带式运输机的传动机构

合集下载

带式运输机传动装置设计

带式运输机传动装置设计

带式运输机传动装置设计带式运输机是目前工业生产中最常用的机械装置之一,其用途十分广泛,既可用于运输矿石、煤炭、水泥等物料,也可用于运输成品等。

而在带式运输机的构造中,传动装置是其中重要的组成部分之一,它直接影响到带式运输机的运转效率、稳定性以及寿命等关键因素。

一、带式运输机传动装置的构成带式运输机传动装置的基本组成部分包括:动力源、电机、减速器、轴承、链轮等。

其中动力源可以有多种选择,如电动机、汽油发动机、液压式等,不过现在电动机是应用最广泛的一种动力源。

减速器是主要的传动装置,它可以将电机的高速旋转转换成带式运输机所需的低速大扭矩旋转,轴承和链轮则用来支撑带式运输机带轮的转动。

二、带式运输机传动装置的设计原则在带式运输机传动装置的设计中,需要注意以下几个方面的原则:1.传动效率高:传动效率是指带式运输机传动装置所传递的动力与输入动力之间的比值,传动效率越高,带式运输机则越省电、能效越高。

因此,在设计传动装置时,需要选择高效的减速器,并且尽可能保证传动链的高度匹配,避免传动能量损失。

2.结构合理:对于传动装置结构的设计,需要考虑整个装置的布局结构是否合理,尽量减少装置包括齿轮、链轮在内的零部件数量,简化结构,降低成本。

3.可维修性好:传动装置在使用过程中,因传动链条的磨损、轮辐的损坏等原因而导致的故障很常见,因此,设胆装置在设计时需要考虑其可维修性,降低维修成本及工期。

三、常用的带式运输机传动装置1.电机直接驱动法:这种直接驱动法的优点是结构简单,传动效率高,但其缺点在于电机需要马力较大,且因为是直接驱动,其载荷大,对运转设备的整体性能、承载能力要求高。

2.皮带传动法:皮带传动法也称为减速器传动法,是应用较广泛的驱动形式之一,其优点在于传动可靠,实现简单,另外它的传动特点恰好适合带式运输机的特性。

3.齿轮传动法:齿轮传动法在构造上较复杂,但是学聪巧妙地利用了不同形状、不同数量的齿轮组合来实现不同的传统比,因此,它能够提供较大扭矩、较佳的传动效率,广泛应用于重型带式运输机的传动装置中。

带式运输机传动装置的设计

带式运输机传动装置的设计

机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。

带式输送机的工作原理

带式输送机的工作原理

带式输送机的工作原理
带式输送机是一种常用的物料输送设备,其工作原理如下:
1. 传动系统:带式输送机的传动系统由电机、减速机、皮带轮和皮带组成。

电机通过减速机驱动皮带轮旋转,使皮带开始运动。

2. 皮带:带式输送机的核心部件是输送带,通常由橡胶、聚氯乙烯等材料制成。

输送带两端通过皮带轮固定,形成一个闭合的回路。

当输送带开始运动时,物料可以被输送到目的地。

3. 载荷传递:物料被放置在输送带上,随着输送带的运动,物料被传送到指定位置。

传递过程中,物料必须与输送带表面具有一定的摩擦力,以防止物料滑动或脱落。

4. 传输方向控制:输送带的运动方向可以通过调整皮带轮的布置来控制。

通过调整输送带的张紧器或调整皮带轮的角度,可以实现正向、反向或水平运动。

5. 应用场景:带式输送机广泛应用于矿山、建筑材料、化工、粮食加工等行业中,用于输送煤炭、矿石、沙子、水泥、谷物等物料。

通过合理选择和配置输送带的材料和结构,可以适应不同物料的传输需求。

需要注意的是,带式输送机在运行过程中应定期检查输送带的磨损情况,根据需要进行维护和更换。

此外,在操作过程中还需注意物料的均匀分布,以避免堆积和阻塞现象的发生。

带式运输机的总体传动方案

带式运输机的总体传动方案

带式运输机的总体传动方案
带式运输机的总体传动方案可以有以下几种常见的方式:
1. 电机直接驱动:将电动机直接安装在运输机的驱动装置上,通过齿轮减速器或联轴器将动力传递给输送带,实现运输机的正常运行。

2. 电机 + 铰链联轴器驱动:在电机输出轴和输送带轴之间通过铰链联轴器进行连接,实现动力传递。

这种方式适用于输送机过长、电机功率较大的情况。

3. 液压传动:使用液压马达作为动力源,通过液压泵提供液压动力,将运动转换为力矩,从而驱动输送带运行。

这种方式适用于对传动稳定性要求较高的场合。

4. 齿轮传动:使用齿轮传动装置将电机或其他动力源的转速和转矩传递给输送带。

这种方式适用于速度调节范围相对较小的情况。

以上是常见的几种传动方案,具体应选择合适的方案应根据具体的工作条件、负载要求和能源供给等因素来确定。

在选用任何传动方案时,请确保符合相关安全规定,并按照设计参数进行合理设定和选择。

带式输送机的结构及各部分作用

带式输送机的结构及各部分作用

带式输送机的结构及各部分作用带式输送机是以胶带作为牵引机构和承载机构的摩擦传动连续动作式输送设备,在煤矿井下和地面生产系统中广泛应用。

这是因为它和刮板输送机比较,有以下四个优点:1.输送量大,一般可达200~400t/h,大型的可达1000t/h。

2.单机水平铺设长,一般可达300~800m,强力皮带输送机可铺设4000m以上。

3.运行阻力小,耗电量低,对煤块的破碎小。

4.运行噪声小,机体重量轻。

皮带运输机可用于水平以及向上运输不超过18°,向下运输不超过15°的范围内。

但也有缺点:1.安装技术标准要求高。

2.胶带易磨损。

3.坡度不能太大,不能弯曲。

4.不能运送高温和水荷载。

一、机头部机头部包括传动装置、卸载装置、皮带清扫装置和皮带张紧装置四个部分。

(一)传动装置这部分的作用,是把电动机的转矩通过传动滚筒传递给皮带,使皮带连续运行。

这部分包括:电动机、联轴器、减速器和主动滚筒。

其驱动方式有单电动机驱动和双电动机驱动。

如用单电动机驱动,在两个主动滚筒的轴端装一对传动比为1的联动齿轮;如用双电动机驱动,要把这两个齿轮卸下来。

1.电动机:为整个输送机提供动力,其输出轴通过弹性联轴器与液力耦合器泵轮联接;液力耦合器的透平轮(涡轮)与减速器输入轴联接。

2.减速器:是将电动机的高转速减少为驱动滚筒所要求的的低转速,其输出轴通过联轴器与驱动滚筒联接。

3.传动滚筒:也叫驱动滚筒,是带式输送机传递牵引胶带运行的重要执行部件,为了增加与胶带的摩擦力,将滚筒的外表面包成花纹状胶层。

(二)卸载装置为了便于卸载,机头前端装有外伸的卸载架。

卸煤滚筒就安装在卸载架上。

(三)皮带清扫装置卸去煤后,皮带表面还会粘附有一些细碎的煤屑。

为了防止这些东西进入滚筒,影响传动或把皮带损坏,在卸煤滚筒的下部还装有刮板式清扫装置,用以清扫皮带。

二、机身部机身部由机架、托辊架、托辊、调心(偏)托辊架、调心(偏)托辊等组成。

机架的作用是用来安装固定上、下层托辊架和上、下层调心(偏)托辊架。

带式运输机传动装置设计总结

带式运输机传动装置设计总结

带式运输机传动装置设计总结好嘞,今天咱们就来聊聊带式运输机的传动装置设计,这个听上去有点高大上的话题,其实在我们的日常生活中也有不少用处呢。

说到带式运输机,想必大家都见过吧。

那些长长的带子在工厂里、仓库里跑来跑去,把货物从一个地方运到另一个地方,简直就像是大型的“传送带”。

你可能会想,这背后可少不了一套巧妙的传动装置,才能让这些“运输小能手”高效运转。

传动装置,这个名字听上去挺复杂,其实简单说就是把动力传递给运输带的部分。

你可以想象一下,传动装置就像是我们生活中的引擎,没了它,带子就只能在那儿待着,连个屁都不响。

所以,设计一个好的传动装置可不是件简单的事儿。

要考虑的东西可多着呢,比如说动力源、带子的材料、传动方式,还有摩擦力、负载等等,真是一门艺术啊!动力源得选对。

很多时候,咱们会用电动机,这玩意儿省力又方便,效率高得不要不要的。

想象一下,早上喝完咖啡后,启动机器,那电动机咕噜一声响,整个运输带就活过来了。

哎,简直就像是给它打了鸡血,动力十足。

可是,电动机的功率得和运输的负载相匹配,假如你把个小电机放上去,运点大货,那简直就是自讨苦吃,哭都来不及。

然后,带子的材料可也是个头疼的问题。

大家知道的,常用的有橡胶、聚酯等。

每种材料都有各自的优缺点。

橡胶耐磨、抓地力强,但在高温下可能就不太顶用。

而聚酯则相对耐热一些,但在高负荷的情况下可能就有点扛不住。

这就好比你穿鞋子,运动鞋适合跑步,但穿着它去参加婚礼就不太合适了,对吧?接着就是传动方式,这里可真是见仁见智。

常见的有皮带传动和链条传动,各有千秋。

皮带传动的优点就是平稳,噪音小。

你想啊,晚上熄灯后,运输带在那儿悄悄地工作,真是安静得像小猫咪。

不过,链条传动则更加耐磨,适合在高负载的情况下工作。

就好像是个壮汉,搬起重物来得心应手,但在平稳性上就稍微逊色了点。

再说说摩擦力,哎,这可是传动装置设计中的一大关键。

摩擦力过小,运输带就容易打滑,根本没法正常运作。

摩擦力过大,又可能导致过热,甚至烧毁电机。

设计带式运输机传动装置课程设计

设计带式运输机传动装置课程设计

设计带式运输机传动装置课程设计一、概述带式运输机是一种常见的输送设备,广泛应用于矿山、港口、化工等行业,用于输送散装物料和成品料。

而传动装置作为带式运输机的核心部件之一,对带式运输机的运行效率和稳定性起着至关重要的作用。

设计带式运输机传动装置的课程设计具有重要的理论意义和实际应用价值。

二、设计要求1. 熟悉带式运输机传动装置的工作原理和结构特点;2. 掌握传动装置的选型和设计原则;3. 设计一套适合带式运输机使用的传动装置方案。

三、设计步骤1. 调研带式运输机传动装置的工作原理和结构特点;2. 学习传动装置的选型和设计原则;3. 分析带式运输机工作条件及传动装置的工作要求;4. 确定传动装置的类型和结构形式;5. 进行传动装置的参数计算和选择;6. 绘制传动装置的总体布置图和零部件图;7. 对传动装置进行静力学和动力学分析;8. 进行传动装置的工程计算和强度校核;9. 编写课程设计报告。

四、设计思路1. 确定传动装置的类型和结构形式带式运输机传动装置通常包括驱动装置、皮带轮、输送带、张紧装置等部分。

根据带式运输机的工作原理和要求,结合传动装置的特点和使用条件,可以选择合适的传动形式,如电动机驱动、液压驱动等。

2. 进行传动装置的参数计算和选择根据带式运输机的工作参数和工况要求,对传动装置的参数进行计算和选择。

其中包括功率计算、转速计算、传动比计算等,以确定合适的传动装置类型和规格。

3. 绘制传动装置的总体布置图和零部件图根据传动装置的选型和参数计算结果,绘制传动装置的总体布置图和零部件图,并进行初步的设计评估。

4. 对传动装置进行静力学和动力学分析通过静力学和动力学分析,验证传动装置的设计是否满足带式运输机的工作要求,包括承载能力、传动效率、稳定性等。

5. 进行传动装置的工程计算和强度校核进行传动装置的工程计算和强度校核,确保传动装置的零部件设计合理、强度充足,满足长期稳定运行的要求。

6. 编写课程设计报告根据课程设计的整体流程和结果,编写课程设计报告,详细介绍设计思路、计算结果、分析结论等。

机械设计课程设计带式运输机传动装置

机械设计课程设计带式运输机传动装置
3.检查孔盖板
为了检查传动件啮合情况,润滑状态以及向箱内注油,在箱盖上部便于观察传动件啮合区的位置开足够大的检查孔,用螺钉予以固定,盖板与箱盖凸台接合面间加装防渗漏的纸质封油垫片。
4.通气器
为沟通箱体内外的气流使箱体内的气压不会因减速器运转时的温升而增大,从而造成减速器密封处渗漏,在箱盖顶部或检查孔盖板上安装通气器。
5.轴承座
轴承盖结构采用螺柱联接式,材料为铸铁(HT150),轴承采用刮油板为使油沟中的油能顺利进入轴承室。
6.定位销
为确定箱座与箱盖的相互位置,保证轴承座孔的镗孔精度与装配精度,应在箱体的联接凸缘上距离尽量远处安置两个定位销,并尽量设置在不对称位置。圆锥销公称直径(小端直径)可取 , 为箱座,箱盖凸缘联接螺栓的直径;取长度应稍大于箱体联接凸缘的总厚度,以利装拆。
因 ,取
=0.776
Ⅴ.螺旋角系数 。由《机械设计》查得弹性影响系数 。
Ⅵ. 接触疲劳极限应力 ;接触疲劳极限极限应力 。
Ⅶ.计算应力循环次数
Ⅷ. 接触疲劳寿命系数 ; 。
Ⅸ. 计算接触疲劳许用应力
取安全系数S=1
2>.设计计算
Ⅰ.试算小齿轮分度圆直径
54.02mm
Ⅱ.计算圆周速度
0.63m/s
Ⅲ.计算载荷系数
合理
6、轴的设计、计算及校核
选取轴的材料为45钢,正火处理。
根据《机械设计》,取C=118,。
则有: 14.13mm
22.45mm
35.63mm
上述所算均为轴的最小直径,考虑到1轴要与电动机联接,初算直径d1必须与电动机轴和联轴器空相匹配及d3必须和联轴器空相匹配,所以初定d1=28mm,d3=42mm,d2 =39mm。
(2)选取精度等级

带式运输机传动装置设计课程设计

带式运输机传动装置设计课程设计

带式运输机传动装置设计1. 工作条件连续单向运转,载荷有轻微冲击,空载起动;使用期5年,每年300个工作日,小批量生产,单班制工作,运输带速度允许误差为±5%。

1-电动机;2-联轴器;3-展开式二级圆柱齿轮减速器;4-卷筒;5-运输带题目B图带式运输机传动示意图学号—数据编号11-1 12-2 13-3 14-4 15-5 运输带工作拉力F(kN) 3.8 4.0 4.2 4.4 5.0 运输带工作速度v(m s) 1.10 0.95 0.90 0.85 0.80 卷筒直径D(mm)380 360 340 320 3001)选择电动机,进行传动装置的运动和动力参数计算。

2)进行传动装置中的传动零件设计计算。

3)绘制传动装置中减速器装配图和箱体、齿轮与轴的零件工作图。

4)编写设计计算说明书。

二、电动机的选择1、动力机类型选择 因为载荷有轻微冲击,单班制工作,所以选择Y 系列三相异步电动机。

2、电动机功率选择(1)传动装置的总效率:85.096.097.099.099.02421242=⨯⨯⨯=⨯⨯⨯=滚筒齿轮轴承联总ηηηηη(2)电机所需的功率:KW Fv p p w d 4.485.0100085.044001000=⨯⨯===ηη 3、确定电动机转速计算滚筒工作转速:min /r 76.5032085.0100060v 100060=⨯⨯⨯=⨯=ππD n 滚筒 因为()40~8=a i所以()()m in /4.2030~08.40676.5040~8r n i n w a d =⨯=⨯=符合这一范围的同步转速有750、1000、和1500r/min 。

根据容量和转速,由有关手册查出有三种适用的电动机型号,因此有三种传动比方案,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。

4、确定电动机型号根据以上选用的电动机类型,所需的额定功率与同步转速,选定电动机型号为Y132M2-6。

带式运输机传动装置设计说明书

带式运输机传动装置设计说明书

带式运输机传动装置设计说明书1. 引言本文档为带式运输机的传动装置设计说明书,旨在详细描述带式运输机传动装置的设计原理、参数选取和计算等内容。

带式运输机是一种用于物料输送的机械设备,传动装置作为核心组成部分之一,对其性能和可靠性有着重要影响。

通过本文档的阅读和理解,读者将了解到带式运输机传动装置的设计过程,以及对应的设计指导。

2. 设计原理带式运输机传动装置的设计原理基于传动轴和传动带的运动方式。

传动装置通过驱动轴传递动力给传动带,从而实现物料的输送。

设计原理包括以下几个方面的考虑:1.动力传递方式:传动装置可以采用电动机、液压马达或者内燃机等形式作为动力源,其中电动机是最常见的选择;2.传动装置的布局:传动装置的布局应考虑到整体设计的紧凑性和结构的稳定性,以保证传动装置的正常运行;3.传动装置的传动方式:传动装置可以采用齿轮传动、链条传动或者带传动等方式,根据实际需要选择合适的传动方式。

3. 参数选取和计算带式运输机传动装置的参数选取和计算是设计过程中的重要环节。

以下是几个关键参数的选取和计算方法的简要说明:3.1 动力计算动力计算是确定传动装置所需动力的重要步骤。

根据实际物料输送需求和传动装置的效率,可以计算出传动装置所需的最小动力。

动力计算公式如下:$$P = \\frac{Q \\cdot H}{η \\cdot 1000}$$其中,P为传动装置所需动力(单位:千瓦),Q为物料输送量(单位:吨/小时),H为提升高度(单位:米),η为传动装置效率(取值范围为0到1之间)。

3.2 速度计算速度计算是确定传动装置所需转速的重要步骤。

根据物料输送的要求和传动装置的传动比例,可以计算出传动装置所需的转速。

速度计算公式如下:$$N = \\frac{V}{\\pi \\cdot D}$$其中,N为传动装置所需转速(单位:转/分钟),V为物料输送速度(单位:米/秒),D为传动装置圆盘的直径(单位:米)。

带式运输机传动装置的设计

带式运输机传动装置的设计

带式运输机传动装置的设计1. 引言带式运输机是一种常用的物料搬运设备,广泛应用于矿山、水泥厂、建筑工地等工业领域。

而传动装置则是带式运输机的核心组成部分,对其运行稳定性和效率起着重要的作用。

本文将详细介绍带式运输机传动装置的设计原理、主要组成部分以及设计方法。

2. 传动装置的设计原理传动装置的设计原理主要涉及到动力传递和力的平衡。

带式运输机传动装置通常由电动机、减速器、轴承以及传动带等组成。

其中电动机负责提供动力,减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。

轴承则起到支撑和定位的作用,保证传动装置的稳定运行。

而传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。

3. 主要组成部分介绍3.1 电动机电动机是带式运输机传动装置的动力源,负责提供驱动力使带式运输机运行起来。

电动机的选型需要根据带式运输机的工作条件和运行要求进行合理选择,通常考虑到功率、转速、工作环境等因素。

3.2 减速器减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。

在带式运输机传动装置中,常用的减速器有齿轮减速器、带轮减速器等。

减速器的选型需要根据带式运输机的工作负载和传动比等参数进行匹配。

3.3 轴承轴承起到支撑和定位的作用,保证传动装置的稳定运行。

其中常用的轴承类型有滚动轴承和滑动轴承,选择要根据带式运输机的工作负载、转速和工作环境等因素进行选择,保证轴承寿命和工作效果。

3.4 传动带传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。

常见的传动带材料有橡胶、聚酯纤维、尼龙等,选材要根据带式运输机的工作环境和运行要求进行选择,保证传动带的可靠性和使用寿命。

4. 设计方法带式运输机传动装置的设计方法可以分为以下几个步骤:4.1 确定传动装置的参数根据带式运输机的工作要求,确定传动装置的功率、转速和工作负载等参数。

这些参数直接影响到电动机、减速器和传动带的选型。

4.2 选型电动机和减速器根据传动装置的参数和工作要求,选型合适的电动机和减速器。

机械设计课程设计带式运输机传动装置

机械设计课程设计带式运输机传动装置

机械设计课程设计:带式运输机传动装置一、概述在机械设计课程中,带式运输机是常见的传输设备之一。

带式运输机广泛应用于矿石、建材、化工等行业,用于输送散状物料或成批物料。

其传动装置作为带式运输机的核心部分,对其传动效率、运行稳定性和寿命具有重要影响。

在机械设计课程设计中,对带式运输机传动装置的设计和优化是非常重要的。

二、带式运输机传动装置的结构及原理带式运输机传动装置主要由驱动装置、传动轮、传动带、张紧装置、托辊和支撑架等组成。

其工作原理是通过驱动装置带动传动轮,在带式运输机的运行中使传动带运动,从而达到物料输送的目的。

其中,传动轮是传动带与驱动装置之间的通联部件,同时还兼具传动和支撑传动带的功能。

张紧装置用于保持传动带适当的张紧度,以防止传动带在运行中产生松动或跳齿现象。

托辊用于支撑传动带,降低传动带与传动轮之间的摩擦力,减小传动带的磨损。

三、带式运输机传动装置的设计要点1. 驱动装置选择:根据带式运输机的工作条件和传动功率的要求,选择适当的电机或其他动力源作为驱动装置。

考虑到带式运输机在使用过程中需要频繁启停和重载能力要求高,应选择启动性能好、转矩稳定的电机。

2. 传动轮和传动带匹配:传动轮的直径与传动带的宽度应匹配,以保证传动带在运行时与传动轮的正常啮合。

还要考虑传动轮的材质和表面处理等对传动带的影响,以减小摩擦力,提高传动效率。

3. 张紧装置设计:张紧装置的设计应确保传动带在运行中保持适当的张紧度,不过紧或过松都会影响传动带的使用寿命和传动效率。

张紧装置的安装位置和调整方式也需要考虑。

4. 托辊布置和设计:托辊的布置应合理,能够支撑传动带的重量,在传动带弯曲处减小摩擦力。

托辊的数量和间距、使用材料等都需要进行合理选择和设计。

四、带式运输机传动装置的优化1. 传动带材料的选择:传动带的材料选择与其耐磨性、强度和伸长率等性能有关。

在不同工况下,应选择适当的传动带材料,以延长其使用寿命。

2. 传动轮表面处理:传动轮表面的处理对传动带的磨损和传动效率具有重要影响。

带式运输机的传动装置的设计

带式运输机的传动装置的设计

带式运输机的传动装置的设计
传动装置的设计需要考虑以下几个方面:
1.传动方式的选择:传动方式有多种,常见的有机械传动和液压传动。

机械传动可以通过齿轮、链条等将动力传递给输送带,液压传动则通过液
压缸等将液压能转化为机械能。

选择传动方式需要根据具体的工艺要求和
现场条件来决定。

2.传动比的确定:传动比是指输送带的线速度与电动机转速之间的比值。

根据物料的输送距离和产量要求,可以确定相应的传动比,从而保证
输送带的速度适中,既不会出现物料堆积,也不会出现物料断流的情况。

3.电动机的选型:电动机是传动装置的驱动力源,需要根据输送带的
长度、物料的重量和输送速度等因素来选择适当的电动机。

一般情况下,
选用功率略大于实际需要的电动机,以保证传动装置的可靠性和运行稳定性。

4.传动装置的布置:传动装置的布置需要充分考虑设备的平衡性和紧
凑性。

将电动机和传动装置放置在输送带的一侧或两侧,可以避免设备的
重心偏移,提高设备的稳定性。

此外,还应合理安装防护罩,避免工人误伤。

5.传动装置的维护和保养:在传动装置的设计中,应考虑到维护和保
养的便捷性。

例如,采用可拆卸结构的传动链条和齿轮,可以方便地进行
检修和更换。

同时,应设备传动装置的润滑装置,保证传动部件的正常运转。

总之,带式运输机的传动装置的设计需要综合考虑输送带的工艺要求、输送距离和工作环境等因素,选择合适的传动方式和传动比,并采取适当
的布置和维护措施,以确保传动装置的可靠性和运行稳定性。

只有满足这些要求,带式运输机才能在工业生产中发挥其应有的作用。

带式运输机传动装置的设计

带式运输机传动装置的设计

带式运输机传动装置的设计(1)输送皮带输送工件或物料。

输送皮带运行时,工件或物料在与皮带之间的摩擦力的作用下随皮带一起运动,使工件或物料从一个位置输送到另一个位置。

上方的皮带需要运送工件,为承载段;下方的皮带不工作,为返回段。

(2)驱动辊提供驱动动力,在电机驱动下转动,通过驱动辊与带之间的摩擦力驱动皮带运行。

(3)从动辊无动力滚筒,滚筒可绕轴线自由转动。

与驱动辊、张紧轮等共同作用,使皮带张紧并保持皮带与主驱动辊之间有足够的摩擦力。

(4)托板或托辊支撑皮带及皮带上方的工件或物料,不使皮带下垂。

对于要求皮带运行时平整度要求高的场合通常在皮带输送段的下方采用板状的托板,否则就采用能够自由转动的托辊即可。

由于皮带返回段上没有承载工件,通常都间隔采用托辊支承。

除此之外,完整的皮带输送系统还包括:(5)定位挡板由于输送工件时一般都需要使工件保持一定的位置,所以通常都在输送皮带的两侧设计定位挡板或挡条,使工件始终在直线方向上运动。

(6)张紧机构由于皮带在运动时会产生松弛,因此需要有张紧机构对皮带的张力进行调整,张紧机构也是皮带安装及拆卸必不可少的机构。

(7)机架皮带线机架可根据使用要求,设计成各种结构形式。

按材料类别可分为型材机架和焊接机架。

(8)电机驱动系统驱动辊的运动是由电机驱动来驱动的,通常是由电机经过减速器减速后再通过齿轮传动、链传动或同步带传动来驱动皮带驱动辊。

也有部分情况下将电机经过减速器减速后直接与皮带驱动辊连接,节省空间。

如图4所示,1-工件;2-皮带;3-挡板;4-电机;5-减速器。

从动力角度来看,分固定速度和可调速;从传输方向,可分单向传输和可变方向传输。

通常一套电机系统能够驱动的负载时有限的,对于长度较长(例如数十米)的皮带输送线,通常采用多段独立的皮带输送系统在一条直线上安装在一起拼接而成,也就是将多段独立的皮带输送系统按相同的高度固定安放在一条输送线上。

三、主要技术规格1、主要输送形式为:条形工作台、独立工作台、单边工作台、双边工作台和无工作台输送形式。

带式输送机传动装置课程设计报告精选全文

带式输送机传动装置课程设计报告精选全文
名称
计算公式
结果/mm
面 基数
mn
2
面压力角
αn
20o
螺旋角
β
13.7o
分度圆直径
d3
90.56
d4
263.44
齿顶圆直径
da1=d1+2ha*mn=90.56+2×1×2
94.56
da2=d2+2ha*mn=263.44+2×1×2
267.44
齿根圆直径
df1=d1-2hf*mn=90.56-2×1.25×2
= =44.04
取 =44
得 =127
6、几何尺寸计算:
计算中心距:
将中心距圆整为:177mm
按圆整后中心距修正螺旋角:
因 的值改变不大,故参数 等不必修正。
计算大小齿轮分度圆直径:
=90.56mm
=263.44mm
计算齿轮宽度:
=1×90.56=90.56mm
取 =90mm, =95mm
7、低数级齿轮传动的几何尺寸
=10.08
计算纵向重合度:
=0.318×1×22×tan14°
=1.744
计算载荷系数K
已知使用系数 =1
已知V=1.35m/s7级齿轮精度,由表查得动载荷系数 =1.05
由表查得: 的计算公式:
=1.12+0.18(1+0.6)+0.23× 53.87
=1.42
再由表查的: =1.33, =1.2
减速器采用圆柱斜齿轮传动,螺旋角初选为 =14°
初选小齿轮齿数为20。那么大齿轮齿数为72.8。
3、由于减速器采用闭式传动,所以按齿面接触疲劳强度进行设计。
设计公式: ≥
确定公式中各参数,选Kt=1.6,ZH=2.433, , =0.765, , =0.945.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带式运输机的传动机构目录图 2 .3 9 4 4 1 4 8 8 51 设计任务书----------------------------------------------------------------------------------------------12、电动机的选择及传动装置的运动和动力参数计算-------------------------------33、传动零件的设计计算(确定齿轮传动的主要参数)---------------------------64、轴的设计计算及校核及滚动轴承的选择和计算---------------------------------165、箱体设计及说明---------------------------------------------------------------------------276、键联接的选择和计算--------------------------------------------------------------------297、联轴器的选择------------------------------------------------------------------------------318、润滑和密封的选择-----------------------------------------------------------------------329、减速器附件的选择及说明--------------------------------------------------------------3210、设计总结-----------------------------------------------------------------------------------33 参考资料-------------------------------------------------------------------------------------331、设计任务书1.1 课程设计的设计内容设计带式运输机的传动机构,其传动转动装置图如下图-1所示。

1、电动机2、联轴器3、二级圆柱齿轮减速器4、联轴器5、卷筒6、运输带1.2 课程设计的原始数据已知条件:①运输带的工作拉力:F=2200N ;②运输带的工作速度:v=1.00m/s ; ③卷筒直径:D=300mm ;④使用寿命:10年(其中带、轴承寿命为3年以上); ⑤工作条件:用于码头运型砂,单班制,有轻微振动。

1.3 课程设计的工作条件设计要求:①误差要求:运输带速度允许误差为带速度的±5%;②工作情况:连续单向运转,载荷平稳; ③制造情况:小批量生产。

图1.1带式运输机的传动装置2、电动机的选择及传动装置的运动和动力参数计算1.电动机的选择及传动装置的运动和动力参数计算; (1)选择电动机的类型按要求选择Y 系列三相异步电动机,电压380V (2)选择电动机的容量电动机所需工作功率为: P =P /η工作机需要的工作功率: P w =F*V=2200Nm*1.00m/s=2200w=2.2kw 滚动轴承的传动效率为 10.99η=闭式齿轮的传动效率为 30.95η=联轴器的效率为 20.97η=传动滚筒的效率为 40.96η=带效率50.97η=动机的功率为 ηP wP==2.2kw/0.80=2.75kw因载荷工作时有轻微振动,电动机额定功率P ed 略大于P 即可。

由表16-1,Y 系列电动机技术数据,选动机的额定功率P 为3.0kw(3)确定电动机的转速综合考虑电动机和传动装置的尺寸、重量、价格减速器的传动比,选定型号为Y100L-4的三相异步电动机,额定功率为3.0kw ,满载转速=m n 1420 r/min ,同步转速1500r/min 。

2.确定传动装置的总传动比和分配传动比(1)总传动比卷筒的转速v 1=v/(Π*D)*60=63.69r/min由选定的电动机满载转速m n 和工作机主动轴转速n ,可得传动装置总传动比为a i =m n /n =1420/63.69=22.3 (2)各级传动装置传动比高速级传动比为 1i =5.38则低速轴传动比 2i =1/i i =22.3/5.38=4.143.计算传动装置的运动和动力参数 电机轴: P0=Pd=2.75 KWn 0=1420r/min T 0=11*9550n P =18.49 N m ∙高速轴: P1= P 1* n 01=2.75*0.99=2.72 KWn 1= n 0=1420r/minT 1=11*9550n P =18.29 N m ∙中间轴: P 2=P 1* n 12=2.72*0.97*0.95=2.51KWn 2=11i n =1420/5.38=263.94 r/min T 2=229550*n P =90.82N m ∙低速轴:P 3=P 2*n 23 =2.51*0.97*0.95=2.31 KWn 3=22i n = 263.94/4.14=63.75r/min T 3=33*9550n P =346.05 N m ∙滚筒轴: P 4=P 3* n 34 =2.31*0.95*0.96=2.11 KWn 4= n 3/1 =63.75/1=63.75 r/min T 4=44*9550n P = 316.09N m∙运动和动力参数结果如下表:功率P KW 转矩T Nm 转速r/min电动机轴 2.7518.49 1420 高速轴 2.72 18.29 1420 中间轴 2.51 90.82 263.94 低速轴 2.31 346.05 63.75 滚筒轴2.11316.0963.753、传动零件的设计计算(确定齿轮传动的主要参数)A 高速齿轮的计算1选精度等级、材料及齿数 (1)材料及热处理;选择小齿轮材料为40Cr (调质),硬度为280HBS ,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。

(2)精度等级选用7级精度; (3)试选小齿轮齿数z1=24,大齿轮齿数z2=z1*i=24*5.38=129.12;故取129选螺旋角,初选螺旋角β=142 按齿面接触强度设计因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算。

2131)][(12HE H d t t Z Z uu T K d σεφα⨯±⨯≥(1)确定公式内的各计算数值 1)试选Kt =1.62)选取尺宽系数φd =13)材料的区域系数Z H =2.433 4)12111.88 3.2()co s 1.72z z αεβ⎡⎤=-+=⎢⎥⎢⎥⎣⎦5)小齿轮传递的转矩为18.29 N.m6)材料的弹性影响系数Z E =189.8Mpa7)小齿轮的接触疲劳强度极限σHlim1=600MPa 大齿轮的解除疲劳强度极限σHlim2=550MPa 8)计算应力值环数N 1=60n 1j h L =60×1420×1×(1×8×300×10) =2.045×109hN 2=2.045×109/3.23=6.33×108h9)查得:K 1HN =0.92 K 2HN =0.95 10)齿轮的接触疲劳需用应力 取失效概率为1%,安全系数S=1, [H σ]1=SKH HN 1lim 1σ=0.92×600=552MPa[H σ]2=SKH HN 2lim 2σ=0.95×550=522.5MPa许用接触应力12[]([][])/2537.25H HHM P aσσσ=+=(2)设计计算①小齿轮的分度圆直径d t 12131)][(12HE H d t t Z Z uu T K d σεφα⨯+⨯≥=3322 1.618.29105.381 2.42189.8()31.501 1.665.38537.25m m⨯⨯⨯+⨯⨯⨯=⨯②计算圆周速度υ=⨯=10006011 n d t πυ 3.14 3.1514202.34/601000m s⨯⨯=⨯③计算齿宽b 和模数nt m计算齿宽b b=tdd 1⨯φ=31.50mm初选螺旋角β=14︒ntm =11co s 31.50co s 141.3124t d m mZ β⨯==④计算齿宽与高之比h bh=2.25 m n t=2.25*1.31=2.95hb =31.502.95=10.68⑤计算纵向重合度βε=0.3181Z Φd14tan 241318.0tan ⨯⨯⨯=β=1.903⑥计算载荷系数K使用系数A K =1.25 根据 2.34/vm s=,7级精度, 查课本由192P 表10-8得动载系数K V =1.18查课本由194P 表10-4得K βH ==1.446 查课本由193P 表10-3 得: K αH =αF K =1.4故载荷系数:K =K K K αH K βH =1.25*1.18*1.4*1.35=2.79⑦按实际载荷系数校正所算得的分度圆直径:d 1=d t1tK K /3=31.5×6.179.23=37.91mm⑧计算模数n m :nm =11co s 37.91co s 141.5824d m mZ β⨯==(3). 齿根弯曲疲劳强度设计由弯曲强度的设计公式:nm ≥)][(cos212213FS F ad Y Y ZY KT σεφββ∂∂1) 确定公式内各计算数值 ① 计算载荷系数KK =K K KK =1.25*1.18*1.4*1.35=2.788② 轴向重合度 1.903螺旋角影响系数 0.88 ③ 计算当量齿数z =z /cos =24/ cos 314︒=26.27 z =z/cos =119/ cos 314︒=141.23④查取齿形系数Y=2.592 Y=2.211⑤ 应力校正系数YY=1.596 Y=1.775⑥弯曲疲劳寿命系数:K 1FN =0.86 K 2FN =0.93 ⑦ 弯曲疲劳应力 [F σ]1=4.3214.15009.011=⨯=S KFF FN σ[F σ]2=86.2574.138095.022=⨯=SKFF FN σ⑧ 计算大小齿轮的 ][FS F F Y σαα01363.057.303596.1592.2][111=⨯=FSF F Y σαα01642.086.238775.121.2][222=⨯=FSF F Y σαα大齿轮的数值大.选用. 2)设计计算 ① 计算模数322 2.79*18290*0.88*0.94*0.016421.13124 1.66n m m m m m⨯≥=⨯⨯按GB/T1357-1987圆整为标准模数,取m n =1.5mm z 1=37.91co s 14nm ︒⨯=20.4 取21那么z 2=109.6 取1103 几何尺寸计算(1)计算中心距 a=βcos 2)(21nm z z +=(21110)*1.52co s 14︒+⨯=101.26mm将中心距圆整为102mm (2)按圆整后的中心距修正螺旋角β=arccos12()(21110) 1.5arcco s 14.24122102nm αZ +Z +⨯==⨯︒因β值改变不多,故参数αε,βk ,h Z 等不必修正.(3)计算大.小齿轮的分度圆直径d 1=121 1.5co s co s 14.24n z m β⨯==32.50mm d 2=2110 1.5co s co s 14.24n z m β⨯==170.23mm(4)计算齿轮宽度B=1137.9137.91d m m m mΦ=⨯=圆整的 240B =145B =B 低速齿轮的计算1选精度等级、材料及齿数 (1)材料及热处理;选择小齿轮材料为40Cr (调质),硬度为280HBS ,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。

相关文档
最新文档