2020高考总复习数学创新设计人教A版教师文档第七章 第2节二元一次不等式(组)与简单的线性规划问题
2020版高考数学一轮复习第7章不等式2第2讲一元二次不等式及其解法教案理
第2讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ; (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.三个“二次”间的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx+c (a >0)的 图象一元二次方 程ax 2+bx +c =0(a >0)的根有两相异实 根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实 数根ax 2+bx +c>0(a >0) 的解集{x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-b 2aRax 2+bx +c<0(a >0) 的解集 {x |x 1<x <x 2}∅∅(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);(2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.绝对值不等式的解法(1)|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2; (2)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x );(3)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ).判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1. 不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞)解析:选A.由不等式x -12x +1≤0,可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝ ⎛⎦⎥⎤-12,1. 设二次不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,则ab 的值为________.解析:由不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,知a <0且ax 2+bx +1=0的两根为x 1=-1,x 2=13,由根与系数的关系知⎩⎪⎨⎪⎧-1+13=-b a,-13=1a ,所以a =-3,b =-2,ab =6. 答案:6若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.高考对一元二次不等式解法的考查主要有以下三个命题角度: (1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数.[典例引领]角度一 解不含参数的一元二次不等式(1)解不等式:-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}. (2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}. 角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ).【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3; ②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4. 综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba ,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5.即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[通关练习]1.(2018·陕西西安模拟)若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1},B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.(2018·广东清远一中模拟)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A .(-∞,-1)∪(3,+∞) B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:选C.关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),所以a =b <0,所以不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,所以所求解集是(-1,3).故选C.3.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.高考对一元二次不等式恒成立问题的考查有以下三个命题角度: (1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.[典例引领]角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定 参数的范围若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.【解析】 当a -2=0,即a =2时不等式为-4<0, 对一切x ∈R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 即⎩⎪⎨⎪⎧a <2-2<a <2,解得-2<a <2. 所以实数a 的取值范围是(-2,2]. 【答案】 (-2,2]角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围(转化与化归思想)若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________.【解析】 由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 即⎩⎪⎨⎪⎧2m 2-1<0,2m 2+3m <0, 解得-22<m <0. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.【解】 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 则实数x 的取值范围为(-∞,2)∪(4,+∞).(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. (2)求解不等式恒成立问题的数学思想求解此类问题常利用分类讨论思想及转化与化归思想,如例22是不等式与函数的转化,例23是主元与次元的转化,而例21是对二次项系数是否为0进行讨论.[通关练习]1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________. 解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立,则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13. 答案:m ≥132.若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别.(3)不同参数范围的解集切莫取并集,应分类表述.1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A.56 B.16C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56. 3.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 解析:选C.不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.4.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4即可,解得-1≤a ≤4.5.(2018·福建龙岩模拟)已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( ) A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫-32,12C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫-12,32解析:选A.不等式f (x )>0的解集是(-1,3),故f (x )<0的解集是{x |x <-1或x >3},故f (-2x )<0的解集为{x |-2x <-1或-2x >3},即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-32或x >12. 6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.答案:{x |0<x <2} 7.函数y =lg (1-x )-2x 2+12x +32的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2x 2+12x +32>0,1-x >0,即⎩⎪⎨⎪⎧x 2-6x -16<0,1-x >0,解得-2<x <1, 即原函数的定义域为{x |-2<x <1}. 答案:(-2,1)8.(2018·江西南昌模拟)在R 上定义运算:x *y =x (1-y ).若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是________.解析:由题意,知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y-3<0,解得-12<y <32.答案:⎝ ⎛⎭⎪⎫-12,32 9.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.10.(2018·合肥市第二次教学质量检测)已知函数f (x )=4-|ax -2|(a ≠0). (1)求函数f (x )的定义域;(2)若当x ∈[0,1]时,不等式f (x )≥1恒成立,求实数a 的取值范围.解:(1)要使函数有意义,需4-|ax -2|≥0,即|ax -2|≤4,|ax -2|≤4⇔-4≤ax -2≤4⇔-2≤ax ≤6.当a >0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a ≤x ≤6a ;当a <0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6a≤x ≤-2a .(2)f (x )≥1⇔|ax -2|≤3,记g (x )=|ax -2|,因为x ∈[0,1],所以需且只需⎩⎪⎨⎪⎧g (0)≤3g (1)≤3⇔⎩⎪⎨⎪⎧2≤3|a -2|≤3⇔-1≤a ≤5,又a ≠0,所以-1≤a ≤5且a ≠0.1.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.2.(2018·陕西咸阳模拟)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .26 解析:选C.设f (x )=x 2-6x +a ,其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0, 解得5<a ≤8,又a ∈Z ,故a =6,7,8.则所有符合条件的a 的值之和是6+7+8=21.3.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得, Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.答案:[-8,4]5.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 6.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m=(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a, 所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .。
1高考文科数学人教A一轮复习课件:第七章 第讲 一元二次不等式及其解法
解得 x≥3 或 x≤2.
故填{x|x≥3 或 x≤2}.
上一页
返回导航
下一页
第七章 不等式
16
(3)因为 12x2-ax>a2, 所以 12x2-ax-a2>0,即(4x+a)(3x-a)>0. 令(4x+a)(3x-a)=0,解得 x1=-a4,x2=a3. ①当 a>0 时,-a4<a3, 解集为xx<-a4或x>a3; ②当 a=0 时,x2>0,解集为{x|x∈R,且 x≠0};
上一页
返回导航
下一页
第七章 不等式
15
【解】 (1)由题意xx≥2+02,x>3或x-<x02,+2x>3,解得 x>1.故填{x|x>1}.
(2)
由
题
意
,
知
-
1 2
,
-
1 3
是
方
程
ax2 - bx - 1 = 0
的两个根,且
a<0 , 所 以
- -1212+ ×( (- -1313))==ba-,a1,解得ab==-5. 6,故不等式 x2-bx-a≥0 为 x2-5x+6≥0,
上一页
返回导航
下一页
第七章 不等式
13
3.对于任意实数 x,不等式 mx2+mx-1<0 恒成立,则实数 m 的取值范围是__________. 解析:当 m=0 时,mx2+mx-1=-1<0,不等式恒成立;当 m≠0 时,由mΔ<=0,m2+4m<0, 解得-4<m<0.综上,m 的取值范围是(-4,0]. 答案:(-4,0]
若不等式(a-2)x2+2(a-2)x-4<0 对一切 x∈R 恒成立,则实数 a 的取值范围是
高考数学统考一轮复习第七章7-2一元二次不等式及其解法课件文新人教版
解析:由7-6x-x2>0,得x2+6x-7<0,即(x+7)(x-1)<0,所以-7<x<1,故选
B.
四、走进高考
6.[2019·全国卷Ⅱ]设集合A={x|x2-5x+6>0},B={x|x-1<0},则
A∩ B=(
)
A.(-∞,1)
B.(-2,1)
C.(-3,-1) D.(3,+∞)
则a+b的值是________.
答案:-14
1 1
解析:由题意知- , 是 ax2+bx+2=0 的两根,
2 3
-1+1=-b,
2 3
a
a=-12,
则
解得
所以 a+b=-14.
1 2
b=-2,
1
-2×3=a,
1
1
− ,
2
3
,
3.[必修5·P104习题T3
改编]不等式ax2+bx+2>0的解集是
的解集为R.( × )
(4) 不 等 式 ax2 + bx + c≤0 在 R 上 恒 成 立 的 条 件 是 a<0 且 Δ = b2 -
4ac≤0.( × )
(5)若二次函数y=ax2 +bx+c的图象开口向下,则不等式ax2 +bx+
c<0的解集一定不是空集.( √ )
二、教材改编
2.[必修5·P80习题T2改编]设集合A={x|x2+x-6≤0},集合B为函数
)
−1
A.{x|x<1或x≥3} B.{x|1≤x≤3}
C.{x|1<x≤3}
D.{x|1<x<3}
x-3x-1≤0,
高考数学一轮复习 第七章 不等式 7.2 一元二次不等式及其解法课件(理)
b(a≠0)的形式.当 a>0 时,解集为
;当 a<0 时,解集为
.若
关于 x 的不等式 ax>b 的解集是 R,则实数 a,b 满足的条件是
.
3.一元二次不等式及其解法
(1)我们把只含有一个未知数,并且未知数的最高次数是 2 的不等式,
称为___Байду номын сангаас______不等式.
(2)使某个一元二次不等式成立的 x 的值叫做这个一元二次不等式的
类型二 一元二次不等式的解法
解下列不等式:
(1)x2-7x+12>0;
(2)-x2-2x+3≥0;
(3)x2-2x+1<0;
(4)x2-2x+2>0.
解:(1)方程 x2-7x+12=0 的解为 x1=3,x2=4. 而 y=x2-7x+12 的图象开口向上,可得原不等式 x2-7x
+12>0 的解集是{x|x<3 或 x>4}.
有两相等实根 x1=x2=-2ba
①
②
{x|x1<x<x2}
∅
无实根 R ③
4.分式不等式解法
(1)化分式不等式为标准型.方法:移项,通分,右边化为 0, 左边化为gf((xx))的形式.
(2)将分式不等式转化为整式不等式求解,如:
gf((xx))>0 ⇔ f(x)g(x)>0;
gf((xx))<0 ⇔ f(x)g(x)<0;
于号取 ,小于号取 ”求解集.
(4)一元二次不等式的解:
函数、方程与不等式
Δ>0
Δ=0
Δ<0
二次函数 y=ax2+bx+c (a>0)的图象
一元二次方程 ax2+bx+c=0
(a>0)的根 ax2+bx+c>0 (a>0)的解集 ax2+bx+c<0 (a>0)的解集
高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22
标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得
最值.
-27考点1
考点2
考点3
对点训练 2(1)(2020 河北唐山二模)已知 x,y 满足约束条件
- + 2 ≥ 0,
-2 + 1 ≤ 0,则 z=x-y 的最大值为( B )
包括
标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应_____
实线
边界直线,则把边界直线画成
.
(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)
代入Ax+By+C,所得的符号都 相同
,所以只需在此直线的同
一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的 符号 即
-1 ≤ 0,
- + 1 ≥ 0
为( D )
A.-5
B.1
C.2
D.3
(2)如图,阴影部分表示的区域可用二元一次不等式组表示
+ -1 ≥ 0,
为 -2 + 2 ≥. 0
-17考点1
考点2
考点3
+ -1 ≥ 0,
解析: (1)不等式组 -1 ≤ 0,
所围成的平面区域如图所示.
3
3
7
A.1
B.
C.
D.
2
4
4
- ≥ 0,
2 + ≤ 2,
(2)若不等式组
表示的平面区域是一个三角形,则
≥ 0,
+ ≤
a 的取值范围是( D )
【配套课件】《创新设计·高考一轮总复习》数学 人教A版(理)第七篇 第3讲 二元一次不等式(组)
【2014年高考会这样考】
1.考查二元一次不等式(组)表示的区域问题.
2.考查目标函数在可行域条件下的最优解问题.
考点梳理
1.二元一次不等式(组)表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧的所有点组成的平面区 域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平 面区域(半平面)包括边界直线. (2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax +By+C的值符号相同,也就是位于同一半平面内的点,其 坐标适合同一个不等式Ax+By+C>0;而位于另一个半平 面内的点,其坐标适合另一个不等式Ax+By+C<0. (3)由几个不等式组成的不等式组所表示的平面区域,是各 个不等式所表示的平面区域的公共部分.
两点提醒 (1)画出平面区域.避免失误的重要方法就是首先使二元
一次不等式标准化.
(2)求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直 线过可行域且在y轴上截距最大时,z值最大,在y轴截距 最小时,z值最小;当b<0时,直线过可行域且在y轴上截 距最大时,z值最小,在y轴上截距最小时,z值最大.
答案
D
考向二
线性目标函数的最值问题
x-y≤10, 【例 2】►(2012· 辽宁)设变量 x,y 满足0≤x+y≤20, 0≤y≤15, 2x+3y 的最大值为 (
下,目标
函数 z=x+5y 的最大值为 4,则 m 的值为________.
解析
画出约束条件的可行域,如图所示(阴影部分),由 z
1 z =x+5y,得 y=- x+ .故目标函数在 P 点处取最大值,由 5 5
高考数学一轮复习 第七章不等式7.2一元二次不等式及其解法教学案 理 新人教A版
7.2 一元二次不等式及其解法考纲要求1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.4.(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①|a+b|≤|a|+|b|.②|a-b|≤|a-c|+|c-b|.(2)会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.1.一元二次不等式的解法一元一次不等式ax>b(a≠0)的解集为(1)当a>0时,解集为__________.(2)当a<0时,解集为__________.判别式Δ>0Δ=0Δ<0 Δ=b2-4ac二次函数 y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根 x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b 2a没有实数根ax 2+bx +c >0(a >0)的解集 __________ __________ __________ax 2+bx +c <0(a >0)的解集__________ __________ __________ax 2bx c a4.(1)含____________的不等式叫做绝对值不等式.(2)解含有绝对值的不等式关键是去掉绝对值符号,基本方法有如下几种:①分段讨论:根据|f (x )|=⎩⎪⎨⎪⎧f x ,f x ≥0,-f x ,f x <0去掉绝对值符号.②利用等价不等式:|ax +b |≤c (c >0)⇔________; |ax +b |≥c (c >0)⇔__________.③两端同时平方:即运用移项法则,使不等式两边都变为非负数...,再平方,从而去掉绝对值符号.(3)形如|x -a |+|x -b |≥c (a ≠b )与|x -a |+|x -b |≤c (a ≠b )的绝对值不等式的解法主要有三种:①运用绝对值的几何意义; ②零点分区间讨论法;③构造分段函数,结合函数图象求解.1.不等式x 2>x 的解集是( ). A .(-∞,0) B .(0,1)C .(1,+∞) D.(-∞,0)∪(1,+∞)2.(2012重庆高考,文2)不等式x -1x +2<0的解集为( ).A .(1,+∞) B.(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( ). A .x >5a 或x <-a B .x >-a 或x <5a C .5a <x <-a D .-a <x <5a4.(2012天津高考)集合A ={ x ∈R |}|x -2|≤5中的最小整数为__________.5.若关于x 的不等式-12x 2+2x >mx 的解集是{x |0<x <2},则实数m 的值是__________.一、一元二次不等式的解法 【例1】解下列不等式:(1)2x 2+4x +3>0;(2)-3x 2-2x +8≥0;(3)12x 2-ax >a 2(a ∈R ). 方法提炼1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集. 2.对于解含有参数的二次不等式,一般讨论的顺序是:(1)讨论二次项系数是否为0,这决定此不等式是否为二次不等式; (2)当二次项系数不为0时,讨论判别式是否大于0;(3)当判别式大于0时,讨论二次项系数是否大于0,这决定所求不等式的不等号的方向;(4)判断二次不等式两根的大小.提醒:当a =0时,ax >b 不是一元一次不等式;当a =0,b ≥0时,它的解集为∅;当a =0,b <0时,它的解集为R .请做演练巩固提升2二、分式不等式的解法【例2】(2012江西高考)不等式x 2-9x -2>0的解集是__________.方法提炼对于形如f xg x >0(<0)可等价转化为f (x )g (x )>0(<0)来解决;对于f xg x ≥0(≤0)可等价转化为⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.当然对于高次不等式可用“穿根法”解决.请做演练巩固提升1三、一元二次不等式的实际应用【例3】某产品按质量可分成6种不同的档次,若工时不变,每天可生产最低档次的产品40件,如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品.(1)若最低档次的产品每件利润为16元,则生产哪种档次的产品所得到的利润最大? (2)若最低档次的产品每件利润为22元,则生产哪种档次的产品所得到的利润最大? 方法提炼解不等式应用题的步骤请做演练巩固提升5四、含有绝对值不等式的解法【例4-1】(2012辽宁高考)已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}.(1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f x -2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.【例4-2】设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 方法提炼1.解含两个绝对值符号的不等式,可先将其转化为|x -a |+|x -b |≥c 的形式,对于这种绝对值符号里是一次式的不等式,一般有三种解法,分别是“零点划分法”“利用绝对值的几何意义法”和“利用函数图象法”.此外,有时还可采用平方法去绝对值,它只有在不等式两边均为正的情况下才能使用.2.绝对值不等式|x -a |≥c (c >0)表示数轴上到点a 的距离不小于c 的点的集合;反之,绝对值|x -a |<c (c >0)表示数轴上到点a 的距离小于c 的点的集合.3.“零点划分法”是解绝对值不等式的最基本方法,一般步骤是: (1)令每个绝对值符号里的代数式等于零,求出相应的根;(2)把这些根按由小到大进行排序,n 个根把数轴分为n +1个区间;(3)在各个区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集;(4)这些不等式解集的并集就是原不等式的解集.请做演练巩固提升3与一元二次不等式有关的恒成立问题【典例】(12分)设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.分析:(1)对于x ∈R ,f (x )<0恒成立,可转化为函数f (x )的图象总是在x 轴下方,可讨论m 的取值,利用判别式求解.(2)含参数的一元二次不等式在某区间内的恒成立问题,常有两种处理方法:方法一是利用二次函数区间上的最值来处理;方法二是先分离出参数,再去求函数的最值来处理.一般方法二比较简单.规范解答:(1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0. 综上有-4<m ≤0.(4分)(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.(6分)有以下两种方法:方法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,(8分) 所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67;(10分)当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0. 所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.(12分) 方法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.(8分)因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.(10分)所以,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.(12分) 答题指导:1.与一元二次不等式有关的恒成立问题,可通过二次函数求最值,也可通过分离参数,再求最值.2.解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.3.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.4.本题考生易错点:忽略对m =0的讨论.这是由思维定势所造成的.1.不等式x -2x +1≤0的解集为( ). A .{x |-1≤x ≤2} B .{x |-1<x ≤2} C .{x |-1≤x <2} D .{x |-1<x <2}2.已知不等式x 2-x ≤0的解集为M ,且集合N ={x |-1<x <1},则M ∩N 为( ).A .[0,1)B .(0,1)C .[0,1]D .(-1,0]3.对于x ∈R ,不等式|x +10|-|x -2|≥8的解集为________.4.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是__________. 5.某种商品,现在定价p 元,每月卖出n 件,设定价上涨x 成,每月卖出数量减少y 成,每月售货总金额变成现在的z 倍.(1)用x 和y 表示z ;(2)设x 与y 满足y =kx (0<k <1),利用k 表示当每月售货总金额最大时x 的值;(3)若y =23x ,求使每月售货总金额有所增加的x 值的范围.参考答案基础梳理自测 知识梳理1.(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >b a(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <ba2.{x |x <x 1或x >x 2} {x |x ≠x 1} {x |x ∈R } {x |x 1<x <x 2} ∅ ∅3.Δ≥0? ⎝⎛⎭⎪⎫-∞,-b 2a ∪⎝⎛⎭⎪⎫-b2a,+∞ (-∞,x 2)∪(x 1,+∞) (-∞,+∞)4.(1)绝对值符号(2)②-c ≤ax +b ≤c ax +b ≤-c 或ax +b ≥c 基础自测1.D 解析:x 2>x ⇒x (x -1)>0⇒x >1或x <0.2.C 解析:不等式x -1x +2<0,解不等式得其解集为(-2,1),故选C.3.B 解析:由x 2-4ax -5a 2>0,得(x -5a )(x +a )>0, ∵a <0,∴x <5a 或x >-a . 4.-3 解析:∵|x -2|≤5, ∴-5≤x -2≤5,∴-3≤x ≤7,∴集合A 中的最小整数为-3.5.1 解析:由-12x 2+2x >mx ,得x 2-4x +2mx <0,即x [x -(4-2m )]<0,∵不等式的解集为{x |0<x <2}, ∴4-2m =2.∴m =1. 考点探究突破【例1】 解:(1)∵Δ=42-4×2×3<0,∴方程2x 2+4x +3=0没有实根.二次函数y =2x 2+4x +3的图象开口向上,与x 轴没有交点,即2x 2+4x +3>0恒成立,∴不等式2x 2+4x +3>0的解集为R .(2)原不等式可化为3x 2+2x -8≤0, ∵Δ=100>0,∴方程3x 2+2x -8=0的两根为-2,43.结合二次函数y =3x 2+2x -8的图象可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤43. (3)由12x 2-ax -a 2>0⇔(4x +a )(3x -a )>0 ⇔⎝ ⎛⎭⎪⎫x +a 4⎝ ⎛⎭⎪⎫x -a 3>0, ①a >0时,-a 4<a3,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a3,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 3或x >-a 4.【例2】 (-3,2)∪(3,+∞) 解析:不等式x 2-9x -2>0可化为(x -2)(x -3)(x +3)>0,由穿根法(如图)得,所求不等式的解集为(-3,2)∪(3,+∞).【例3】 解:(1)设生产第x 档次产品时,所获利润最大,则生产第x 档次产品时,每件利润为[16+(x -1)×1]元,生产第x 档次产品时,每天生产[40-2(x -1)]件, 所以生产第x 档次产品时,每天所获利润为: y =[40-2(x -1)][16+(x -1)]=-2(x -3)2+648.当x =3时,y 最大,即生产第三档次产品利润最大. (2)若最低档次产品每件利润为22元,则生产第x 档次产品时,每天所获利润为: y =[40-2(x -1)][22+(x -1)]=-2x 2+882.因为x ∈[1,6],且x ∈N ,所以当x =1时,y 最大,即生产第一档次产品利润最大. 【例4-1】解:(1)由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1}, 所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a,得a =2.(2)记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k ≥1.【例4-2】 解:(1)当a =-1时,f (x )=|x -1|+|x +1|, 由f (x )≥3得|x -1|+|x +1|≥3,(方法一)由绝对值的几何意义知不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.(方法二)不等式可化为⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧-1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3.所以不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.(2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤a ,1-a ,a <x <1,2x -(a +1),x ≥1,f (x )的最小值为1-a ;若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -(a +1),x ≥a .f (x )的最小值为a -1.所以对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,1]∪[3,+∞).演练巩固提升1.B 解析:原不等式⇔⎩⎪⎨⎪⎧(x -2)(x +1)≤0,x +1≠0⇔-1<x ≤2.2.A 解析:由x 2-x ≤0,得0≤x ≤1,所以M ∩N 为[0,1).选A.3.[0,+∞) 解析:令y =|x +10|-|x -2|=⎩⎪⎨⎪⎧-12, x ≤-10,2x +8,-10<x <2,12, x ≥2.则可画出其函数图象如图所示:由图象可以观察出使y ≥8的x 的范围为[0,+∞).∴|x +10|-|x -2|≥8的解集为[0,+∞).4.(-∞,-5] 解析:设f (x )=x 2+mx +4,由题意,得⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0,11 即⎩⎪⎨⎪⎧ 5+m ≤0,8+2m ≤0.∴m ≤-5.5.解:(1)按现在的定价上涨x 成时,上涨后的定价为p ⎝ ⎛⎭⎪⎫1+x 10元,每月卖出数量为n⎝ ⎛⎭⎪⎫1-y10件,每月售货总金额是npz 元, 因而npz =p ⎝ ⎛⎭⎪⎫1+x10·n ⎝ ⎛⎭⎪⎫1-y10,所以z =(10+x )(10-y )100.(2)在y =kx 的条件下,z =(10+x )(10-kx )100,整理可得z =1100·⎩⎨⎧⎭⎬⎫100+25(1-k )2k -k ·⎣⎢⎡⎦⎥⎤x -5(1-k )k 2,由于0<k <1,所以5(1-k )k >0,所以使z 值最大的x 值是x =5(1-k )k .(3)当y =23x 时,z =(10+x )⎝ ⎛⎭⎪⎫10-23x 100,要使每月售货总金额有所增加,即z >1,应有(10+x )⎝ ⎛⎭⎪⎫10-23x >100,即x (x -5)<0,所以0<x <5.所以x 的取值范围是(0,5).。
2020版广西 高考人教A版数学(理)一轮复习课件:7.1 二元一次不等式(组)与简单的线性规划问题
和(1,0),
4 3
若原不等式组表示的平面区域是一个三角形, 则由图可知直线 x+y=a 的 a 的取值范围是 0<a≤1 或 a≥ .
第七章
考点1 考点2 考点3
7.1
二元一次不等式(组)与简单的线性规划问题
知识梳理 核心考点
知识体系
-15-
解题心得确定二元一次不等式(组)表示的平面区域的方法: (1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等 式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊 点同侧的那部分区域;否则就对应特殊点异侧的平面区域. (2)若不等式带等号,则边界为实线;若不等式不带等号,则边界为 虚线.
7 有最大值为 7.故答案为 7.
解析 答案
2 2 3 ������ 2 2
关闭
第七章
考点1 考点2 考点3
7.1
二元一次不等式(组)与简单的线性规划问题
知识梳理 核心考点
知识体系
-12-
考点 1 二元一次不等式(组)表示的平面区域
������ ≤ 0, 例 1(1)若 Ω 为不等式组 ������ ≥ 0, 表示的平面区域,则当 a 从-2 ������-������ ≤ 2 连续变化到 1 时,动直线 x+y=a 扫过 Ω 中的那部分区域的面积为 ( D ) 3 3 7 A.1 B. C. D. ������-������ ≥ 0, 2������ + ������ ≤ 2, (2)若不等式组 表示的平面区域是一个三角形,则 ������ ≥ 0, ������ + ������ ≤ ������ a 的取值范围是( D ) A. , + ∞
2020届高考数学(文)一轮复习讲义 第7章 7.3 一元二次不等式及其解法
§7.3一元二次不等式及其解法最新考纲考情考向分析1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.以理解一元二次不等式的解法为主,常与集合的运算相结合考查一元二次不等式的解法,有时也在导数的应用中用到,加强函数与方程思想,分类讨论思想和数形结合思想的应用意识.在高考中常以选择题的形式考查,属于低档题,若在导数的应用中考查,难度较高.1.一元二次不等式的解集判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2} 错误!{x|x∈R} ax2+bx+c<0(a>0)的解集{x|x1< x<x2} ∅∅2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法不等式解集a <ba =b a >b (x -a )·(x -b )>0 {x |x <a 或x >b } {x |x ≠a }{x |x <b 或x >a } (x -a )·(x -b )<0{x |a <x <b }∅{x |b <x <a }口诀:大于取两边,小于取中间. 概念方法微思考1.一元二次不等式ax 2+bx +c >0(a >0)的解集与其对应的函数y =ax 2+bx +c 的图象有什么关系?提示 ax 2+bx +c >0(a >0)的解集就是其对应函数y =ax 2+bx +c 的图象在x 轴上方的部分所对应的x 的取值范围.2.一元二次不等式ax 2+bx +c >0(<0)恒成立的条件是什么? 提示显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ )题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( ) A .{x |-2<x <3} B .{x |-2≤x ≤3} C .{x |x <-2}∪{x |x >3} D .{x |x ≤-2}∪{x |x ≥3} 答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}. 故选B.3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .(-2,2] C .(-2,2) D .(-∞,2) 答案 B解析 ∵⎩⎪⎨⎪⎧a -2<0,Δ<0,∴-2<a <2,另a =2时,原式化为-4<0,不等式恒成立, ∴-2<a ≤2.故选B.题型一 一元二次不等式的求解命题点1 不含参的不等式例1(2019·呼和浩特模拟)已知集合A ={x |x 2-x -2<0},B ={y |y =2x },则A ∩B 等于( ) A .(-1,2) B .(-2,1) C .(0,1) D .(0,2)答案 D解析 由题意得A ={x |x 2-x -2<0}={x |-1<x <2},B ={y |y =2x }={y |y >0}, ∴A ∩B ={x |0<x <2}=(0,2).故选D. 命题点2 含参不等式例2解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 思维升华对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ判断根的个数.(3)有两个根时,有时还需根据两根的大小进行讨论. 跟踪训练1解不等式12x 2-ax >a 2(a ∈R ). 解 原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞.题型二 一元二次不等式恒成立问题命题点1 在R 上的恒成立问题例3已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围. 解 当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0]. 命题点2 在给定区间上的恒成立问题例4已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 引申探究1.若将“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围? 解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3],得m ≥6,即m 的取值范围为[6,+∞).2.若将“f (x )<5-m 恒成立”改为“存在x ,使f (x )<5-m 成立”,如何求m 的取值范围? 解 由题意知f (x )<5-m 有解,即m <6x 2-x +1有解,则m <⎝⎛⎭⎫6x 2-x +1max ,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 命题点3 给定参数范围的恒成立问题例5若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32.思维升华解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练2函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图①,当g (x )的图象与x 轴不超过1个交点时, 有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有2个交点, 但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧ Δ>0,x =-a2<-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2<-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a >2或a <-6,a >4,a ≤73,解得a ∈∅.③如图③,g (x )的图象与x 轴有2个交点, 但当x ∈(-∞,2]时,g (x )≥0.即⎩⎪⎨⎪⎧Δ>0,x=-a2>2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2>2,7+a ≥0,可得⎩⎪⎨⎪⎧a >2或a <-6,a <-4,a ≥-7.∴-7≤a <-6,综上,实数a 的取值范围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).一、选择题1.已知集合A ={x |x ≥0},B ={x |(x +1)(x -5)<0},则A ∩B 等于( ) A .[-1,4) B .[0,5)C .[1,4]D .[-4,-1)∪ [4,5)答案 B解析 由题意得B ={x |-1<x <5},故A ∩B ={x |x ≥0}∩{x |-1<x <5}=[0,5).故选B.2.(2018·沈阳二十中联考)若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <12 C .{x |-2<x <1} D .{x |x <-2或x >1}答案 A解析 ∵不等式ax 2+bx +2>0的解集为{x |-1<x <2},∴ax 2+bx +2=0的两根为-1,2,且a <0,即-1+2=-b a ,(-1)×2=2a ,解得a =-1,b =1,则所求不等式可化为2x 2+x -1>0,解得x <-1或x >12,故选A.3.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0] 答案 A解析 由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解得-3<k <0.4.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A .(13,+∞) B .(5,+∞) C .(4,+∞) D .(-∞,13)答案 B解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时f (x )min =5,∃x ∈[2,4] 使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3] D .[-1,3] 答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.6.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎤-∞,-235 答案 A解析 由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故选A.7.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值范围是( ) A .(-3,5) B .(-2,4) C .[-1,3] D .[-2,4]答案 C解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或1>a ≥-1, 所以实数a 的取值范围是a ∈[-1,3],故选C.8.设a <0,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( ) A.12B.13C.14D.22 答案 C解析 当a <b <0时,∀x ∈(a ,b ),2x +b <0, 所以(4x 2+a )(2x +b )≥0在(a ,b )上恒成立, 可转化为∀x ∈(a ,b ),a ≤-4x 2,所以a ≤-4a 2,所以-14≤a <0,所以0<b -a <14;当a <0<b 时,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,当x =0时,(4x 2+a )(2x +b )=ab <0,不符合题意;当a <0=b 时,由题意知x ∈(a ,0),(4x 2+a )2x ≥0恒成立,所以4x 2+a ≤0,所以-14≤a <0,所以b -a ≤14. 综上所述,b -a 的最大值为14. 二、填空题9.(2018·全国名校大联考)不等式x 2-2ax -3a 2<0(a >0)的解集为________.答案 {x |-a <x <3a }解析 x 2-2ax -3a 2<0⇔(x -3a )(x +a )<0,∵a >0,∴-a <3a ,不等式的解集为{x |-a <x <3a }.10.(2018·烟台联考)不等式x >1x的解集为________. 答案 (-1,0)∪(1,+∞)解析 当x >0时,原不等式等价于x 2>1,解得x >1;当x <0时,原不等式等价于x 2<1,解得-1<x <0.所以不等式x >1x的解集为(-1,0)∪(1,+∞). 11.若关于x 的不等式x 2-ax -a >0的解集为R ,则实数a 的取值范围是________. 答案 (-4,0)解析 因为x 2-ax -a >0的解集为R ,所以Δ=(-a )2-4(-a )<0,解得-4<a <0,故实数a 的取值范围是(-4,0).12.(2019·上海长宁、嘉定区模拟)不等式x x +1≤0的解集为________. 答案 (-1,0]解析 由x x +1≤0得x (x +1)≤0(x ≠-1), 解得-1<x ≤0.13.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为________. 答案 [-5,+∞)解析 由题意,分离参数后得,a ≥-⎝⎛⎭⎫x +4x . 设f (x )=-⎝⎛⎭⎫x +4x ,x ∈(0,1], 则只要a ≥[f (x )]max 即可.由于函数f (x )在区间(0,1]上单调递增,所以[f (x )]max =f (1)=-5,故a ≥-5.三、解答题14.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,求实数a 的取值范围.解 设f (x )=x 2-2(a -2)x +a ,当Δ=4(a -2)2-4a <0时,即1<a <4时,f (x )>0对x ∈R 恒成立;当a =1时,f (-1)=0,不合题意;当a =4时,f (2)=0符合题意;当Δ>0时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,即⎩⎪⎨⎪⎧ a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值范围是(1,5].15.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)∵f (x )=-3x 2+a (6-a )x +6,∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.∴原不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围. 解 (1)f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),即2x 2+bx +c <0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c 2=0, ∴b =-10,c =0,f (x )=2x 2-10x .(2)f (x )+t ≤2恒成立等价于2x 2-10x +t -2≤0恒成立,∴2x 2-10x +t -2在x ∈[-1,1]上的最大值小于或等于0.设g (x )=2x 2-10x +t -2,x ∈[-1,1],则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t ,∴10+t ≤0,即t ≤-10.。
(新课标)2020版高考数学总复习第七章第二节一元二次不等式及其解法课件文新人教A版
所以m< 76,则0<m< 76.
当m<0时,g(x)在[1,3]上是减函数,
所以g(x)max=g(1)=m-6<0, 所以m<6,所以m<0.
综上所述,m的取值范围是 m |
0
m
6 7
或m
0
.
命题方向三 形如f(x)≥0(参数m∈[a,b])恒成立,求x的范围 典例6 对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的 取值范围.
当a-2≠0,即a≠2时,
a Δ
2 0, 4(a
2)2
16(a
2)
0,
即
a a
2 2 4,
0,
解得-2<a<2.
∴实数a的取值范围是(-2,2].
命题方向二 形如f(x)≥0(x∈[a,b])恒成立,确定参数范围
典例5 (一题多解)设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3], f(x)<-m+
答案 D 将x2-3x+2<0化为(x-1)(x-2)<0, 解得1<x<2.
3.若不等式mx2+2x+1>0的解集为(-∞,-2)∪ 23
,
,则m=
(
C
)
A. 1 B. 7 C. 3 D. 5
2
12
4
6
答案 C
4.不等式 x 3≤0的解集为
x 1
(
C
)
A.{x|x<1或x≥3} B.{x|1≤x≤3}
2020高考数学大一轮复习第七章不等式7-2一元二次不等式及其解法教师用书
【2019最新】精选高考数学大一轮复习第七章不等式7-2一元二次不等式及其解法教师用书1.“三个二次”的关系2.常用结论(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法口诀:大于取两边,小于取中间.【知识拓展】1.>0(<0)⇔f(x)·g(x)>0(<0).2.≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0.以上两式的核心要义是将分式不等式转化为整式不等式.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( √)(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c =0的两个根是x1和x2.( √)(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( ×)(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.(×)(5)若二次函数y=ax2+bx+c的图象开口向下,则不等式ax2+bx+c<0的解集一定不是空集.( √)1.(教材改编)不等式x2-3x-10>0的解集是( )A.(-2,5) B.(5,+∞)C.(-∞,-2) D.(-∞,-2)∪(5,+∞)答案D解析解方程x2-3x-10=0得x1=-2,x2=5,由于y=x2-3x-10的图象开口向上,所以x2-3x-10>0的解集为(-∞,-2)∪(5,+∞).2.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A.(0,4] B.[0,4)C.[-1,0) D.(-1,0]答案B解析∵M={x|x2-3x-4<0}={x|-1<x<4},∴M∩N=[0,4).3.(2016·梧州模拟)不等式<1的解集是( )A.(-∞,-1)∪(1,+∞)B.(1,+∞)C.(-∞,-1)D.(-1,1)答案A解析由<1得<0,∴(x-1)(x+1)>0,∴x>1或x<-1.4.(教材改编)若关于x的不等式ax2+bx+2>0的解集是(-,),则a+b=________.答案-14解析∵x1=-,x2=是方程ax2+bx+2=0的两个根,∴解得∴a+b=-14.题型一一元二次不等式的求解命题点1 不含参数的不等式例1 求不等式-2x2+x+3<0的解集.解化-2x2+x+3<0为2x2-x-3>0,解方程2x2-x-3=0得x1=-1,x2=,∴不等式2x2-x-3>0的解集为(-∞,-1)∪(,+∞),即原不等式的解集为(-∞,-1)∪(,+∞).命题点2 含参数的不等式例2 解关于x的不等式:x2-(a+1)x+a<0.解由x2-(a+1)x+a=0,得(x-a)(x-1)=0,∴x1=a,x2=1,①当a>1时,x2-(a+1)x+a<0的解集为{x|1<x<a},②当a=1时,x2-(a+1)x+a<0的解集为∅,③当a<1时,x2-(a+1)x+a<0的解集为{x|a<x<1}.引申探究将原不等式改为ax2-(a+1)x+1<0,求不等式的解集.解若a=0,原不等式等价于-x+1<0,解得x>1.若a<0,原不等式等价于(x-)(x-1)>0,解得x<或x>1.若a>0,原不等式等价于(x-)(x-1)<0.①当a=1时,=1,(x-)(x-1)<0无解;②当a>1时,<1,解(x-)(x-1)<0,得<x<1;③当0<a<1时,>1,解(x-)(x-1)<0,得1<x<.综上所述,当a<0时,解集为{x|x<或x>1};当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<};当a=1时,解集为∅;当a>1时,解集为{x|<x<1}.思维升华含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.解下列不等式:(1)0<x2-x -2≤4;(2)求不等式12x2-ax >a2(a∈R)的解集. 解 (1)原不等式等价于⎩⎪⎨⎪⎧ x2-x -2>0,x2-x -2≤4⇔⇔⎩⎪⎨⎪⎧ x -2x +1>0,x -3x +2≤0⇔⎩⎪⎨⎪⎧x>2或x<-1,-2≤x≤3.借助于数轴,如图所示,所以原不等式的解集为{x|-2≤x<-1或2<x≤3}. (2)∵12x2-ax >a2,∴12x2-ax -a2>0, 即(4x +a)(3x -a)>0,令(4x +a)(3x -a)=0, 得x1=-,x2=.①a>0时,-<,解集为;②a=0时,x2>0,解集为{x|x∈R 且x≠0}; ③a<0时,->,解集为.综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x|x <-a 4或x >a 3;当a =0时,不等式的解集为{x|x∈R 且x≠0}; 当a <0时,不等式的解集为. 题型二 一元二次不等式恒成立问题 命题点1 在R 上的恒成立问题例3 (1)若一元二次不等式2kx2+kx -<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)(2)设a 为常数,任意x∈R,ax2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,+∞) D .(-∞,4)答案 (1)D (2)B解析 (1)∵2kx2+kx -<0为一元二次不等式, ∴k≠0,又2kx2+kx -<0对一切实数x 都成立, 则必有解得-3<k<0.(2)任意x∈R,ax2+ax +1>0,则必有或a =0,∴0≤a<4. 命题点2 在给定区间上的恒成立问题例4 设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.解要使f(x)<-m+5在x∈[1,3]上恒成立,即m2+m-6<0在x∈[1,3]上恒成立.有以下两种方法:方法一令g(x)=m2+m-6,x∈[1,3].当m>0时,g(x)在[1,3]上是增函数,所以g(x)max=g(3)⇒7m-6<0,所以m<,所以0<m<;当m=0时,-6<0恒成立;当m<0时,g(x)在[1,3]上是减函数,所以g(x)max=g(1)⇒m-6<0,所以m<6,所以m<0.综上所述,m的取值范围是{m|m<}.方法二因为x2-x+1=2+>0,又因为m(x2-x+1)-6<0,所以m<.因为函数y==在[1,3]上的最小值为,所以只需m<即可.所以,m的取值范围是.命题点3 给定参数范围的恒成立问题例5 对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范围.解由f(x)=x2+(m-4)x+4-2m=(x-2)m+x2-4x+4,令g(m)=(x-2)m+x2-4x+4.由题意知在[-1,1]上,g(m)的值恒大于零,∴⎩⎪⎨⎪⎧g -1=x -2×-1+x2-4x +4>0,g 1=x -2+x2-4x +4>0.解得x<1或x>3.故当x 的取值范围为(-∞,1)∪(3,+∞)时,对任意的m∈[-1,1],函数f(x)的值恒大于零.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. (2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)已知函数f(x)=x2+mx -1,若对于任意x∈[m,m +1],都有f(x)<0成立,则实数m 的取值范围是________. 答案 (-,0)解析 作出二次函数f(x)的草图,对于任意x∈[m,m +1],都有f(x)<0,则有⎩⎪⎨⎪⎧f m <0,f m +1<0,即解得-<m<0.(2)已知不等式mx2-2x -m +1<0,是否存在实数m 对所有的实数x ,使不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由. 解 不等式mx2-2x -m +1<0恒成立,即函数f(x)=mx2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x<0,则x>,不满足题意;当m≠0时,函数f(x)=mx2-2x -m +1为二次函数, 需满足开口向下且方程mx2-2x -m +1=0无解,即⎩⎪⎨⎪⎧ m<0,Δ=4-4m 1-m <0,不等式组的解集为空集,即m 无解.综上可知,不存在这样的m. 题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f(x),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100·100.因为售价不能低于成本价,所以100-80≥0.所以y =f(x)=40(10-x)(25+4x),定义域为x∈[0,2]. (2)由题意得40(10-x)(25+4x)≥10 260, 化简得8x2-30x +13≤0,解得≤x≤. 所以x 的取值范围是.思维升华求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义.(4)回归实际问题,将数学结论还原为实际问题的结果.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A.12元B.16元C.12元到16元之间D.10元到14元之间答案C解析设销售价定为每件x元,利润为y,则y=(x-8)[100-10(x-10)],依题意有(x-8)[100-10(x-10)]>320,即x2-28x +192<0,解得12<x<16,所以每件销售价应定为12元到16元之间.15.转化与化归思想在不等式中的应用典例 (1)已知函数f(x)=x2+ax +b(a ,b∈R)的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f(x)=,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a 的取值范围是________.思想方法指导 函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题.解析 (1)由题意知f(x)=x2+ax +b=2+b -.∵f(x)的值域为[0,+∞),∴b-=0,即b =.∴f(x)=2.又∵f(x)<c,∴2<c,即--<x<-+.∴⎩⎪⎨⎪⎧ -a 2-c =m , ①-a 2+c =m +6. ②②-①,得2=6,∴c=9.(2)∵x∈[1,+∞)时,f(x)=>0恒成立,即x2+2x +a>0恒成立.即当x≥1时,a>-(x2+2x)=g(x)恒成立.而g(x)=-(x2+2x)=-(x+1)2+1在[1,+∞)上单调递减,∴g(x)max=g(1)=-3,故a>-3.∴实数a的取值范围是{a|a>-3}.答案(1)9 (2){a|a>-3}1.不等式(x-1)(2-x)≥0的解集为( )A.{x|1≤x≤2} B.{x|x≤1或x≥2}C.{x|1<x<2} D.{x|x<1或x>2}答案A解析由(x-1)(2-x)≥0可知(x-2)(x-1)≤0,所以不等式的解集为{x|1≤x≤2}.2.不等式组的解集为( )A.{x|-2<x<-1} B.{x|-1<x<0}C.{x|0<x<1} D.{x|x>1}答案C解析x(x+2)>0的解集为{x|x<-2或x>0},又-1<x<1,∴0<x<1,即{x|0<x<1}.3.(2016·临安中学模拟)若集合A={x|ax2-ax+1<0}=∅,则实数a的取值范围是( )A.{a|0<a<4} B.{a|0≤a<4}C.{a|0<a≤4} D.{a|0≤a≤4}答案D解析由题意知a=0时,满足条件.当a≠0时,由⎩⎪⎨⎪⎧ a>0,Δ=-a 2-4a≤0,得0<a≤4.所以0≤a≤4.4.设函数f(x)=则不等式f(x)>f(1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)答案 A解析 由题意得或⎩⎪⎨⎪⎧ x<0,x +6>3,解得-3<x<1或x>3.5.已知不等式x2-2x -3<0的解集为A ,不等式x2+x -6<0的解集为B ,不等式x2+ax +b<0的解集为A∩B,那么a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,A ={x|-1<x<3},B ={x|-3<x<2},A∩B={x|-1<x<2},则不等式x2+ax +b<0的解集为{x|-1<x<2}.由根与系数的关系可知,a =-1,b =-2,所以a +b =-3,故选A.6.已知函数f(x)=(ax -1)(x +b),如果不等式f(x)>0的解集是(-1,3),则不等式f(-2x)<0的解集是( )A .(-∞,-)∪(,+∞)B .(-,)C .(-∞,-)∪(,+∞)D .(-,)答案 A解析 由题意得f(x)=0的两个解是x1=-1,x2=3且a<0,由f(-2x)<0得-2x>3或-2x<-1,∴x<-或x>.7.已知不等式ax2-bx -1≥0的解集是,则不等式x2-bx -a<0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.D.∪⎝ ⎛⎭⎪⎫12,+∞ 答案 A解析 由题意知-,-是方程ax2-bx -1=0的根,所以由根与系数的关系得-+=,-×=-.解得a =-6,b =5,不等式x2-bx -a<0即为x2-5x +6<0,解集为(2,3).*8.已知函数f(x)=-x2+ax +b2-b +1(a ∈R ,b ∈R),对任意实数x 都有f(1-x)=f(1+x)成立,当x ∈[-1,1]时,f(x)>0恒成立,则b 的取值范围是( )A .-1<b<0B .b>2C .b<-1或b>2D .不能确定答案 C解析 由f(1-x)=f(1+x)知f(x)图象的对称轴为直线x =1,则有=1,故a =2.由f(x)的图象可知f(x)在[-1,1]上为增函数.∴x∈[-1,1]时,f(x)min =f(-1)=-1-2+b2-b +1=b2-b -2,令b2-b -2>0,解得b<-1或b>2.9.若不等式-2≤x2-2ax +a≤-1有唯一解,则a 的值为________.答案 1±52解析 若不等式-2≤x2-2ax +a≤-1有唯一解,则x2-2ax +a =-1有两个相等的实根,所以Δ=4a2-4(a +1)=0,解得a =.10.设f(x)是定义在R 上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a 的取值范围是________.答案 (-1,)解析 ∵f(x+3)=f(x),∴f(2)=f(-1+3)=f(-1)=-f(1)<-1.∴<-1⇔<0⇔(3a -2)(a +1)<0,∴-1<a<.*11.已知f(x)是定义域为R 的偶函数,当x ≥0时,f(x)=x2-4x ,那么,不等式f(x +2)<5的解集是______________________.答案 {x|-7<x<3}解析 令x<0,则-x>0,∵x≥0时,f(x)=x2-4x ,∴f(-x)=(-x)2-4(-x)=x2+4x ,又f(x)为偶函数,∴f(-x)=f(x),∴x<0时,f(x)=x2+4x ,故有f(x)=再求f(x)<5的解,由得0≤x<5;由⎩⎪⎨⎪⎧ x<0,x2+4x<5,得-5<x<0,即f(x)<5的解集为(-5,5).由于f(x)向左平移两个单位即得f(x +2),故f(x +2)<5的解集为{x|-7<x<3}.12.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m<n).(1)若m=-1,n=2,求不等式F(x)>0的解集;(2)若a>0,且0<x<m<n<,比较f(x)与m的大小.解(1)由题意知,F(x)=f(x)-x=a(x-m)(x-n).当m=-1,n=2时,不等式F(x)>0,即a(x+1)(x-2)>0.当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};当a<0时,不等式F(x)>0的解集为{x|-1<x<2}.(2)f(x)-m=F(x)+x-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1),∵a>0,且0<x<m<n<,∴x-m<0,1-an+ax>0.∴f(x)-m<0,即f(x)<m.*13.(2016·烟台模拟)已知不等式(a+b)x+(2a-3b)<0的解为x>-,解不等式(a -2b)x2+2(a-b-1)x+(a-2)>0.解因为(a+b)x+(2a-3b)<0,所以(a+b)x<3b-2a,因为不等式的解为x>-,所以a+b<0,且=-,解得a=3b<0,则不等式(a-2b)x2+2(a-b-1)x+(a-2)>0等价为bx2+(4b-2)x+(3b-2)>0,即x2+(4-)x+(3-)<0,即(x+1)(x+3-)<0.因为-3+<-1,所以不等式的解为-3+<x<-1.即所求不等式的解集为{x|-3+<x<-1}.。
人教A版高考总复习一轮文科数学精品课件 第7章 不等式、推理与证明 第2节 基本不等式及其应用
2.ab≤ 2 ≤ 2 (a,b∈R),当且仅当 a=b 时取等号.
3.1
2
1
+
≤ ≤
+
2
≤
2 + 2
(a>0,b>0),当且仅当
2
a=b 时取等号.
研考点 精准突破
考点一
利用基本不等式求最值(多考向探究)
考向1配凑法求最值
例1若
5
x> ,则
3
4
3+2
当且仅当
2+1
=
1
1
6 2+1
1
+ 3+2
1
(4x+2+3y+2)=6
=
4+2
,即
3+2
5-3 2
6 2-8
x=
,y=
时,等号成立.
2
3
3+
4+2
3+2
+
3+2
2+1
1
2
≥ +
2
,
3
考向2常数代换法求最值
例2(1)(2023河北石家庄月考)若正数x,y满足x+3y=5xy,当3x+4y取得最小值
数,“二定”指求最值时和或积为定值,“三相等”指等号成立.
2.连续使用基本不等式时,牢记等号要同时成立.
2.两个重要的不等式
(1)a2+b2≥ 2ab (a,b∈R),当且仅当a=b时取等号.
(2)ab≤
+ 2
(a,b∈R),当且仅当
2020版高考数学一轮复习第七章不等式第2讲一元二次不等式的解法教案(理)(含解析)新人教A版
第2讲一元二次不等式的解法基础知识整合1.一元二次不等式的解法01大于零的不等式ax2+bx+c>0(a>0)(1)将不等式的右边化为零,左边化为二次项系数□或ax2+bx+c<0(a>0).(2)计算相应的□02判别式.(3)当□03Δ≥0时,求出相应的一元二次方程的根.(4)利用二次函数的图象与x轴的□04交点确定一元二次不等式的解集.2.三个二次之间的关系1.ax2+bx+c>0(a≠0)恒成立的充要条件是:a>0且b2-4ac<0(x∈R).2.ax2+bx+c<0(a≠0)恒成立的充要条件是:a<0且b2-4ac<0(x∈R).1.(2019·成都模拟)不等式2x 2-x -3>0的解集为( ) A .{x ⎪⎪⎪⎭⎬⎫-1<x <32 B .{x ⎪⎪⎪⎭⎬⎫x >32或x <-1C .{x ⎪⎪⎪⎭⎬⎫-32<x <1D .{x ⎪⎪⎪⎭⎬⎫x >1或x <-32答案 B解析 2x 2-x -3>0⇒(x +1)(2x -3)>0,解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为{x ⎪⎪⎪⎭⎬⎫x >32或x <-1,故选B.2.不等式x -43-2x<0的解集是( )A .{x |}x <4B .{x |3<x <4}C .{x ⎪⎪⎪⎭⎬⎫x <32或x >4D .{x ⎪⎪⎪⎭⎬⎫32<x <4答案 C解析 不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是{x ⎪⎪⎪⎭⎬⎫x <32或x >4.3.(2019·安徽淮北模拟)若(x -1)(x -2)<2,则函数y =(x +1)(x -3)的值域是( ) A .(0,3) B .[-4,-3) C .[-4,0) D .(-3,4]答案 C解析 由(x -1)(x -2)<2解得0<x <3.因为函数y =(x +1)(x -3)图象的对称轴是x =1,故函数y =(x +1)·(x -3)在(0,1)上单调递减,在(1,3)上单调递增,在x =1处取得最小值为-4,在x =3处取值为0,所以函数值域为[-4,0).故选C.4.(2019·九江模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)答案 A解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.故选A.5.若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R ,只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 6.(2019·海南模拟)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.答案 (-7,3)解析 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).核心考向突破考向一 一元二次不等式的解法 例1 解下列关于x 的不等式: (1)0<x 2-x -2≤4; (2)ax 2-(a +1)x +1<0. 解 (1)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧x -2x +1>0,x -3x +2≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)原不等式化为(ax -1)(x -1)<0. ①当a =0时,其解为x >1; ②当0<a <1时,其解为1<x <1a;③当a >1时,其解为1a<x <1;④当a =1时,无解;⑤当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x -1)>0,其解为x <1a或x >1.综上所述a =0时,不等式解集为{x |x >1};0<a <1时,不等式解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1<x <1a ;a >1时,不等式解集为⎩⎨⎧⎭⎬⎫x | 1a <x <1;a <0时,不等式解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >1;当a =1时,不等式解集为∅.触类旁通解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.2当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系. 3确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.即时训练 1.解不等式:(1)2x +1x -5≥-1;(2)x 2-(a 2+a )x +a 3>0.解 (1)将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤43或x >5. (2)原不等式化为(x -a )(x -a 2)>0, ①当a 2-a >0,即a >1或a <0时, 原不等式的解为x >a 2或x <a . ②当a 2-a <0,即0<a <1时, 原不等式的解为x <a 2或x >a ; ③当a 2-a =0,即a =0或a =1时, 原不等式的解为x ≠a .综上①②③得a >1或a <0时不等式解集为 {x |x >a 2或x <a };当0<a <1时,不等式解集为{x |x <a 2或x >a };当a =0或a =1时,不等式解集为{x |x ≠a }. 考向二 三个二次的关系例2 (1)若不等式ax 2+bx +c >0的解集为(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( )A .⎝ ⎛⎭⎪⎫-43,1 B .(-∞,1)∪⎝ ⎛⎭⎪⎫43,+∞ C .(-1,4) D .(-∞,-2)∪(1,+∞)答案 A解析 由不等式ax 2+bx +c >0的解集为(-4,1), 知a <0且-4,1是方程ax 2+bx +c =0的两根.∴-4+1=-ba ,且-4×1=c a,即b =3a ,c =-4a .则所求不等式转化为3a (x 2-1)+a (x +3)-4a >0,即3x 2+x -4<0,解得-43<x <1.故选A.(2)若关于x 的不等式ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案 ⎝⎛⎭⎪⎫-1,45解析 由ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,可知a <0,且b a =15.将不等式ax 2+bx -45a >0两边同时除以a ,得x 2+b a x -45<0,所以x 2+15x -45<0,即5x 2+x -4<0,解得-1<x <45,故不等式ax2+bx -45a >0的解集为⎝⎛⎭⎪⎫-1,45.触类旁通已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.即时训练 2.(2019·重庆模拟)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A.52 B.72 C.154D.152答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52.故选A.3.若x 2+px +q <0的解集为{x ⎪⎪⎪⎭⎬⎫-12<x <13,则不等式qx 2+px +1>0的解集为________.答案 {x |-2<x <3}解析 ∵x 2+px +q <0的解集为{x ⎪⎪⎪⎭⎬⎫-12<x <13,∴-12,13是方程x 2+px +q =0的两实数根,由根与系数的关系,得⎩⎪⎨⎪⎧ 13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,∴⎩⎪⎨⎪⎧p =16,q =-16.∴不等式qx 2+px +1>0,可化为-16x 2+16x +1>0,即x 2-x -6<0,∴-2<x <3.∴不等式qx 2+px +1>0的解集为{x |-2<x <3}.考向三 一元二次不等式恒成立问题角度1 形如f (x )≥0(x ∈R )例 3 (1)(2019·吉林模拟)不等式x 2-2x +m >0对一切实数x 恒成立的充要条件是( )A .m >2B .0<m <1C .m >0D .m >1答案 D解析 若不等式x 2-2x +m >0对一切实数x 恒成立,则对于方程x 2-2x +m =0,Δ=4-4m <0,解得m >1,所以m >1是不等式x 2-2x +m >0对一切实数x 恒成立的充要条件,结合选项知选D.(2)若关于x 的不等式(a -2)x 2+2(a -2)x -4<0对一切实数x 恒成立,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,-2)C .(-2,2)D .(-2,2]答案 D解析 不等式(a -2)x 2+2(a -2)x -4<0恒成立的条件为当a =2时,-4<0恒成立;当a ≠2时,⎩⎪⎨⎪⎧a <2,4a -22-4a -2×-4<0,解得-2<a <2.故-2<a ≤2.选D.角度2 形如f (x )≥0(x ∈[a ,b ])例4 (1)(2019·铜州模拟)若关于x 的不等式x 2+2ax +1≥0在[0,+∞)上恒成立,则实数a 的取值范围为( )A .(0,+∞)B .[-1,+∞)C .[-1,1]D .[0,+∞)答案 B解析 解法一:当x =0时,不等式为1≥0恒成立;当x >0时,x 2+2ax +1≥0⇒2ax ≥-(x 2+1)⇒2a ≥-⎝⎛⎭⎪⎫x +1x ,又-⎝ ⎛⎭⎪⎫x +1x ≤-2,当且仅当x =1时取等号,所以2a ≥-2⇒a ≥-1,所以实数a 的取值范围为[-1,+∞).解法二:设f (x )=x 2+2ax +1,函数图象的对称轴为直线x =-a .当-a ≤0,即a ≥0时,f (0)=1>0,所以当x ∈[0,+∞)时,f (x )≥0恒成立;当-a >0,即a <0时,要使f (x )≥0在[0,+∞)上恒成立,需f (-a )=a 2-2a 2+1=-a 2+1≥0,得-1≤a <0.综上,实数a 的取值范围为[-1,+∞).(2)已知x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,则实数a 的取值范围是( )A .(0,2)B .(2,+∞)C .(0,+∞)D .(0,4)答案 A解析 二次函数图象开口向上,对称轴为x =a2.x ∈[-1,1]时,f (x )=x 2-ax +a2>0恒成立,即f (x )min >0.①当a 2≤-1,即a ≤-2时,f (x )min =f (-1)=1+a +a 2>0,解得a >-23,与a ≤-2矛盾;②当a 2≥1,即a ≥2时,f (x )min =f (1)=1-a +a2>0, 解得a <2,与a ≥2矛盾;③当-1<a2<1,即-2<a <2时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=a 24-a 22+a 2>0,解得0<a <2.综上可得,实数a 的取值范围是(0,2). 角度3 形如f (x )≥0(参数m ∈[a ,b ])例5 (2019·江西八校联考)若对任意的m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)答案 B解析 f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4.当x =2时,f (x )=0,不符合题意;当x >2时,(x -2)·(-1)+x 2-4x +4>0,得x >3;当x <2时,(x -2)·1+x 2-4x +4>0,得x <1.综上,x <1或x >3.故选B.触类旁通1对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.即时训练 4.若不等式组⎩⎪⎨⎪⎧x 2-2x -3≤0,x 2+4x -1+a ≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,20]D .[-40,20)答案 B解析 根据已知,可转化为当-1≤x ≤3时,存在x 0∈[-1,3],使得x 2+4x -(1+a )≤0.令f (x )=x 2+4x -(1+a ),易知函数在区间[-1,3]上为增函数,故只需函数的最小值f (-1)=-4-a ≤0即可,解得a ≥-4.5.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C .12D .32答案 D解析 由定义知,⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.故选D.6.对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.答案 (-∞,-1)∪(3,+∞)解析 原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有⎩⎪⎨⎪⎧f -2>0,f 2>0,即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.所以x <-1或x >3.(2019·江苏模拟)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.答案 9解析 由题意知f (x )=x 2+ax +b =⎝ ⎛⎭⎪⎫x +a 22+b -a 24.∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24,∴f (x )=⎝ ⎛⎭⎪⎫x +a 22.又∵f (x )<c ,∴⎝ ⎛⎭⎪⎫x +a 22<c ,即-a 2-c <x <-a2+c .∴⎩⎪⎨⎪⎧-a 2-c =m , ①-a2+c =m +6. ②②-①得2c =6,∴c =9.答题启示(1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题.(2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别.对点训练若不等式a ·4x -2x+1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.答案 a >14解析 不等式可变形为a >2x -14x =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x , 令⎝ ⎛⎭⎪⎫12x =t ,则t >0. ∴y =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.。
2020版创新设计高考总复习高三文科数学人教A版第七章第1节
第1节 不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知 识 梳 理1.实数的大小顺序与运算性质的关系 (1)a >b ⇔a -b >0; (2)a =b ⇔a -b =0; (3)a <b ⇔a -b <0.2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n ∈N ,n ≥2). 3.三个“二次”间的关系[微点提醒]1.有关分数的性质(1)若a>b>0,m>0,则ba<b+ma+m;ba>b-ma-m(b-m>0).(2)若ab>0,且a>b⇔1a< 1 b.2.对于不等式ax2+bx+c>0,求解时不要忘记a=0时的情形.3.当Δ<0时,不等式ax2+bx+c>0(a≠0)的解集为R还是∅,要注意区别.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)a>b⇔ac2>bc2.()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为R.()(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.() 解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根,则不等式ax2+bx+c>0(a<0)的解集为∅.(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立.【参考答案】(1)×(2)√(3)×(4)×2.(必修5P74例1改编)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcC.ac>bd D.ac<bd解析因为c<d<0,所以0>1c>1d,两边同乘-1,得-1d>-1c>0,又a>b>0,故由不等式的性质可知-a d >-b c >0.两边同乘-1,得a d <bc . 【参考答案】B3.(必修5P103A2改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 【参考答案】C4.(2018·衡阳联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >abD.a 2>ab >b 2解析 c =0时,A 项不成立;1a -1b =b -aab >0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,选项C 错.由a <b <0,∴a 2>ab >b 2.D 正确. 【参考答案】D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________. 解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.【参考答案】⎩⎨⎧⎭⎬⎫x |x >32或x <-1 6.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎨⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 【参考答案】[-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b-1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.法二 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b<0,1ab >0.故有1a +b<1ab ,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0, 所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 【参考答案】(1)A (2)C 角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b . 于是得⎩⎨⎧m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时,取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 【参考答案】[5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则a b 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件. (2)依题意可得4<1b <8,又1<a <3,所以4<ab <24. 【参考答案】(1)A (2)(4,24) 考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0.于是不等式f (x )>x 等价于⎩⎨⎧x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0, 所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎨⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【参考答案】(1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0. ①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0时,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12 B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] (2)(2019·清远一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0,解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 【参考答案】(1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]解析 当a -2=0,即a =2时,-4<0恒成立; 当a -2≠0,即a ≠2时,则有⎩⎨⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0, 解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 【参考答案】D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 【参考答案】⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.【参考答案】C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( ) A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( )A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎨⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1. 综上,k 的取值范围是[0,1].(2)由于x ∈⎝ ⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立, 则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12时恒成立, 令g (x )=x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12, 易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数. ∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.【参考答案】(1)A (2)C[思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.[易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组(建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( )A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).【参考答案】B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( )A.2x >2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x >2y ⇔x >y ,所以“2x >2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y ”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.【参考答案】A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12 解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫0,12. 【参考答案】A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( )A.-1m <-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m >⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A,C,D 不成立.只有B 项成立(事实上2-1<2-1).【参考答案】B5.已知函数f (x )=⎩⎨⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ),∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1).【参考答案】D二、填空题6.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________. 解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a . 【参考答案】⎝ ⎛⎭⎪⎫a ,1a 7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________.解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.【参考答案】(-1,1)8.(2019·阳春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 【参考答案】(-∞,-2]三、解答题9.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2. 所以y =f (x )=40(10-x )(25+4x ),定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 能力提升题组(建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b <12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b <1,B 错误;因为0<a <b ,所以a b +b a >2a b ·b a=2,所以2a b +b a >22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.【参考答案】C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( )A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞) 解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t恒成立⇒⎩⎨⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 【参考答案】A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎨⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 【参考答案】⎝ ⎛⎭⎪⎫-32,23214.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x .若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.解 因为函数f (x )是偶函数,故函数图象关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增. 所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立,从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立,设h (x )=3x 2-2ax -a 2,则有⎩⎨⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。
2020高考总复习数学理科创新设计人教A版教师文档第七章 第1节 不等式的性质与一元二次不等式
c 的大小关系是( )
A.c≥b>a
B.a>c≥b
C.c>b>a
D.a>c>b
11
11
1
(2)(一题多解)若 < <0,给出下列不等式:① < ;②|a|+b>0;③a- >b
ab
a+b ab
a
1 - ;④ln a2>ln b2.其中正确的不等式是( )
b
A.①④
B.②③
C.①③
D.②④
解析 (1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b.
(3)若方程 ax2+bx+c=0(a<0)没有实根,则不等式 ax2+bx+c>0(a<0)的解集为∅.
(4)当 a=b=0,c≤0 时,不等式 ax2+bx+c≤0 也在 R 上恒成立. 答案 (1)× (2)√ (3)× (4)×
2.(必修 5P74 例 1 改编)若 a>b>0,c<d<0,则一定有( )
=( ) A.(-2,3) C.(-2,2]
B.(-2,2) D.[-2,2]
解析 因为 A={x|x≤2},B={x|-2<x<3},所以 A∩B={x|-2<x≤2}=(-2,2].
答案 C
4.(2018·衡阳联考)若 a,b,c 为实数,且 a<b<0,则下列命题正确的是( )
A.ac2<bc2 ba
①当 a=0 时,原不等式化为 x+1≤0,解得 x≤-1.
( )2
②当 a>0 时,原不等式化为 x- (x+1)≥0, a
2 解得 x≥ 或 x≤-1.
a
( )2
③当 a<0 时,原不等式化为 x- (x+1)≤0. a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x-y=4, x+y-2=0,
解得
B(2,0),
-3-0 3
当直线 y=kx-3 过点 B 时,k=
=.
0-2 2
( ] [ ) 7 3
由图形知,实数 k 的取值范围是 -∞,- ∪ ,+∞ . 22
答案 (1)B (2)B
规律方法 1.二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定
域.
2.求平面区域的面积:
(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件
转化为不等式组问题,从而再作出平面区域;
(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四
边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角
形分别求解再求和.
1 观察图形可得,平面区域内的点到定点(-1,0)的距离的最小值为 ,故 z=x2+2x+
2
1
3
y2 的最小值为 zmin=4-1=-4.
答案 (1)C (2)D
角度 3 线性规划中的参数问题
{ ) y ≥ 0,
【例 2-3】 (2019·西安质检)已知实数 x,y 满足约束条件 y-x+1 ≤ 0, 若目 y-2x+4 ≥ 0.
{ ) 3x-y ≤ 0,
x- 3y+2 ≥ 0, 表示的平面区域的面积是( ) y≥0
3 A.
2
B. 3
C. 2
D.2 3
{ ) x+y-2 ≥ 0,
(2)(2018·深圳二模)已知直线 y=kx-3 经过不等式组 2x-y ≤ 4, 所表示的平 y≤4
面区域,则实数 k 的取值范围是( )
[ ]7 3
令 z=x-y,由图知当直线 z=x-y 经过点(0,1)时,z 取得最小值,即 zmin=0-1=- 1,
3
解析 法一 作出不等式组表示的平面区域如图中阴影部分所示,画出直线 y=
-3x,平移该直线,由图可知当平移后的直线经过直线 x=2 与直线 x-2y+4=0
1
1
的交点
A(2,3)时,z=x+ y 3
取得最大值,故
zmax=2+3×3=3.
法二 画出可行域(如上图),由图知可行域为三角形区域,易求得顶点坐标分别
基础自测
1.判断下列结论正误(在括号内打“√”或“×”) (1)不 等 式 Ax+ By+ C> 0 表 示 的 平 面 区 域 一 定 在 直 线 Ax+ By+ C= 0 的 上 方.( ) (2)线性目标函数的最优解可能是不唯一的.( ) (3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数 z=ax+by(b≠0)中,z 的几何意义是直线 ax+by-z=0 在 y 轴上的 截距.( ) 解析 (1)不等式 x-y+1>0 表示的平面区域在直线 x-y+1=0 的下方.
( )1
∵直线 y=kx-1 与 x 轴的交点为 ,0 , k
( ) 3 2k-1
直线 y=kx-1 与直线 y=-x+2 的交点为 ,
,
k+1 k+1
( ) 1
1 2k-1 1
∴三角形的面积为 × 2- × = ,
2
k k+1 4
2
2
解得 k=1 或 k= ,经检验,k= 不符合题意,∴k=1.
7
A. - , 22
( ] [ ) 7 3
B. -∞,- ∪ ,+∞ 22
[ ]7 7
C. - , 24
( ] [ ) 7 7
D. -∞,- ∪ ,+∞ 24
解析 (1)作出不等式组表示的平面区域是以点 O(0,0),B(-2,0)和 A(1, 3)为 1
顶点的三角形区域,如图所示的阴影部分(含边界),由图知该平面区域的面积为 2
Ax+By+C>0 直线 Ax+By+C=0 某一侧的所有点 不包括边界直线
Ax+By+C≥0 组成的平面区域
包括边界直线
不等式组
各个不等式所表示平面区域的公共部分
2.点 P1(x1,y1)和 P2(x2,y2)位于直线 Ax+By+C=0 的两侧的充要条件是(Ax1+By1+ C)(Ax2+ By2+ C)<0; 位 于 直 线 Ax+ By+ C= 0 同 侧 的 充 要 条 件 是 (Ax1+ By1+ C)(Ax2+By2+C)>0. 3.线性规划的有关概念
1 为(2,3),(2,-7),(-2,1),将三点坐标代入,可知 zmax=2+3×3=3. 答案 3
角度 2 求非线性目标函数的最值
{ ) x ≥ 1,
y
【例 2-2】 (1)(2019·济南一模)若变量 x,y 满足约束条件 x-y ≤ 0, 则
x-2y+2 ≥ 0, x
的最大值为( )
3
A.1
z (4)直线 ax+by-z=0 在 y 轴上的截距是 .
b 答案 (1)× (2)√ (3)√ (4)×
{ ) 2.(必修
5P86T3
改编)不等式组
x-3y+6 ≥ 0, x-y+2 < 0
表示的平面区域是( )
解析 x-3y+6≥0 表示直线 x-3y+6=0 及其右下方部分,x-y+2<0 表示直
(2)已知实数 x,y 满足约束条件 y ≥ x, 若 z=2x+y 的最小值为 3,则实数 b y ≥ -x+b,
=( )
9
3
3
A.
B.
C.1
D.
4
2
4
x+y-4 ≤ 0,
{ ) 解析 (1)作出
x-2y+2 ≥ x ≥ 0,
0,
的可行域如图,
y≥0
( )1 x-y
求 的最大值转化为求 x-y 的最小值, 2
为________. 解析 画出可行域如图阴影部分所示.
3z 由 z=3x-4y,得 y= x- ,
44 3 作出直线 y= x,平移使之经过可行域,观察可知,当直线经过点 A(1,1)处时取 4 最小值,故 zmin=3×1-4×1=-1.
答案 -1
考点一 二元一次不等式(组)表示的平面区域
【 例 1】 (1)(2019·北 京 西 城 区 二 模 )在 平 面 直 角 坐 标 系 中 , 不 等 式 组
B.3
C.
D.5
2
{ ) x-y+2 ≥ 0,
(2)若 x,y 满足约束条件 2y-1 ≥ 0, 则 z=x2+2x+y2 的最小值为( )
A.
B.
C.-
D.-
2
4
2
4
( )3
解析 (1)不等式组表示平面区域是以(1,1),1, ,(2,2)为顶点的三角形区域 2
(包含边界)(图略).
( )1 1
其中 A(-1,-1),B(2,-1),C , , 22
画直线 l0:y=-2x,平移 l0 过 B 时,zmax=4, 平移 l0 过点 A 时, zmin=-2. 答案 C
{ ) 4.(2019·合肥一中月考)在平面直角坐标系
xOy
中,不等式组
1 ≤ x+y ≤ 3, -1 ≤ x-y ≤ 1
7
答案 D
考点二 线性规划中的最值问题 多维探究
角度 1 求线性目标函数的最值
【 例 2- 1】 (一 题 多 解 )(2018·全 国 Ⅲ卷 )若 变 量 x, y 满 足 约 束 条 件
{ ) 2x+y+3 ≥ 0,
1
x-2y+4 ≥ 0, 则 z=x+ y 的最大值是________.
x-2 ≤ 0,
名称
意义
由 x,y 的一次不等式(或方程)组成的不等式组,是对 x,y 的约束 线性约束条件
条件
目标函数
关于 x,y 的解析式
线性目标函数
关于 x,y 的一次解析式
可行解
满足线性约束条件的解(x,y)
可行域
所有可行解组成的集合
最优解
使目标函数达到最大值或最小值的可行解
线性规划问题 求线性目标函数在线性约束条件下的最大值或最小值的问题
x
x-a
3.当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.
x+y-4 ≤ 0,
{ ) ( ) 【训练 2】
(1)(2018·茂名二模)若实数 x,y 满足条件
x-2y+2 ≥ x ≥ 0,
0, 则 1 x-y 2
y ≥ 0,
的最大值为( )
1
1
A.
B.
C.1
D.2
16
2
{ ) 2x-y ≥ 0,
{ ) y ≤ -x+2,
【训练 1】 (2019·玉溪模拟)已知不等式组 y ≤ kx-1, 所表示的平面区域为面 y≥0
1 积等于 的三角形,则实数 k 的值为( )
4
1
1
A.-1
B.-
C.
D.1
2
2
{ ) y ≤ -x+2,
解析 由题意知 k>0,且不等式组 y ≤ kx-1, 所表示的平面区域如图所示. y≥0
标函数 z=y-ax(a≠0)取得最大值时的最优解有无数个,则 a 的值为( )
A.2
B.1
C.1 或 2
D.-1
解析 画出不等式组表示的可行域如图阴影部分所示.
由 z=y-ax(a≠0)得 y=ax+z. 因为 a≠0,所以要使 z=y-ax 取得最大值时的最优解有无数个,故必有 a>0. ①当直线 y=ax+z 与直线 AC 重合,即 a=1 时,直线 y=ax+z 在 y 轴上的截距 最大,此时 z 取得最大值,且最优解有无数个,符合条件;②当直线 y=ax+z 与 直线 BC 重合时,直线 y=ax+z 在 y 轴上的截距最小,此时 z 取得最小值,不符 合条件.故 a=1. 答案 B 规律方法 1.先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.