意求出多项式A,然后再求A﹣B.【解答】解:由题意可知:A+B=x﹣y,∴A=(x﹣y)﹣(3x﹣2y)=﹣2x+y,∴A﹣B=(﹣2x+y)﹣(3x﹣2y)=﹣5x+3y.故答案为:﹣5x+3y.【点评】本题考查多项式的加减运算,注意加减法是互为逆运算.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为11x2+4x+11.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2A+B=9x2﹣2x+7+2(x2+3x+2)=9x2﹣2x+7+2x2+6x+4=11x2+4x+11,故答案为:11x2+4x+11【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为1.【分析】设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S),然后去括号后合并即可.【解答】解:设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S)=5﹣S﹣4+S=1.故答案为1.【点评】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.44.去括号:2xy﹣(3xy﹣3y2+5)﹣xy+3y2﹣5.【分析】先去掉括号,再合并同类项即可.【解答】解:2xy﹣(3xy﹣3y2+5)=2xy﹣3xy+3y2﹣5=﹣xy+3y2﹣5,故答案为:﹣xy+3y2﹣5.【点评】本题考查了合并同类项法则和去括号,能够熟记去括号法则的内容是解此题的关键.45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).【分析】根据添括号的法则把给出的式子按要求进行变形,即可得出答案.【解答】解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).故答案为:a﹣(3b﹣c+2d).【点评】本题考查了添括号的法则,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=0.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:当x﹣y=2,m+n=1时,原式=y+2m﹣x+2n=﹣(x﹣y)+2(m+n)=﹣2+2=0,故答案为:0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于10.【分析】由x=y+3得x﹣y=3,整体代入原式计算可得.【解答】解:∵x=y+3,∴x﹣y=3,则原式=×32﹣2.3×3+0.75×32+×3+7=2.25﹣6.9+6.75+0.9+7=10,故答案为:10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握整体代入思想的运用是解本题的关键.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=﹣4.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=﹣,y=3时,原式=﹣3﹣1=﹣4.故答案为:﹣4【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是421.【分析】根据图形得出第n行最后一个数为(﹣1)n+1•n2,据此知第20行最后一个数为﹣400,继而由奇数行的序数为奇数的数为正数可得答案.【解答】解:根据题意知第n行最后一个数为(﹣1)n+1•n2,当n=20时,即第20行最后一个数为﹣400,又奇数行的序数为奇数的数为正数,∴第21行的第21个数是421,故答案为:421.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出第n 行最后一个数为(﹣1)n+1•n2.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是4035x2018.【分析】系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n.【解答】解:系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n,则第2018个单项式是4035x2018.故答案为:4035x2018.【点评】此题考查了规律型:数字的变化类,单项式的定义,分别找出单项式的系数和次数的规律是解决此类问题的关键.。

北师大版七年级数学上册 第三章《整式的加减》达标检测题

北师大版七年级数学上册 第三章《整式的加减》达标检测题

北师大版七年级数学上册 第三章达标检测题(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -2020;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.多项式 与m 2+m -2的和为m 2-2m. 8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 吨. 9.化简:m -[n -2m -(m -n)]的结果为 . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = .11.若a -b =1,则(a -b)2-2a +2b 的值是 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1;(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5].14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.17.已知:a3b n+2+ab3+6是一个六次多项式,单项式x3n y7-m的次数与该多项式相同,求m,n的值.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.19.一个花坛的形状如图所示,它的两端是半径相等的半圆.(1)求花坛的周长l;(2)求花坛的面积S;(3)若a=8 m,r=5 m,求此时花坛的周长及面积(π取3.14).20.已知A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,当a=1,b=2时,求A-2B+3C的值.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件. (1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.六、(本题共12分)23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________.(2)其中某一行最后一个数字可能是2 020吗?若不可能,请说明理由;若可能,请求出是第几行?参考答案第Ⅰ卷(选择题 共18分)二、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -2020;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 . 11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1, 当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a3b n+2+ab3+6是一个六次多项式,单项式x3n y7-m的次数与该多项式相同,求m,n的值.解:因为a3b n+2+ab3+6是一个六次多项式,所以3+n+2=6,解得n=1,所以3n+7-m=6,即3+7-m=6,所以m=4,即m,n的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.解:原式=x4+(ax3+5x3)+(3x2-7x2-bx2)+6x-2=x4+(a+5)x3+(-4-b)x2+6x-2.由题意,得a+5=0,-4-b=0,解得a=-5,b=-4,所以2a+3b=2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆.(1)求花坛的周长l;(2)求花坛的面积S;(3)若a=8 m,r=5 m,求此时花坛的周长及面积(π取3.14).解:(1)l=2πr+2a.(2)S=πr2+2ar.(3)当a=8 m,r=5 m时,l=2π×5+2×8=10π+16≈47.4 m,S=π×52+2×8×5=25π+80≈158.5 m2.20.已知A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,当a=1,b=2时,求A-2B+3C的值.解:∵A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,∴A-2B+3C=(5a+3b)-2(3a2-2a2b)+3(a2+7a2b-2)=5a+3b-6a2+4a2b+3a2+21a2b-6=-3a2+25a2b+5a+3b-6.当a=1,b=2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件. (1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分)23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________.(2)其中某一行最后一个数字可能是2 020吗?若不可能,请说明理由;若可能,请求出是第几行? 解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3. 所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 020,因为由3n -2=2 020, 解得n =32022=674, ∴最后一个数字可能是2 020,是第674行.。

北师大版七年级数学上册《第三章 整式及其加减》单元测试题(附答案)

北师大版七年级数学上册《第三章 整式及其加减》单元测试题(附答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试题(附答案)一、选择题1.下列说法正确的是()A.单项式−xy2的系数是-2B.单项式−3x2y与4x是同类项C.单项式−x2yz的次数是4D.多项式2x3−x2−1是三次三项式2.下列运算正确的是()A.2a+3b=5ab B.x2y−xy2=0C.−0.25ab+14ab=0D.3a−a=33.如果3a m+3b4与a2b n是同类项,则mn的值为()A.4B.-4C.8D.12 4.下列代数式符合书写要求的是()A.ab4B.315a C.ab3D.15÷t5.数学兴趣小组的一位同学用棋子摆图形探究规律.如图所示,若按照他的规律继续摆下去,第n个图案中用了2025颗棋子,则n的值为()A.506B.507C.508D.5096.如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2,则输出的结果为()A.-6B.5C.-5D.67.按如图所示的运算程序,能使输出y值为5的是()A.m=2,n=1B.m=2,n=0C.m=2,n=2D.m=38.正整数按如图所示的规律排列,则第9行、第10列的数字是()A.90B.86C.92D.109.已知a−2b=−1,则代数式1−2a+4b的值是()A.-3B.-1C.2D.310.已知整数a1,a2,a3,a4……满足下列条件:a1=0。

a2=−|a1+1|,a3=−|a2+2|,a4=−|a3+3|……依次类推,则a2017的值为()A.−1009B.−1008C.−2017D.−201611.如图,将三种大小不同的正方形纸片①,②,③和一张长方形纸片④,平铺长方形桌面,重叠部分(图中阴影部分)是正方形,若要求长方形桌面长与宽的差,只需知道()A.正方形①的边长B.正方形②的边长C.阴影部分的边长D.长方形④的周长12.在计算:M-(5x2-3x-6)时,嘉琪同学将括号前面的“-”号抄成了“+”号,得到的运算结果是-2x2+3x-4,你认为多项式M是()A.-7x2+6x+2B.-7x2-6x-2C.-7x2+6x-2D.-7x2-6x+213.有一道题目是一个多项式A减去多项式2x2+5x﹣3,小胡同学将2x2+5x﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x﹣7,这道题目的正确结果是()A.x2+8x﹣4B.﹣x2+3x﹣1C.﹣3x2﹣x﹣7D.x2+3x﹣714.将一列有理数−1 , 2 , −3 , 4 , −5 , 6……如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数____,2022应排在A、B、C、D、E中____的位置.正确的选项是()A.-29,A B.30,D C.029,B D.-31二、填空题15.单项式−2x4y的系数是.16.若−2a m b4与5a3b2+n是同类项,则−m+n的值是.17.若整式2x2+5x的值为8,那么整式6x2+15x−10的值是.18.有理数a、b、c在数轴上的位置如图所示,请化简:|−a+c|−|b−a|+|c−b|=.19.当k=时,代数式x6−5kx4y3−4x6+15x4y3+10中不含x4y3项.20.一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了元.21.已知x2−2x−3=0,则7+x2−2x=.三、计算题22.化简:(1)5x−4y−3x+y(2)2a−(4a+5b)+2(3a−4b)23.(1)化简:m−n+5m−4n(2)化简:3(x2−2y)−12(6x2−14y)+10.(3)先化简,再求值:2x2+4y2+(2y2−3x2)−2(y2−2x2),,其中x=−1,y=12.四、解答题24.先化简,再求值:(2a 2−3a +1)+3(a −2a 2−13),其中a =−1.25.先化简,再求值:5(3a 2b −ab 2)−4(−ab 2+3a 2b),其中a =−2,b =1.26.若多项式2x 2−ax +3y −b +bx 2+2x −6y +5的值与字母x 无关,试求多项式3(a 2−2ab −b 2)−2(2a 2−3ab −b 2)的值.五、综合题27.2022年秋季因我县七年级生源的增加,某校计划添置100张课桌和一批椅子(椅子不少于100把),现从A 、B 两家公司了解到:同一款式的产品价格相同,课桌每张300元,椅子每把100元.且A 公司的优惠政策为:每买一张课桌赠送一把椅子,其余部分按原价结算;B 公司的优惠政策为:课桌和椅子都实行8折优惠.(1)若购买课桌的同时买x 把椅子,到A 公司和B 公司购买分别需要付款多少元?(2)如果购买课桌的同时买150把椅子,并且可以到A 、B 两公司分别购买,请你设计一种购买方案,使所付金额最少.28.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,……照此规律摆下去.(1)第5个图案有 个三角形;(2)第n 个图案有 个三角形;(用含n 的式子表示) (3)第2022个图案有几个三角形?29.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.请你尝试利用数形结合的思想方法解决下列问题(1)如图①,一个边长为1的正方形,依次取正方形面积的12,14,18⋯12n ,根据图示我们可以知道:12+14+18+116+⋯+12n = .(用含有n 的式子表示)(2)如图②,一个边长为1的正方形,第一次取正方形面积的23,然后依次取剩余部分的23,根据图示:计算:23+29+227+⋯+23n = .(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:13+29+427+881+⋯+2n−13n= .(用含有n 的式子表示)30.为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的周长C 和面积S ;(2)若m =30米,n =20米,修建每平方米需费用200元,求修建广场的总费用W 的值.31.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案(客户只能选择其中一种): 方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x>20)(1)若该客户按方案一购买,需付款 元;若该客户按方案二购买,需付款 元,(用含 x 的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算.32.问题提出:某校要举办足球赛,若有5支球队进行单循环比赛(即全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场),则该校一共要安排多少场比赛? 构建模型:生活中的许多实际问题,往往需要构建相应的数学模型,利用模型的思想来解决问题.为解决上述问题,我们构建如下数学模型:(1)如图①,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),其中每个点各代表一支足球队,两支球队之间比赛一场就用一条线段把它们连接起来.由于每支球队都要与其他各队比赛一场,即每个点与另外4个点都可连成一条线段,这样一共连成5×4条线段,而每两个点之间的线段都重复计算了一次,实际只有=10条线段,所以该校一共要安排10场比赛.(2)若学校有6支足球队进行单循环比赛,借助图②,我们可知该校一共要安排场比赛;(3)根据以上规律,若学校有n支足球队进行单循环比赛,则该校一共要安排场比赛.(4)实际应用:9月1日开学时,老师为了让全班新同学互相认识,请班上42位新同学每两个人都相互握一次手,全班同学总共握手次.(5)拓展提高:往返于青岛和济南的同一辆高速列车,中途经青岛北站、潍坊、青州、淄博4个车站(每种车票票面都印有上车站名称与下车站名称),那么在这段线路上往返行车,要准备车票的种数为种33.观察归纳和应用(1)(x−1)(x+1)=(2)(x−1)(x2+x+1)=(3)(x−1)(x3+x2+x+1)=(4)(x−1)(x99+x98+⋯⋯+x+1)=(5)计算299+298+297+⋯⋯+2+1(要求有过程)答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】B12.【答案】A13.【答案】B14.【答案】A15.【答案】−216.【答案】-117.【答案】1418.【答案】2a-2c19.【答案】125或0.0420.【答案】3b21.【答案】1022.【答案】(1)解:原式=(5−3)x+(−4+1)y=2x−3y;(2)解:原式=2a−4a−5b+6a−8b=(2−4+6)a+(−5−8)b =4a−13b.23.【答案】(1)解:m−n+5m−4n=6m−5n(2)解:3(x2−2y)−12(6x2−14y)+10=3x2−6y−3x2+7y+10=y+10.(3)解:原式=2x2+4y2+2y2−3x2−2y2+4x2 =3x2+4y2;当x=−1,y=1 2时原式=3×(−1)2+4×(12)2=3+1=4.24.【答案】解:原式=2a2−3a+1+3a−6a2−1=−4a2当a=−1时原式=−4×1=−4.25.【答案】解:原式=15a2b−5ab2+4ab2−12a2b=3a2b−ab2当a=−2,b=1时,原式=3×(−2)2×1−(−2)×12=12+2=14.26.【答案】解:2x2−ax+3y−b+bx2+2x−6y+5=(2+b)x2+(2−a)x+(3−6)y+5−b∵多项式的值与字母x无关∴2+b=0,2﹣a=0解得:b=﹣2,a=23(a2−2ab−b2)−2(2a2−3ab−b2)=3a2−6ab−3b2−4a2+6ab+2b2=−a2−b2.当b=﹣2,a=2时原式=−22−(−2)2=−8.27.【答案】(1)解:A公司付款:300×100+100×(x−100)=100x+20000;B公司付款:(300×100+100x)×0.8=80x+24000;答:购买课桌的同时买x把椅子,到A公司和B公司购买分别需要付款(100x+20000)元,(80x+ 24000)元;(2)解:当x=150时A公司付款为100×150+20000=35000(元)B 公司付款为:80×150+24000=36000(元)到A ,B 公司分别购买,到A 公司买100张课桌,用300×100=30000(元),赠100把椅子,再到B 公司买50把椅子,100×50×0.8=4000(元)一共用30000+4000=34000(元),此方案所付金额最少.28.【答案】(1)16(2)(3n +1)(3)解:当n =2022时a 2022=3×2022+1=6067 ∴摆成第2022个图案需要6067个三角形.29.【答案】(1)1−12n(2)1−13n(3)1−2n3n30.【答案】(1)解:根据题意有解:广场的周长:C =2×4m +2×2n +2×n =8m +6n广场的面积:S =4m ×2n −n ×(4m −m −2m)=8mn −mn =7mn ; ∴C =8m +6n ,S =7mn ; (2)解:当m =30米,n =20米时 S =7mn =7×30×20=4200(平方米) W =200×4200=840000(元) ∴修建广场的总费用W 的值为840000元.31.【答案】(1)(200x+16000);(180x+18000);(2)解:方案一合算.理由: 当x =30时该客户按方案一购买,需付款:16000+200×30=22000(元) 该客户按方案二购买,需付款:18000+180×30=23400(元). ∵22000<23400 ∴方案一合算.32.【答案】(1)解:由图①可知,图中共有10条线段,所以该校一共要安排10场比赛.(2)15 (3)n(n−1)2(4)861(5)解:因为行车往返存在方向性,所以不需要除去每两个点之间的线段都重复计算了一次的情况将n=6代入n(n−1)中解得n×(n−1)=6×(6−1)=30∴要准备车票的种数为30种.33.【答案】(1)x2−1(2)x3−1(3)x4−1(4)x100−1(5)解:299+298+297+⋯⋯+2+1=(2−1)(299+298+297+⋯⋯+2+1)=2100−1。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()米.A.a B.60 C.60a D.a+602.十位数字是a,个位数字是b的两位数是()A.ab B.a+10b C.ba D.10a+b3.多项式23+7x+4y的次数为多少()A.5次B.3次C.2次D.1次4.在代数式﹣2x,x+1,π,2m−3m ,0,12mn中是单项式的有()个.A.1 B.2 C.3 D.45.若a2+3a=1,则代数式2a2+6a−2的值为()A.0B.1C.2D.36.下列计算正确的是()A.a2+a2=a4 B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.3a2+2a3=5a57.已知关于x的多项式(m+3)x3−x n+x−mn为二次三项式,则当x=−1时,这个二次三项式的值是()A.7 B.6 C.4 D.38.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是()A.6 B.7 C.8 D.9二、填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.若多项式2x2- 3x+b与多项式x2-bx+1的和不含一次项(b为常数),则两个多项式的和为11.若关于x、y的多项式x5-m+5y2-2x2+3的次数是3,则式子m2-3m的值为.12.已知a+22ab=−8,b2+2ab=14则a2−b2=.13.如图是一组有规律的图案,它们是由大小相同的“×”图案组成的,依此规律,第10个图案中有“×”图案个.三、解答题14.计算:(1)x2+5+x2−1(2)2a2+3ab+b2−a2−ab−2b215.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.x m+1y2+2xy2−4x3+1是六次四项式,单项式26x2n y5−m的次数与该多项式的次数相16.已知多项式15同,求(−m)3+2n的值.17.已知关于x,y的式子(2x2+mx−y+3)−(3x−2y+1−nx2)的值与字母x的取值无关,求式子(m+ 2n)−(2m−n)的值.18.某次课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3−6a3b+3a2b)−(−3a3−6a3b+3a2b+10a3−3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案.当王红说完:“a= 65,b=−2022”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误,”亲爱的同学,你相信吗?请说出其中的道理.参考答案1.D2.D3.D4.D5.A6.C7.C8.B9.-410.3x2-211.-212.-2213.5114.(1)解:x2+5+x2−1=x2+x2+5−1=2x2+4(2)解:2a2+3ab+b2−a2−ab−2b2=2a2−a2+3ab−ab+b2−2b2=a2+2ab−b215.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2当x=﹣1,y=2时原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:由于多项式是六次四项式,所以m+1+2=6解得:m=3单项式26x2n y5−m应为26x2n y2,由题意可知:2n+2=6解得:n=2所以(−m)3+2n =(−3)3+2×2=−23.17.解:原式=2x 2+mx −y +3−3x +2y −1+nx 2=(2+n)x 2+(m −3)x +y +2由题可得,多项式的值与字母x 无关∴{2+n =0m −3=0解得{n =−2m =3∴(m +2n)−(2m −n)=m +2n −2m +n=3n −m代入n =−2,m =3可得:3×(−2)−3=−6−3=−9 故代数式(m +2n)−(2m −n)的值为:−9.18.解:(7a 3−6a 3b +3a 2b)−(−3a 3−6a 3b +3a 2b +10a 3−3) =7a 3−6a 3b +3a 2b +3a 3+6a 3b −3a 2b −10a 3+3=(7a 3+3a 3−10a 3)+(−6a 3b +6a 3b)+(3a 2b −3a 2b)+3 =3.∵结果为常数3∴原式的结果与字母a ,b 的取值无关∴李老师能够准确地说出代数式的值为3.。

北师大版七年级数学上册《第三章 整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章 整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图是同一时刻北京时间和莫斯科时间.若现在北京时间是x,则同一时刻莫斯科的时间可以表示为()A.x+6B.x−6C.x+5D.x−52.单项式﹣5x2y的系数是()A.3 B.5 C.﹣3 D.﹣53.用a,b分别表示两个一位正整数,在这两个数之间添上两个零就构成一个四位数,且a在b的左边,则该四位数可表示为()A.a+100+b B.1000a+b C.100a+b D.10a+b4.下列说法正确的有()(1)√3a不是整式;(2)2+b2是单项式;(3)34是整式;(4)x+1x是多项式;(5)abπ是单项式;(6)x2+2x+1=0是多项式A.1个B.2个C.3个D.4个5.下列各组中的两个单项式,是同类项的是()A.a2与2a B.−0.5ab与12baC.a2b与ab2D.a与b6.已知x-3y=6,那么代数式x-3y-3(y-x)-2(x-3)的值为()A.16 B.17 C.18 D.197.下列计算中正确的是()A.2a+3b=5ab B.3y2−2y2=1C.32ab−1.5ba=0D.3x3+2y2=5x58.将一列有理数 -1、2、-3、4、-5、6、…按如图所示的方式进行排列,则-2023应排在()A.A位置B.B位置C.D位置D.E位置二、填空题9.“a的立方与b的平方的差”用代数式表示为:.10.多项式4x2−πxy22−13x+1的三次项系数是.11.加上5x2−3x−5等于3x2−5的多项式是.12.当x=2时,代数式px3+qx+1的值为2 023,则当x=-2时,代数式px3+qx+1的值为13.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第1个图形一共有5个实心圆点,第2个图形一共有8个实心圆点,第3个图形一共有11个实心圆点,….按此规律排列下去,第n个图形中实心圆点的个数为(用含n的代数式表示).三、解答题14.化简(1)3(2xy−y)−2xy(2)−14(2k3−4k2−28)+12(k3−2k2+4k)15.已知3x m y3与−2y n x2是同类项,求代数式m−2n−mn的值.16.先化简,再求值:(2y+3x2)−(x2−y)−x2,其中x=−2,y=13.17.已知a、b互为相反数c、d互为倒数,x等于-2的2次方,求式子a+b5+12cd+x2的值.18.放置在水平地面上两个无盖(朝上的面)的长方体纸盒,大小、形状如图.小长方体的长、宽、高分别为:a(cm)、b(cm)、c(cm);大长方体的长、宽、高分别为:1.5a(cm)、2b(cm)、2c(cm).(1)做这两个纸盒共需要材料多少平分厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平分厘米材料参考答案1.D2.D3.B4.(1)B5.B6.C7.C8.A9.a3−b210.−π211.−2x2+3x12.-202113.3n+214.(1)4xy−3y(2)7+2k15.−10.16.x2+3y5..17.161218.(1)解:小长方体纸盒所需材料:ab+2ac+2bc大长方体纸盒所需材料:3ab+6ac+8bc所以一共所需材料:ab+2ac+2bc+3ab+6ac+8bc=4ab+8ac+10bc (2)解:(3ab+6ac+8bc)−(ab+2ac+2bc)=2ab+4ac+6bc。

北师大版七年级数学上册《第三章整式及其加减》单元检测卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元检测卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元检测卷及答案一、选择题(每小题3分,共30分)1、在式子-12a 2b m 4n 27 2x -y -5中,不是单项式的是( )A .2x -yB .-12a 2bC .m 4n 27D .-52、下列代数式符合书写要求的是( )A .ab 3B .134aC .a +4D .a ÷b3、下列对代数式-3x 的意义表述正确的是( )A .-3与x 的和B .-3与x 的差C .-3与x 的积D .-3与x 的商4、下列结论中正确的是( )A .单项式πx 2y 4的系数是14,次数是4B .单项式m 的次数是1,系数为0C .多项式2x 2+xy 2+3是二次三项式D .在1x 2x +y 13a 2 x -y 3 5y 4x 0中整式有4个5有理数a ,b 在数轴上的位置如图所示,则|a +b |-2|a -b |化简的结果为()A . b -3aB .-2a -bC .2a +bD .-a -b6代数式3x 2-4x +6的值为9,则x 2-43x +6的值为( )A .7B .18C .12D .97若A 是五次多项式,B 是三次多项式,则A +B 一定是( )A .五次整式B .八次多项式C .三次多项式D .次数不能确定8、下列各式中与x-y+z的值不相等的是( )A.x-(y+z)B.x-(y-z)C.(x-y)-(-z)D.z-(y-x)9如图是一数值转换机的示意图,若输入的x值为32,则输出的结果为( )A.50B.80C.110D.13010用火柴棍搭建如图所示的小鱼图形,搭建第6个小鱼图形需要用到的火柴棍根数是( )A.36B.38C.40D.48二、填空题(每小题3分,共18分)11计算:3a2b-2a2b=.12已知单项式3a m b与-2a4b n-1是同类项,那么4m-n=.313(2024·深圳期中)要使多项式mx2-2(x2+3x-1)化简后不含x的二次项,则m的值是.14(2024·德阳中考)若一个多项式加上y2+3xy-4,结果是3xy+2y2-5,则这个多项式为.15用一根长为1米的铅丝围成一个长方形,且其中宽是x米,则用含x的代数式表示此长方形的面积为.16、观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律, =n 2.三、解答题(共52分)17(8分)计算:(1)12st -3st +6;(2)3(-ab +2a )-(3a -b )+3ab ;(3)2(2a -3b )+3(2b -3a );(4)12a 2-[12(ab -a 2)+4ab ]-12ab.18(8分)(2x 2-2y 2)-3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =-1,y =2.19(8分)小强在计算一个整式减去多项式5a 2+3a -2时,由于粗心,误把减去当成了加上,结果得到2-3a 2+4a.(1)求出这个整式.(2)求出正确的结果.20(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.21(10分)(2024·合肥期末)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌水性笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌水性笔的费用;(2)若小明要购买该品牌水性笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.22(10分)(2024·襄阳期中)定义一种新运算“☉”,观察下列等式:①1☉3=1×3-(-1)-(-3)=7②(-1)☉(-2)=(-1)×(-2)-1-2=-1③0☉(-2)=0×(-2)-0-2=-2④4☉(-3)=4×(-3)-(-4)-3=-11…(1)计算(-5)☉3的值;(2)有理数的加法和乘法运算满足交换律,“☉”运算是否满足交换律?请说明理由.【附加题】(10分)阅读材料:“整体思想”是中学数学解题过程中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,例如我们把(a +b )看成一个整体,则4(a +b )-2(a +b )+(a +b )=(4-2+1)(a +b )=3(a +b ).尝试应用:(1)设(a -b )2=2,求代数式6(a -b )2-10(a -b )2+3(a -b )2的值.(2)已知x =2,y =-4时,代数式ax 3+12by +5的值为2 023,求当x =-4,y =-12时,代数式2ax -16by 3+4 040的值.拓展探索:(3)把一个大正方形和四个相同的小正方形按图①,②两种方式摆放,已知a +b =24,a -b =8请观察图形,求图②中的阴影部分面积.参考答案一、选择题(每小题3分,共30分)1、在式子-12a 2b m 4n 27 2x -y -5中,不是单项式的是(A )A .2x -yB .-12a 2bC .m 4n 27D .-52下列代数式符合书写要求的是(C )A .ab 3B .134aC .a +4D .a ÷b3、下列对代数式-3x 的意义表述正确的是(C )A .-3与x 的和B .-3与x 的差C .-3与x 的积D .-3与x 的商4、下列结论中正确的是(D )A .单项式πx 2y 4的系数是14,次数是4B .单项式m 的次数是1,系数为0C .多项式2x 2+xy 2+3是二次三项式D .在1x 2x +y 13a 2 x -y 3 5y 4x 0中整式有4个5有理数a ,b 在数轴上的位置如图所示,则|a +b |-2|a -b |化简的结果为(A )A . b -3aB .-2a -bC .2a +bD .-a -b 6代数式3x 2-4x +6的值为9,则x 2-43x +6的值为(A )A.7B.18C.12D.97若A是五次多项式,B是三次多项式,则A+B一定是(A)A.五次整式B.八次多项式C.三次多项式D.次数不能确定8(2024·重庆期中)下列各式中与x-y+z的值不相等的是(A)A.x-(y+z)B.x-(y-z)C.(x-y)-(-z)D.z-(y-x)9如图是一数值转换机的示意图,若输入的x值为32,则输出的结果为(D)A.50B.80C.110D.13010用火柴棍搭建如图所示的小鱼图形,搭建第6个小鱼图形需要用到的火柴棍根数是(B)A.36B.38C.40D.48二、填空题(每小题3分,共18分)11计算:3a2b-2a2b=a2b.a4b n-1是同类项,那么4m-n=14.12已知单项式3a m b与-2313、要使多项式mx2-2(x2+3x-1)化简后不含x的二次项,则m的值是2.14、若一个多项式加上y2+3xy-4,结果是3xy+2y2-5,则这个多项式为y2-1. 15用一根长为1米的铅丝围成一个长方形,且其中宽是x米,则用含x的代数式表示此长方形的面积为(1-x)x.216(2023·临沂中考)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律, (n -1)(n +1)+1 =n 2.三、解答题(共52分)17(8分)计算:(1)12st -3st +6; 解:(1)12st -3st +6=-52st +6; (2)3(-ab +2a )-(3a -b )+3ab ;解:(2)3(-ab +2a )-(3a -b )+3ab =-3ab +6a -3a +b +3ab =3a +b ;(3)2(2a -3b )+3(2b -3a );解:(3)2(2a -3b )+3(2b -3a )=4a -6b +6b -9a =-5a ;(4)12a 2-[12(ab -a 2)+4ab ]-12ab. 解:(4)12a 2-[12(ab -a 2)+4ab ]-12ab =12a 2-12ab +12a 2-4ab -12ab =a 2-5ab. 18(8分)(2x 2-2y 2)-3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =-1,y =2.解:原式=2x 2-2y 2-3x 2y 2-3x 2+3x 2y 2+3y 2=-x 2+y 2将x =-1,y =2代入可得:-x 2+y 2=3.19(8分)小强在计算一个整式减去多项式5a 2+3a -2时,由于粗心,误把减去当成了加上,结果得到2-3a 2+4a.(1)求出这个整式.解:(1)因为小强在计算一个整式减去多项式5a2+3a-2时,由于粗心,误把减去当成了加上,结果得到2-3a2+4a所以设这个整式为M,则M+(5a2+3a-2)=2-3a2+4a故M=2-3a2+4a-(5a2+3a-2)=2-3a2+4a-5a2-3a+2=-8a2+a+4;(2)求出正确的结果.解:(2)正确的结果为:-8a2+a+4-(5a2+3a-2)=-8a2+a+4-5a2-3a+2=-13a2-2a+6.20(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:阴影部分的面积=(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab当a=3,b=2时,原式=5×32+3×3×2=63(平方米).21(10分)(2024·合肥期末)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌水性笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌水性笔的费用;解:(1)在甲商店需要:10×1.5+0.6×1.5×(x-10)=(0.9x+6)元在乙商店需要:1.5×0.8×x=1.2x(元);(2)若小明要购买该品牌水性笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.解:(2)当x=30时,0.9x+6=33,1.2x=36因为33<36,所以小明要买30支该品牌水性笔应到甲商店买比较省钱.22(10分)(2024·襄阳期中)定义一种新运算“☉”,观察下列等式:①1☉3=1×3-(-1)-(-3)=7②(-1)☉(-2)=(-1)×(-2)-1-2=-1③0☉(-2)=0×(-2)-0-2=-2④4☉(-3)=4×(-3)-(-4)-3=-11…(1)计算(-5)☉3的值;解:(1)观察已知等式可知:(-5)☉3=-5×3-5-(-3)=-17;(2)有理数的加法和乘法运算满足交换律,“☉”运算是否满足交换律?请说明理由.解:(2)“☉”运算满足交换律,理由如下:因为a☉b=ab-(-a)-(-b)=ab+a+b;b☉a=ba-(-b)-(-a)=ab+b+a=a☉b.所以a☉b=b☉a.【附加题】(10分)第 11 页 共 11 页 阅读材料:“整体思想”是中学数学解题过程中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,例如我们把(a +b )看成一个整体,则4(a +b )-2(a +b )+(a +b )=(4-2+1)(a +b )=3(a +b ).尝试应用:(1)设(a -b )2=2,求代数式6(a -b )2-10(a -b )2+3(a -b )2的值.解:(1)6(a -b )2-10(a -b )2+3(a -b )2=(6-10+3)(a -b )2=-(a -b )2.当(a -b )2=2时,原式=-2.(2)已知x =2,y =-4时,代数式ax 3+12by +5的值为2 023,求当x =-4,y =-12时,代数式2ax -16by 3+4 040的值.解:(2)把x =2,y =-4代入ax 3+12by +5得 8a -2b +5=2 023所以8a -2b =2 018.把x =-4,y =-12代入2ax -16by 3+4 040得,-8a +2b +4 040 因为8a -2b =2 018,所以原式=-(8a -2b )+4 040=-2 018+4 040=2 022.拓展探索:(3)把一个大正方形和四个相同的小正方形按图①,②两种方式摆放,已知a +b =24,a -b =8,请观察图形,求图②中的阴影部分面积.解:(3)观察题中图形可知:大正方形的边长为a+b 2,小正方形的边长为a -b 4 所以S 阴影=(a+b 2)2-4(a -b 4)2=122-4×22=128.。

北师大版七年级上册数学 第三章 整式及其加减 单元综合卷(含解析)

北师大版七年级上册数学 第三章 整式及其加减 单元综合卷(含解析)

第三章整式及其加减单元综合卷一.选择题1.字母表达式x﹣y2的意义为()A.x与y的平方差B.x与y的相反数的平方差C.x与y的差的平方D.x与y的平方的差2.已知下列各式:S=ah,a,﹣2,a+b,a+b=b+a,x2≥0,,其中属于代数式的共有()A.3个B.4个C.5个D.6个3.长方形的周长为2L,长为a,则宽为()A.2L﹣2a B.L﹣2a C.L﹣a D.2L﹣4a4.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0B.1C.2D.4.5.下列结论正确的是()A.abc的系数是0B.1﹣3x2﹣x中二次项系数是1C.﹣ab3c的次数是5D.的次数是56.代数式2x2y﹣3xy+4y﹣5是()A.二次三项式B.三次三项式C.三次四项式D.四次四项式7.代数式,2x3y,,,﹣2,a,7x2+6x﹣2中,单项式有()A.1个B.2个C.3个D.4个8.下列各式中,去括号或添括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1D.﹣2x﹣y﹣a+1=﹣(2x﹣y)+(a﹣1)9.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣1310.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A.2M﹣3N B.2M﹣N C.3M﹣2N D.4M﹣N二.填空题11.已知一件商品的进价为a元,超市标价b元出售,后因季节原因超市将此商品打八折促销,如果促销后这件商品还有盈利,那么此时每件商品盈利元.(用含有a、b的代数式表示)12.已知代数式x+2y的值是3,则代数式2x+4y+1的值是.13.a的相反数与b的倒数的和表示为:.14.单项式的系数为.15.多项式x3y+5y3﹣3xy2﹣2x2按字母x的降幂排列是.16.多项式是次项式,常数项是.17.与是同类项,则m=,n=.18.7x2﹣7xy﹣=12x2﹣13xy+7.19.如果A是二次多项式,B是五次多项式,那么A+B和A﹣B是次整式.20.如果关于x,y的多项式ax2+3axy﹣2x﹣5﹣(﹣bxy﹣2x2+5x+6)不含二次项,那么ab =.三.解答题21.一条隧道的横截面如图所示,它的上部是一个半径为r的半圆,下部是一个长方形,长方形的一边长为2.5米,隧道横截面面积为S平方米.(1)用r的代数式表示S;(2)当r=2时,求S的值.(π取3.14)22.(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.23.已知多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,求(﹣m)3+2n的值.24.计算:已知A,B表示两个不同的多项式,且A﹣B=x3﹣1,A=﹣2x3+2x+3,求多项式B.25.若单项式3x2y5与﹣2x1﹣a y3b﹣1是同类项,求下面代数式的值:5ab2﹣[6a2b﹣3(ab2+2a2b)].参考答案1.解:字母表达式x﹣y2的意义为x与y的平方的差.故选:D.2.解:a,﹣2,a+b,属于代数式,共4个,故选:B.3.解:宽为:(2L﹣2a)÷2=L﹣a,故选:C.4.解:x2+2xy+y2=(x+y)2=(2﹣1)2=1,故选:B.5.解:A、abc的系数是1,选项错误;B、1﹣3x2﹣x中二次项系数是﹣3,选项错误;C、﹣ab3c的次数是5,选项正确;D、的次数是6,选项错误.故选:C.6.解:代数式2x2y﹣3xy+4y﹣5是:三次四项式.故选:C.7.解:代数式,2x3y,,,﹣2,a,7x2+6x﹣2中,单项式有:2x3y,﹣2,a 共3个.故选:C.8.解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c,故错误;B、a﹣3x+2y﹣1=a+(﹣3x+2y﹣1),故正确;C、3x﹣[5x﹣(2x﹣1)]=3x﹣5x+2x﹣1,故错误;D、﹣2x﹣y﹣a+1=﹣(2x+y)+(﹣a+1),故错误;只有B符合运算方法,正确.故选:B.9.解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.10.A、原式=﹣6x2﹣19xy﹣5y2;B、原式=2x2﹣9xy﹣7y2;C、原式=x2﹣16xy﹣10y2;D、原式=8x2﹣13xy﹣15y2.故选:D.11.解:根据题意得,每件商品盈利(0.8b﹣a)元,故答案为:(0.8b﹣a).12.解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故答案为:7.13.解:由题意得:﹣a+,故答案为:﹣a+.14.解:单项式的系数为:﹣.故答案为:﹣.15.解:多项式x3y+5y3﹣3xy2﹣2x2按字母x的降幂排列是:x3y﹣2x2﹣3xy2+5y3.故答案为:x3y﹣2x2﹣3xy2+5y3.16.解:多项式是三次四项式,常数项为﹣,故答案为:三、四、﹣.17.解:∵与是同类项,∴m=3,n=2,故答案为:3,2.18.解:(7x2﹣7xy)﹣(12x2﹣13xy+7),=7x2﹣7xy﹣12x2+13xy﹣7,=﹣5x2+6xy﹣7,故答案为:(﹣5x2+6xy﹣7).19.解:∵A是二次多项式,B是五次多项式,∴A+B是五次整式,A﹣B是五次整式,故答案为:五.20.解:ax2+3axy﹣2x﹣5﹣(﹣bxy﹣2x2+5x+6)=ax2+3axy﹣2x﹣5+bxy+2x2﹣5x﹣6=(a+2)x2+(3a+b)xy﹣7x﹣11,∵关于x,y的多项式ax2+3axy﹣2x﹣5﹣(﹣bxy﹣2x2+5x+6)不含二次项,∴a+2=0,3a+b=0,解得a=﹣2,b=6,∴ab=(﹣2)×6=﹣12.故答案为:﹣1221.解:(1)S=πr2+2.5×2r=πr2+5r;(2)当r=2时,S=+5×2=16.28(平方米).22.解:(1)由题意得:3m﹣4=0,且2n﹣3≠0,解得:m=,n≠;(2)由题意得:2n﹣3=0,2m+5n=0,且3m﹣4≠0,解得:n=,m=﹣.23.解:∵多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,∴m+1+2=6,2n+5﹣m=6,解得:m=3,n=2,则(﹣m)3+2n=﹣27+4=﹣23.24.解:根据题意得:B=(﹣2x3+2x+3)﹣(x3﹣1)=﹣2x3+2x+3﹣x3+1=﹣3x3+2x+4.25.解:∵3x2y5与﹣2x1﹣a y3b﹣1是同类项,∴1﹣a=2且3b﹣1=5,解得:a=﹣1、b=2,原式=5ab2﹣(6a2b﹣3ab2﹣6a2b)=5ab2﹣6a2b+3ab2+6a2b=8ab2.当a=﹣1、b=2时,原式=8×(﹣1)×22=﹣8×4=﹣32.。

七年级数学上册 第三章 整式及其加减检测题 新版北师大版

七年级数学上册 第三章 整式及其加减检测题 新版北师大版

第三章整式及其加减(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)+4y-yx112x32)21( 5y+中,整式有6,,,y-+1.下列各式:-mn,m,8,,x+2x y5π2a ABCD.7 个 4个个..3个 6.c2.代数式a+的意义是( )b AB.b除以c的商与b的和 a的和.a与c除CD.a与c的和除以的商的和 b的商.a与c 除以b3.下列各组单项式中,不是同类项的是( )113333BA .xxy.12a与y2yay 与-222322DC bm与-.与36aamb.2).下列计算正确的是( 422422222BA y=.a3xby+3a+b=4ab 5x.-2xy3122222DC0+b=amxb =.ab.--amx222222) 等于( -x2xy+y,B=x+2xy+y,则4xy5.A=DBCA2B .B-A B B .A--.2A.A+,a6.一根铁丝正好可以围成一个长是2a+3b,宽是a+b的长方形框,把它剪去可围成一个长是) 宽是b的长方形的一段铁丝(均不计接缝),剩下部分铁丝的长是(DACB4b+.4a.+6b 2b .a+6a.b+2a) ( 是一位数,若把y置于x的左边,那么所构成的三位数为7.x是两位数,y DCBA x.100y+.yx .y+x +.10yx) ( ,.观察下列一列数:81,2,4,711,16,…根据其规律可知,这列数中第10个数是DCAB57 .46 .37 .56 .,…称为9.小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数12,9,3,6,…称为正方形数.下列数中既是三角形数又是正方,164,8,12三角形数.类似地,图②中的)形数的是(ABCD.2016..2010 2014 .201210.用棋子摆出下列一组三角形,三角形每边有n枚棋子,每个三角形的棋子总数是S.按此规律推断,当三角形边上有n枚棋子时,该三角形的棋子总数S等于( )ABCD3-2n.2 -2n.3 -n.3 -3n.二、填空题(每小题3分,共24分)11.(2014·贵阳)若m+n=0,则2m+2n+1=________..若单项式3xy与-2xy是同类项,则2m+3n=________.2nm31213.(2015·呼和浩特改编)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则最后的单价是________..多项式xy-8xy-xy-y-6是________次________项式,最高次项是________,常数项是3232414________.15.对于有理数a,b,定义a⊙b=3a+2b,则[(x+y)⊙(x-y)]⊙3x化简后得________..当x=-4时,代数式-x-4x-2与x+5x+3x-4的和是________.323216.一组数据为:x,2x,4x,8x,…观察其规律,推断第n个数据应为23417________.18.有一数值转换器,原理如图所示,若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4……请你探索第2016次输出的结果是________.三、解答题(共66分)19.(10分)化简:(1)2a-3(a-1)+5(a+2); (2)-3(3b-2a)+2(2a-b)+5(2b-a).20.(10分)先化简,再求值.-2mn-mn+4mn-3mn-9+5mn,其中m=2,n=-1;22222(1)+2x-3-4x)-(-x+3x-x),其中x=-2.2332(2)(5x21.(8分)如图,是一个数值转换机的示意图.(1)用代数式表示如图的运算过程;(2)按图示的程序填写下表.0.5-2-01-x y 1 -2 -3 -0.25输出.(8分)已知关于x,y的单项式-3xy与bxy能合并成一项,其结果为-6xy.求多项式2(-a222224a22+1)-5(a-ba)+4(3a-ab)的值..(8分)已知多项式2x+my-12与多项式nx-3y+6的差中不含有x,y,求m+n+mn的值.222324.(12分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入;(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.25.(10分)如图,一些大小相等的正方形内分别紧排着一些等圆.(1)观察图形,在第n个图形中,圆的个数是多少?第2015个图形中有几个圆?(2)设正方形的边长为a,则第1个图形中的圆的周长是多少?第2个图形中所有圆的周长和是多个图形中所有圆的周长和是多少?n个图形中所有圆的周长和是多少?第3少?第参考答案第三章检测题C 2.C 3.B 4.D 5.B 6.C 7.D 8.B 9.D 10.A 11.1.1 12.13 13.0.99a元14.五-xy -6 15.21x+3y 16.-2 17.2x 18.2 19.(1)原式=4a+13 (2)原式=-b223+5a 20.(1) 32n-1n五原式=3mn-9,当m=2,n=-1时,原式=-21 (2)原式=6x+3x-7x-3,当x172222.由题意知:a=2,-3+b(1)2x2时,原式=53 21.+(3y) (2)11 36 89=-6,=-16222所以b=-3.多项式化简得-a+ab+2,代入求得结果为-8 23.(2x+my-12)-(nx-3y+6)2=(2-n)x+(m+3)y-18,因为差中不含有x,y,所以2-n=0,m+3=0,所以n=2,m=-3,故m+n+mn=-3+2+(-3)×2=-7 24.(1)将这批水果拉到市场上出售收入为18 000a-18 00018 000×8×25-×100=18 000a-3 600-1 800=18 000a-5400(元).在果园直接出售 1 0001 000收入为18 000b元 (2)当a=1.3时,市场收入为18 000a-5 400=18 000×1.3-5 400=18000(元).当b=1.1时,果园收入为18 000b=18 000×1.1=19 800(元).因为18 000<19 800,25.(1)在第n个图形中,圆的个数是n,第2015个图形中有2015个圆22所以应选择在果园出售(2)第1个圆形中圆的周长是πa,第2个图形中圆的周长是2πa,第3个图形中圆的周长是3πa,第n个图形中圆的周长是nπa。

北师大版七年级数学上册第三章整式及其加减单元测试题

北师大版七年级数学上册第三章整式及其加减单元测试题

第三章整式及其加减 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.在0,a ,a -b ,a2,a 2b +ab 2,3>2,3+3=6中,代数式有( )A .3个B .4个C .5个D .6个2.列代数式表示“比m 的平方的3倍大1的数”是( ) A .(3m )2+1 B .3m 2+1 C .3(m +1)2 D .(3m +1)23.某商店对一品牌服装进行优惠促销,将原价为a 元/件的服装以(45a -20)元/件售出则以下四种说法中可以准确表达该商品促销方法的是( )A .将原价降低20元后,再打8折B .将原价打8折之后,再降低20元C .将原价降低20元后,再打2折D .将原价打2折后,再降低20元4.若a =4,b =12,则代数式a 2-ab 的值为( ) A .64 B .30 C .-30 D .-32 5.下列各式中,不是同类项的是( ) A .2ab 2与-3b 2a B .-2πx 2与x 2 C .-12m 3n 2与5n 2m 3 D .-xy2与6yx 26.计算2m 2n -3nm 2的结果为( )A .-1B .-5 m 2nC .-m 2nD .不能合并 7.化简x -[y -2x -(-x -y )]=( ) A .2x B .-2x C .3x -2y D .2x -2y8.如果代数式2a 2+3a +1的值是6,那么代数式6a 2+9a +5的值为( ) A .18 B .16 C .15 D .209.已知M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .不确定10.古希腊数学家把1,3,6,10,15,21,…叫做三角数,它们有一定的规律,若把第1个三角数记为a 1,第2个三角数记为a 2,…,第n 个三角数记为a n ,则a n -1+a n =( )A .(n -1)2B .n 2C .(n +1)2D .(n +2)2 请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分 答案第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.多项式1+2xy -3xy 2的次数是________,最高次项的系数为________. 12.已知12x n -2m y 4与-x 3y 2n 的和仍是单项式,则(mn)2021=________.13.已知x 是两位数,y 是三位数,将y 放在x 左边组成的五位数可表示为________. 14.若2a 2-3a =6,则4a 2-6a +100=________.15.定义一种运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,计算⎪⎪⎪⎪⎪⎪x +1 3x -1 2=________.16.一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n -1(n ≥2,且n 为正整数),则a 2021=________.三、解答题(共72分)17.(6分)化简:5(x -y)+2(x -y)-3(x -y).18.(6分)已知关于x ,y 的单项式-3x a y 与bx 2y 能合并为一项,其结果为-6x 2y ,求多项式2(-4a 2+1)-5(a 2-ba)+4(3a 2-ab)的值.19.(8分)已知A =2a 2+3ab -2a -1,B =-a 2+ab -1. (1)求3A +6B 的值;(2)若3A +6B 的值与a 的取值无关,求b 的值.20.(8分)(1)已知多项式-23x 2y m +1+xy 2-2x 3+8是六次四项式,单项式-35x 3a y 5-m 的次数与该多项式的次数相同,求m ,a 的值;(2)已知多项式mx 4+(m -2)x 3+(2n +1)x 2-3x +n 不含x 2和x 3的项,请你写出这个多项式,并求出当x =-1时,这个多项式的值.21.(10分)某市居民使用自来水按如下标准收费:若每户月用水量不超过20 m 3,则按2.4元/m 3收费;若月用水量超过20 m 3,则超过20 m 3的部分按4元/m 3收费.(1)小明家7月份用水15 m 3,则需交水费________元;小李家7月份用水24 m 3,则需交水费________元.(2)小王家7月份用水a m 3,则小王家应交水费多少元? 22.(10分)某超市在五一期间进行促销,其优惠方法如下:一次性购物 优惠方法 少于200元不予优惠 少于500元但不少于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款________元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款________元,当x 大于或者等于500元时,他实际付款________元(用含x 的代数式表示);(3)如果王老师两次购物款合计820元,第一次购物的货款为a 元(a 小于300且大于200),用含a 的代数式表示王老师两次购物实际付款多少元?23.(12分)如图3-Z -1,在一些大小相等的正方形内分别排列着一些等圆.图3-Z -1图形编号 ① ② ③ ④ ⑤ ⑥ … 圆的个数…(2)你能试着表示出第个图形中圆的个数吗?并用你发现的规律计算出第⑳个图形中有多少个圆.(3)若图3-Z -1中正方形的边长为12,分别计算出前3个图形中阴影部分的面积,并由此给出一个关于这些图形中的阴影部分面积的合理猜想.24.(12分)汽车从甲地向乙地行驶,汽车离乙地的距离s(千米)与行驶时间t(时)之间的关系如下表所示:行驶时间t(时)汽车离乙地的距离s(千米)1 360-402 360-803 360-1204 360-160 5360-200(1)写出用时间t 表示汽车离乙地的距离s(千米)的代数式; (2)当t =6.5时,求汽车离乙地的距离s(千米)的值; (3)根据所列代数式回答:你知道甲地和乙地相距多远吗?(4)如果这辆汽车上午8:00从甲地出发,途中休息1小时,请你计算,如果按这样的速度,几点钟可以到达乙地?1.C 2.B3.B [解析] 代数式45a -20的意义是比a 的80%少20,故商品促销的方法是先按原价打8折,然后降低20元.4.D 5.D6.C [解析] 2m 2n -3nm 2=-m 2n .故选C. 7.D 8.D9.A [解析] M -N =x 2+1.因为x 2≥0,所以x 2+1≥1>0,所以M >N . 10.B11.3 -3 12.1 13.100y +x 14.11215.5-x [解析] ⎪⎪⎪⎪⎪⎪x +13x -12=2(x +1)-3(x -1)=5-x .解题突破针对新定义问题,首先要根据定义内容,理解运算法则,然后套用公式计算即可. 16.2 [解析] a 1=12,a 2=11-12=2,a 3=11-2=-1,a 4=11-(-1)=12,…,可以发现:该组数以12,2,-1循环出现.因为2021÷3=672……2,所以a 2021=2. 方法指导对于给出运算方式,找出第n 个数据的问题,可先代入几个数据,找出其变化规律,并观察变化过程中是否有周期变化,从而求解.17.4x -4y18.解:由题意可知a =2,-3+b =-6,解得b =-3. 多项式化简为-a 2+ab +2.将a =2,b =-3代入,得原式=-8. 19.解:(1)3A +6B =15ab -6a -9.(2)因为15ab -6a -9=(15b -6)a -9,且3A +6B 的值与a 的取值无关,所以15b -6=0,解得b =25.20.解:(1)根据题意,知2+m +1=6,3a +5-m =6,解得m =3,a =43.(2)因为多项式mx 4+(m -2)x 3+(2n +1)x 2-3x +n 不含x 2和x 3的项, 所以m -2=0,2n +1=0,解得m =2,n =-12,即多项式为2x 4-3x -12,当x =-1时,原式=2+3-12=92.21.解:(1)小明家7月份用水15 m 3,则需交水费15×2.4=36(元); 小李家7月份用水24 m 3,则需交水费20×2.4+(24-20)×4=64(元). (2)当0≤a ≤20时,小王家应交水费2.4a 元;当a >20时,小王家应交水费20×2.4+4(a -20)=(4a -32)元. 22.解:(1)500×0.9+(600-500)×0.8=530(元). (2)0.9x (0.8x +50)(3)王老师两次购物的实际付款为0.9a +0.8×(820-a -500)+450=(0.1a +706)元. 23.解:(1)表中数据依次为1,4,9,16,25,36. (2)n 2 400(3)图①中阴影部分的面积为144-36π. 图②中阴影部分的面积为144-36π. 图③中阴影部分的面积为144-36π. 这些图形中阴影部分的面积都等于144-36π. 24.(1)360-40t (2)100千米(3)相距360千米 (4)下午18:00可以到达乙地。

北师大版七年级数学上册第三章 整式及其加减 单元复习测试题【答案】

北师大版七年级数学上册第三章 整式及其加减 单元复习测试题【答案】

北师大版七年级数学上册第三章 整式及其加减 单元复习测试题一、选择题1.下列说法正确的是( )A .单项式是整式,整式也是单项式 B.3x -15是单项式C .6x 2-3x +1的项分别是6x 2,-3x ,1 D.1x +2是一次二项式2.下列各组单项式中,不是同类项的是( )A .3a 2b 与-2ba 2B .32m 与23m C .-xy 2与2yx 2D .-ab 2与2ab3.若3xm +5y 2与x 3y n 的和是单项式,则m n=( ) A .2B .4C .8D .94.减去-4a 结果等于3a 2-2a -1的多项式是( ) A .3a 2-6a -1 B .5a 2-1 C .3a 2+2a -1D .3a 2+6a -15.下列各式中与a -b -c 的值不相等的是(B) A .a -(b +c) B .a -(b -c) C .(a -b)+(-c) D .(-c)-(b -a)6.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b7.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .2528.设A ,B ,C 均为多项式,小方同学在计算“A -B ”时,误将符号抄错而计算成了“A +B ”,得到结果是C ,其中A =12x 2+x -1,C =x 2+2x ,那么A -B =( )A .x 2-2x B .x 2+2xC .-2D .-2x二、填空题9.在式子①m +5;②ab ;③a =1;④0;⑤π;⑥3(m +n);⑦3x >5中,代数式有_____个. 10.单项式-πx 2y2的系数是_____,次数是_____.11.排球每个m 元,足球每个n 元,则代数式5m +10n 表示_____ 12.合并同类项:4a 2+6a 2-a 2=_____.13.当a =-1,b =3时,代数式2a -b 的值等于_____. 14.(2)若多项式-43x m -3-2x +1是六次三项式,则m 的值是9.15.观察下列单项式:ab 2,-2a 2b 3,3a 3b 4,-4a 4b 5,…,按此规律,第2 020个单项式是_____16.按照如图所示的方式摆放餐桌,每个小长方形代表一张餐桌,每个小圆圈代表一个人,按这样规律下去,摆n 张餐桌可以坐_____人.…17.已知A =x 2-2xy ,B =y 2+3xy ,则化简2A -3B =_____.18.如图所示是一个运算程序示意图.若第一次输入k 的值为125,则第2 020次输出的结果是_____.19.已知a +4b =-15,那么式子9(a +2b)-2(2a -b)的值是_____.三、解答题 20.化简:(1)5a 2+3ab -4-2ab -5a 2;(2)-x +2(2x -2)-3(3x +5).21.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.22.某公园里一块草坪的形状如图中的阴影部分(长度单位:m). (1)用整式表示草坪的面积; (2)若a =2,求草坪的面积.23.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了x(x>3)千米.(1)用含x的代数式表示他应支付的车费;(2)行驶30千米,应付多少钱?(3)若他支付了46元,你能算出他乘坐的路程吗?24.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?25.已知a ,b ,c 在数轴上的位置如图所示.(1)填空:①a ,b 之间的距离为_____; ②b ,c 之间的距离为_____; ③a ,c 之间的距离为_____;(2)化简:|a +1|-|c -b|+|a +b -1|. 参考答案回顾与思考(三) 整式及其加减一、选择题1.下列说法正确的是(C)A .单项式是整式,整式也是单项式 B.3x -15是单项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
灿若寒星整理制作
七年级上数学第三章整式及其加减测试题(满分120分)
学校 班级
座号 姓名 得分 一、填空题(每题3分,共28分)
1. 平方的3倍与的差,用代数式表示为 . 2.化简的结果是 . 3.代数式是 项的和,各项的系数 . 4.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是 .
5.请写出一个..
系数为-7,且只含有字母x ,y 的四次单项式__________. 6.单项式232x y z -的系数是_______,次数是_______;
7.代数式345
7613
a b ab ab ---+是_____次____项式,二次项是______,常数项是_____.
8.如图是一数值运算程序,若输入的x 为5-,则输出的结果为_______.
9.若225a b +=,则代数式()()
22223223a ab b a ab b -----的值是_______. 10当k=_______时,多项式2
2
24335x xy y kxy -+-+与的和中不含xy 项。

11、当1x =时,代数式3
1px qx ++的值为2005,则当1x =-时,代数式3
1px qx ++的值为_________. 12.15
-x a -
1y 与-3x 2y b +3
是同类项,则a +3b =__________.
13.当
时,代数式的值是 .
14.的相反数是 .
二、选择题(每题3分,共30分)
1、下面的式子中正确的是( )
x 5)2(0y x --242
1
y xy +-
242a b
a b
-=+3(2)3(2)4(2)2a b a b a b a b -+++-376-+-y x
A 2321a a -= B. 527a b ab += C. 22
322a a a -= D. 222
56xy xy xy -=-
2、下列各组中的两项不是同类项的是( )
A. 2232
2
3x x -和 B.22a b ab 和 C.2323
2x y x y -和 D.5
683-和
3、下列去括号错误的是( ) A 、
()22325325a a b c a a b c --+=-+-
B.()()2
2
523523x x y z u x x y z u +-+--=-+-+
C.()2
2
231231m m m m --=-- D.()()
222222x y x y x y x y ----+=-++-
4、在3
1y +,
31m +,2x y -,1ab
c
-,8z -,0中,整式的个数是( ) A.6 B.3 C.4 D.5 5、已知623123
m n
x y x y -
和是同类项,则29517m mn --的值是( ) A 、-1 B.-2 C.-3 D.-4 6.已知A=53a b -,B=64a b -+,则A-B 等于( ) A 、a b -+ B.11a b + C.117a b - D.7a b -- 7.在下列式子
1
2
ab ,2a b +,ab 2+b +1,32x y +,x 2+x 3-6中,多项式有( ).
A .2个
B .3个
C .4个
D .5个
8
A.
861
B.
8
63
C.
865
D.
867
9.已知a -7b =-2,则4-2a +14b 的值是( ).
A .0
B .2
C .4
D .8 10.已知A =a 3-2ab 2+1,B =a 3+ab 2-3a 2b ,则A +B =( ).
A .2a 3-3ab 2-3a 2b +1
B .2a 3+ab 2-3a 2b +1
C .2a 3+ab 2-3a 2b +1
D .2a 3-ab 2-3a 2b +1
11.数学课上,老师讲了多项式的加减,放学后,小刚回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题2
2221131342222
x xy y x xy y ⎛⎫⎛⎫-+-
--+-=- ⎪ ⎪⎝
⎭⎝⎭x 2+________+y 2空格的地方被钢笔水弄污了,那么空格中的一项是( ).
A .-7xy
B .7xy
C .-xy
D .xy
12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n 边形“扩展”而来的多边形的边数为( ).
A.n(n-1) B.n(n+1) C.(n+1)(n-1) D.n2+2
13.下列各说法中,错误的是()
A.代数式的意义是的平方和
B.代数式的意义是5与的积
C.的5倍与的和的一半,用代数式表示为
D.比的2倍多3的数,用代数式表示为
14.已知两数在数轴上的位置如图所示,则化简代数式的结果是
()
A.1
B.
C.
D.-1
15.在排成每行七天的日历表中取下一个方块,若所有日期数之和为189,则
的值为()
A.21
B.11
C.15
D.9
三、解答题(共62分)
1化简:(每小题7分,共28分)
(1)()22
11
25
32
ab a b ab a b
⎛⎫
-+-+-

⎝⎭
(2)()
32
645
x x x
⎡⎤
---+
⎣⎦
(3)()()
5273410
x y x y
---(4)222222
53
345
32
a b ab ab a b ab a b
⎡⎤
⎛⎫
--+--

⎢⎥
⎝⎭
⎣⎦
2
5
y
x+
,a b12
a b a b
+--++
23
b+23
a-
33

2.、先化简,后求值:(每小题8分,共16分) (1)()()()()22
113224
a b a b a b a b ---+-+-,其中4a b -=
(2)()()
22232235x y xy x y xy x y ----,其中1
1,6
x y =-=
3.已知()()22
210a b -++=,求代数式22222
133542
a b ab a b ab ab ab a b +-++-+的值。

(9分)
4.有这样一道题: “计算的值,其中
”。

甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果?(9分)
)3()2()232(3
2
3
3
2
3
2
2
3
y y x x y xy x xy y x x -+-++----1,2
1-==
y x 21=x 21
-=x。

相关文档
最新文档