八年级数学下册期末一次函数专题复习
八年级数学下册《一次函数》知识点归纳
八年级数学下册《一次函数》知识点归纳知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b 为常数,kne;0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,kne;0)的性质(1)k的正负决定直线的倾斜方向;①kgt;0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当bgt;0时,直线与y轴交于正半轴上;②当blt;0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当kgt;0,bgt;0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当kgt;0,b③如图所示,当k﹤O,bgt;0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(kne;0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当kgt;0时,图象经过第一、三象限,y随x的增大而增大;(3)当klt;0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点Pprime;(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点Pprime;(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(kne;0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(kne;0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(kne;0)位置的影响.①当bgt;0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kgt;O,bgt;O时,图象经过第一、二、三象限;当kgt;0,b=0时,图象经过第一、三象限;为大家推荐的一次函数知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。
八年级下册数学一次函数知识点
八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。
在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。
一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。
一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。
在一次函数中,x 是自变量,y 是因变量。
k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。
二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。
当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。
2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。
当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。
3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。
当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。
三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。
同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。
2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。
3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。
八年级数学下册《一次函数》期末专题复习
八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。
八年级下一次函数复习课件ppt
一:一次函数与正比例函数的定义
函数y=_k__x_+__b_(k、b为常数,k__≠_0___)叫 做一次函数。当b_=__0__时,函数y=__k_x_(k_≠_0__) 叫做正比例函数。 y=k xn +b为一次函数的条件是什么?
y
y1=2x+4
B
D
E C A
F
0
x
y2=-x+2
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.下列函数中,不是一次函数的是 (C )
A .y x B .y 1 x C .y 1 0 D .y 2 ( x 1 )
次 函
(k≠0)
(0,b)
k>0 b<0
数
k<0
b>0 k<0
b<0
一.三
二.四 当k>0,
Y随x
一.二.三
的增大 而增大.
一.三.四 当k<0,
Y随x 一.二.四 的增大
而减小.
二.三.四
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(必考题)初中八年级数学下册第十九章《一次函数》复习题(答案解析)
一、选择题1.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<22.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)3.已知A B,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .5.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2 B .3 C .4 D .56.对于函数31y x =-+,下列结论正确的是( )A .y 随x 的增大而增大B .它的图象经过第一、二、三象限C .它的图象必经过点()0,1D .当1x >时,0y >7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 8.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( ) A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 10.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩11.甲、乙两人从公司去健身房,甲先步行前往,几分钟后乙乘出租车追赶,出租车的速度是甲步行速度的5倍,乙追上甲后,立刻带上甲一同前往,结果甲比预计早到4分钟,他们距公司的路程y (米)与时间x (分)间的函数关系如图所示,则下列结论中正确的个数为( )①甲步行的速度为100米/分;②乙比甲晚出发7分钟;③公司距离健身房1500米;④乙追上甲时距健身房500米.A .1个B .2个C .3个D .4个12.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 13.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( ) A .k≠3 B .k =±3 C .k =3 D .k =﹣3二、填空题16.如图,已知直线l:y =12x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;……;按照这个规律进行下去,点B n 的横坐标为______.(结果用含正整数n 的代数式表示)17.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.18.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.19.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.20.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.21.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.22.如图,平面直角坐标系中,点A 在直线333y x =+上,点C 在直线142y x =-+上,点A ,C 都在第一象限内,点B ,D 在x 轴上,若AOB 是等边三角形,BCD △是以BD 为底边的等腰直角三角形,则点D 的坐标为____________.23.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.24.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________. 25.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________. 26.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题27.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A . (1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,O 为坐标原点,一次函数y kx b =+与x 轴交于点A ,与y 轴交于点(0,4)B ,与正比例函数3y x =-交于点(1,)C m -.(1)求直线AB 的函数表达式.(2)在y 轴上找点P ,使OCP △为等腰三角形,直接写出所有满足条件的P 点坐标.(3)在直线AB 上找点Q ,使得78COQ APB S S =,求点Q 的坐标.29.如图,已知一次函数43y x m =+的图象与x 轴交于点(6,0)A -,与y 轴交于点B .(1)求m 的值和点B 的坐标;(2)在x 轴上是否存在点C ,使得ABC 的面积为16?若存在,求出点C 的坐标;若不存在,请说明理由.30.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.。
2020-2021学年人教版八年级数学下册期末复习(一次函数压轴题)
人教版2020-2021年八年级下册期末复习(一次函数压轴题)一.解答题(共15小题)1.在平面直角坐标系中,A (0,8),点B 是直线y =x ﹣8与x 轴的交点.(1)写出点B 的坐标( , );(2)点C 是x 轴正半轴上一动点,且不与点B 重合,∠ACD =90°,且CD 交直线y =x ﹣8于D 点,求证:AC =CD ;(3)在第(2)问的条件下,连接AD ,点E 是AD 的中点,当点C 在x 轴正半轴上运动时,点E 随之而运动,点E 到BD 的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.2.已知,如图:在正方形OABC 中,A (0,1),B (1,1),C (1,0),D 为OB 延长线上的一动点,以AD 为一边在直线AD 下方作正方形ADEF ,AF 交OC 于点G .(1)若S △AOD =1,求D 点的坐标;(2)①求证:点E 始终落在x 轴上;②若S 四边形ABCG =a •S △ABE ,1<a <2,利用a 表示此时直线AF 的解析式.3.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (0,4)、B (﹣2,0)、C (23,0),点D 是边AC 上的一点,DE ⊥BC 于点E .点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称.连接DF ,EF .设点D 的横坐标为m ,EF 2为l ,请解决下列问题:(1)若一次函数的图象经过A 、C 两点,则此一次函数的表达式为 ;(2)若以EF 为边长的正方形面积为S ,请你求出S 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值;(3)△BEF 能否成为直角三角形.若能,求出m 的值;若不能,说明理由.4.如图,在平面直角坐标系中,一次函数12x 512-y +=的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF ⊥x 轴于点F ,交BD 于点E ,连接AE .(1)求线段AB 的长;(2)求点C 的坐标(3)求证:AD 平分∠EAF ;(4)求△AEF 的周长5.如图1,已知直线y =kx +1交x 轴于点A 、交y 轴于点B ,且OA :OB =4:3.(1)求直线AB 的解析式(2)如图2,直线y =31x +2与x 轴、y 轴分别交于点C 、D ,与直线AB 交于点P . ①若点E 在线段P A 上且满足S △CDE =S △CDO ,求点E 的坐标;②若点M是位于点B上方的y轴上一点,点Q在直线AB上,点N为第一象限内直线CD上一动点,是否存在点N,使得以点B、M、N、Q为顶点的四边形是菱形?若存在,求出点N坐标;若不存在,请说明理由.6.如图,直线y=﹣x+1与y轴、x轴分别交于A、B两点,点C在线段AB上从A向B运动,另一动点P从B出发,沿直线x=1运动,记AC的长为t,P的坐标为(1,b),分析此图后,对下列问题作出探究:(1)当t=且b=时,△AOC≌△BCP;(2)当OC与CP垂直时,①判断线段OC和CP的数量关系?并证明你得到的结论;②试写出b关于t的函数关系式和变量t的取值范围.③求出当△PBC为等腰三角形时点P的坐标.7.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+6分别交x轴,y轴于点A,B,已知点A的坐标为(6,0).(1)求k的值;(2)点C是线段OA上一点(不与点O,A重合),点D是OB的延长线上一点,连接CD交AB于点E,且CE=DE,设OC的长为t,BD的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E 作EF ⊥CD 交y 轴于点F ,点G 在线段DE 上,且EG =EF ,连接BG 并延长交FE 的延长线于点H ,若BF =d 43-29,求点E 的坐标.8.平面直角坐标系中,O 为坐标原点,直线b x 3y +=交y 轴于A ,x 轴于B ,S △AOB =83.(1)求b 的值;(2)点C 为射线BA 上一动点,连接OC ,以C 为边作等边△OCD ,点D 在OC 的右侧,求点D 的纵坐标;(3)在(2)的条件下,连接AD 、BD ,△BOC 的面积是△ACD 的面积的2倍,M 是x 轴上一点,连接DM ,若∠DMB ﹣∠DBM =90°,求点M 坐标.9.如图1,在矩形ABCD 中,动点P 沿着边AB 从点A 运动到点B ,同时动点Q 沿着边BC ,CD 从点B 运动到点D ,它们同时到达终点,若点Q 的运动路程x 与线段BP 的长y 满足y =8x 74-+,BD 与PQ 交于点E . (1)求AB ,BC 的长. (2)如图2,当点Q 在CD 上时,求DE BE . (3)将矩形沿着PQ 折叠,点B 的对应点为点F ,连接EF ,当EF 所在直线与△BCD的一边垂直时,求BP的长.10.平面直角坐标系中,设一次函数y=(2a﹣1)x+3﹣b的图象是直线l1.(1)如果把l1向下平移2个单位后得到直线y=3x+1,求a,b的值;(2)当直线l1过点(m,6﹣b)和点(m+3,4a﹣7)时,且﹣3<b<12,求a的取值范围;(3)点P(﹣2n+3,3n﹣1)在直线l2上运动,直线l2与直线l1无交点,求a、b所需满足的条件.11.如图,在平面直角坐标系中,直线y=kx+b与x轴,y轴分别相交于点A(4,0),点B(0,3),点C是线段OB的中点,动点P从点B开始以每秒1个单位长度的速度沿路线B→A向终点A匀速运动,设运动的时间为t秒,连接CP.(1)求直线AB的函数解析式;(2)请直接写出点P的坐标;(用含t的代数式表示)(3)①当S△BCP:S四边形AOCP=1:4时,求t的值;②将△BCP沿CP翻折,使点B落在点B′处,当PB′平行于坐标轴时,请直接写出t的值.12.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA =45°,求满足条件的点Q 的坐标;(3)如图2,在x 轴的负半轴上是否存在点Q ,使得以BQ 为边作正方形BQMN 时,点M 恰好落在直线l 上,且正方形BQMN 的面积被x 轴分成了1:2的两部分?若存在,请求出点Q 的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)经过点A (6,0)和点B (0,9),其图象与直线y =x 43交于点C .(1)求一次函数y =kx +b (k ≠0)的表达式;(2)点P 是线段OA 上的一个动点(点P 不与点O ,A 重合),过点P 作平行于y 轴的直线l ,分别交直线AB ,OC 于点M ,N ,设点P 的横坐标为m .①线段PM 的长为 ;(用含m 的代数式表示)②当点P ,M ,N 三点中有一个点是另两个点构成线段的中点时,请直接写出m 的值; ③直线l 上有一点Q ,当∠PQA 与∠AOC 互余,且△PQA 的周长为227时,请直接写出点Q 的坐标.14.如图1,已知直线y =﹣2x +2与y 轴、x 轴分别交于A 、B 两点,以B 为直角顶点在第一象限内作等腰Rt △ABC .(1)A ( );B ( );(2)求BC 所在直线的函数关系式;(3)如图2,直线BC 交y 轴于点D ,在直线BC 上取一点E ,使AE =AC ,AE 与x 轴相交于点F .①求证:BD =ED ;②在直线AE 上是否存在一点P ,使△ABP 的面积等于△ABD 的面积?若存在,直接写出点P 的坐标;若不存在,说明理由.15.在平面直角坐标系中,直线y =32x ﹣6与x 轴交于点A ,与y 轴交于点B ,点D 在直线AB 上,点D 的横坐标为3,点C (﹣6,0),动点F 从C 出发,沿x 轴正方向运动,速度为每秒1个单位长度,到达终点A 停止运动,设运动时间为t (t >0).(1)如图1①求点A 、B 的坐标;②当t =3时,求证DF =DA . (2)过点B 作BE ∥OA ,当BE =ED 时,连接ED 并延长交x 轴于点Q①点Q 的坐标为 ;②当∠FDE =3∠QFD 时,t 的值为 .。
人教版八年级数学下学期期末重难点知识专题04一次函数重难点知识1(解析版).doc
学校班级姓名1【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】2专题04 一次函数期末总复习重难点知识一遍过1一、基础知识点综述基础讲解基 础 知 识函数与变量一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.常见自变量取值范围:00100y x x y x xy x x =≥=≠=≠ ()() ()常量:其值在变化过程中始终保持不变的量叫常量. 变量:其值在变化过程中会发生变化的量叫变量. 正比例函数 解析式 y =kx (k ≠0)形状一条过(0,0)、(1,k )的直线 坐标系中位置k >0时过一、三象限;k <0时过二、四象限 增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小一次函数解析式 y =kx +b (k ≠0)形状一条过(0,b )、(bk-,0)的直线 坐标系中位置k >0,b >0时过一、二、三象限;k >0,b <0时过一、三、四象限;k <0,b >0时过一、二、四象限;k <0,b <0时过二、三、四象限增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小【本文档由书林工作坊整理发布,谢谢你的下载和关注!】3基 础 知 识一次函数图象的位置关系 l 1∥l 2,则k 1=k 2,b 1≠b 2;l 1⊥l 2,则k 1·k 2=-1一次函数图象平移 上下平移与b 有关,上加下减;左右平移与x 有关,左加右减一次函数图象的对称y =kx +b 关于y 轴对称的解析式为:y =-kx +b ;y =kx +b 关于x 轴对称的解析式为:y =-kx -b ;一次函数与二元一次方程组方程组的解是两条直线的交点坐标一次函数与不等式会借助图象判断y =0,y <0,y >0时自变量取值范围;会借助图象判断y 1=y 2,y 1<y 2,y 1>y 2时自变量取值范围;求一次函数解析式方法待定系数法上表中,l 1:y 1=k 1x +b 1;l 2:y 2=k 2x +b 2二、典型例题讲解题1. (1)函数11y x x=+-自变量的取值范围是(2)函数()02y x x=--自变量的取值范围是(3)函数214y x x =-+自变量的取值范围是(4)在三角形中,它的一条边是a ,这条边上的高是h ,则其面积S =0.5ah ,当a 为定长时,在此式中变量是,常量是(5)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )【答案】(1)x ≥-1且x ≠0;(2)x >0且x ≠2;(3)全体实数;(4)S 、h ;0.5、a ;(5)B ;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】4【解析】解:(1)由10x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0;(2)由020x x >⎧⎨-≠⎩,解得:x >0且x ≠2;(3)由2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,得x 为全体实数;(4)由题意知S 随h 的变化而变化,所以S 和h 是变量,a 、0.5是常量;(5)通过分析可知,在注水开始至水面与小玻璃杯水面平齐过程中,水面高度不变,随后增大至最大后不再变化,故选B .题2. (1)正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x +k 的图象过象限;(2)若函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,则m 的取值范围(3)在平面直角坐标系中,将直线l 1:y =-3x -3平移后,得到直线l 2:y =-3x +2,则应向上平移个单位,或向右平移个单位;(4)已知点A (﹣5,y 1),B (10,y 2)在一次函数y =﹣x +9的图象上,则y 1y 2(5)直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围成的三角形面积为4,那么b 1﹣b 2等于(6)一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =(7)函数y =-2x +4的图象上存在点P ,使得点P 到y 轴的距离等于1,则点P 的坐标为 . (8)过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是【答案】(1)一、二、三;(2)m <-1;(3)5,53;(4)>;(5)4或-4;(6)-1; (7)(1,2)或(-1,6);(8)(1,4)、(3,1);【解析】解:(1)∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大, ∴k >0,则y =x +k 的图象过一、二、三象限;(2)∵函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,【本文档由书林工作坊整理发布,谢谢你的下载和关注!】5∴()10430m m +<⎧⎨-->⎩,解得:m <-1;(3)y =-3x -3平移后,得到直线l 2:y =-3x +2,可向上平移5个单位;设向右平移m 个单位,则y =-3(x -m )-3,即-3(x -m )-3=-3x +2,解得:m =53即向右平移53个单位; (4)y =﹣x +9中,y 随x 的增大而减小,因为A (﹣5,y 1),B (10,y 2)在一次函数图象上, 而-5<10,所以y 1>y 2 (5)由题意知:12122S b b =⨯⨯-, 即121422b b =⨯⨯-解得:b 1﹣b 2=4或-4 (6)由题意知:221304010m m m m ⎧-+-=⎪-≠⎨⎪-≠⎩,解得:m =-1; (7)点P 到y 轴的距离等于1,则P 点的横坐标为1或-1, 在y =-2x +4中,当x =1时,y =2;x =-1时,y =6, 即P 点坐标为(1,2)或(-1,6);(8)设直线AB 解析式为y =kx +b ,由题意知:k =32-, 将(﹣1,7)代入得:7=32-×(-1)+b ,解得:b =112, 即直线AB 解析式为:y =32-x +112,整理得:2y +3x =11,由题意知x 、y 均为整数时,有x =1,y =4;x =3,y =1,即符合要求的点的坐标是(1,4)、(3,1). 题3. (1)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,求k 、b 的值.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】6【答案】见解析.【解析】解:①当k >0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =3;x =4,y =6,代入y =kx +b 得:346k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=⎩ ②当k <0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =6;x =4,y =3,代入y =kx +b 得:643k b k b +=⎧⎨+=⎩,解得:17k b =-⎧⎨=⎩即k =1,b =2或k =-1,b =7.(2)如图3-1,函数y =2x 和y =ax +4的图象相交于点A (m ,4),则不等式2x <ax +4的解集为图3-1【答案】x <2.【解析】解:因为函数y =2x 和y =ax +4的图象相交于点A (m ,4), 所以当y =4时,x =2,由图象知:不等式2x <ax +4的解集为x <2.(3)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (千米),甲行驶的时间为t (小时),s 与t 之间的函数关系如图3-2所示.有下列结论:①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙速度的一半. 其中正确结论是.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】7图3-2【答案】①②④.【解析】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a 千米/小时, 则120140a=+,解得:a =80,∴乙开汽车的速度为80千米/小时, ∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80-40)=60(千米),故②正确; 乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误; ∴正确的结论是①②④.题4. 如图4-1所示,在平面直角坐标系xOy 中,矩形ABCD 的AB 边在x 轴上,AB =3,AD =2,经过点C 的直线y =x ﹣2与x 轴、y 轴分别交于点E 、F .(1)求:①点D 的坐标;②经过点D ,且与直线FC 平行的直线的函数表达式;(2)直线y =x ﹣2上是否存在点P ,使得△PDC 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M ,使得以点M 、D 、C 、E 为顶点的四边形是平行四边形,请直接写出点M 的坐标.图4-1【答案】见解析.【解析】解:(1)①设点C的坐标为(m,2),∵点C在直线y=x﹣2上,∴2=m﹣2,解得m=4,即点C的坐标为(4,2),∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∴点D的坐标为(1,2);②设经过点D且与FC平行的直线函数表达式为y=x+b,将D(1,2)代入y=x+b,得b=1,∴经过点D且与FC平行的直线函数表达式为y=x+1;(2)存在.∵△EBC为等腰直角三角形,∴∠CEB=∠ECB=45°,∵DC∥AB,∴∠DCE=∠CEB=45°,∴△PDC是以P、D为直角顶点的等腰直角三角形,如图4-2所示,图4-2①当∠D=90°时,延长DA与直线y=x﹣2交于点P1,8【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】9∵点D 的坐标为(1,2), ∴点P 1的横坐标为1,把x =1代入y =x ﹣2得,y =﹣1,即P 1(1,﹣1);②当∠DPC =90°时,作DC 的垂直平分线与直线y =x ﹣2的交点即为点P 2, 点P 2的横坐标为52, 将x =52代入y =x ﹣2得,y =12,即P 2(52,12), 综上所述,符合条件的点P 的坐标为(1,﹣1)、(52,12); (3)当y =0时,x ﹣2=0,解得x =2, ∴OE =2,∵以点M 、D 、C 、E 为顶点的四边形是平行四边形, ①若DE 是对角线,则EM =CD =3, OM =EM ﹣OE =3﹣2=1, 点M 的坐标为(﹣1,0),②CE 是对角线,则EM =CD =3,OM =OE +EM =2+3=5, 点M 的坐标为(5,0),③CD 是对角线,则平行四边形的中心坐标为(52,2), 设点M 的坐标为(x ,y ), 则2522x +=,22y=, 解得x =3,y =4,此时,点M 的坐标为(3,4),综上所述,点M 的坐标为(﹣1,0),(5,0)(3,4).题5. 小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min 才乘上电缆车,电缆车的平均速度为180m /min .设小华出发x (min )行走的路程为y (m ),图5-1中的折线表示小华在整个行走过程中y (m )与x (min )之间的函数关系.(1)小华行走的总路程是_____m ,他途中休息了_____min ; (2)当50≤x ≤80时,求y 与x 的函数关系式;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】10(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?图5-1【答案】(1)3600,20;(2)(3)见解析. 【解析】解:(2)①当50≤x ≤80时, 设y 与x 的函数关系式为y =kx +b , 根据题意,当x =50时,y =1950; 当x =80时,y =3600,得:195050360080k bk b =+=+⎧⎨⎩解得k =55,b =-800,∴函数关系式为:y =55x -800;(3)缆车到山顶的线路长为3600×2=1800米, 缆车到达终点所需时间为1800÷180=10分钟 小颖到达缆车终点时,小亮行走的时间为10+50=60分钟, 把x =60代入y =55x ﹣800,得y =55×60﹣800=2500, ∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.题6. 某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】11【解析】解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得:60329553x y x y =+=+⎧⎨⎩, 解得:1015x y ==⎧⎨⎩.答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W =10m +15(100-m )=-5m +1500∴()150051150310m m m -≤≤-⎧⎨⎩, 解得:70≤m ≤75.∵m 是整数,∴m =70,71,72,73,74,75.在W =-5m +1500中,∴-5<0,∴W 随m 的增大而减小,∴m =75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.题7. 在平面直角坐标系xOy 中,直线y =kx +4(k ≠0)与y 轴交于点A .(1)如图,直线y =-2x +1与直线y =kx +4(k ≠0)交于点B ,与y 轴交于点C ,点B 的横坐标为-1.①求点B 的坐标及k 的值;②直线y =-2x +1与直线y =kx +4与y 轴所围成的△ABC 的面积等于;(2)直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),若-2<x 0<-1,求k 的取值范围.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】12【解析】解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,即B (-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1,∴直线AB 的解析式为:y =x +4,∴A (0,4),在y =-2x +1中,当x =0时,y =1,∴C (0,1),∴AC =4-1=3, ∴△ABC 的面积为:12×1×3=32; 故答案为:32; (2)∵直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),-2<x 0<-1,∴当x 0=-2,则E (-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E (-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <4.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
八年级数学《一次函数》知识点归纳与例题
八年级数学《一次函数》知识点归纳与例题一、知识点总结1、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图象与性质(形状、位置、特殊点、增减性)①、形状:一次函数的图象是一条 ;画法:确定两个点就可以画一次函数图象。
②、位置:直线的位置是由k 、b 当k 0时,图象经过一、三象限; 当k 0时,图象经过二、四象限。
当b 0时,图象与y 轴相交于正半轴; 当b 0时,图象与y 轴相交于负半轴; 当b 0时,图象经过坐标原点。
x 轴和y 轴交点分别是④、性质:一次函数)0(≠+=k b kx y ,当k 0y 的值随x 值的增大而增大;当k 0y 的值随x 值的增大而减小。
3、待定系数法求函数解析式在一次函数y =kx +b (k ≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎨⎧b 1=a 1k +b ,b 2=a 2k +b ,求出k ,b 的值即可,这种方法叫做__________.4、一次函数与方程、方程组及不等式的关系 ①、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标. ②、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围. ③、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【知识拓展】1、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定:① k 1≠k 2⇔ 1与 2相交;② k 1=k 2,b 1≠b 2⇔ 1与 2平行;+b一次函数)0(≠+=k b kx y 的图象 如图,判断k 、b 符号。
人教版八年级数学下一次函数专题复习
第十九章一次函数21. 变量与函数(一)基础题训练1.购买单价为3元的笔记本x本,所需金额为y元,则y与x的关系式为().A.y=x B. y=3x C. y=x+3 D.y=3 x2.一辆汽车以50km∕h的速度匀速行驶,则行驶的路程S(km)与行驶时间t(h)的关系式是().A.50stB. 50s t C. 50s t D. 50s t3.在三角形的面积公式12S ah中,下列说法正确的是().A.2是常量,S,a,h是变量B. 12是常量,S,a,h是变量C. 12是常量,S,a是变量 D. 2是常量,S,a是变量4.有一本书,每20页的厚度为1mm,设第一页到x页的厚度为y,则有().A.120y x B. 20y x C.120y x D.20yx5.购买单价为0.4元的铅笔,总金额y(元)与铅笔数n(支)的关系式是 .6.若等腰三角形的顶角是x度,底角是y度,则y与x的关系式为,其中常量是,变量是 .7.已知变量x,y满足y=-x+1.(1)当x=5时,求y的值.(2)当x为何值时,y的值为8?8. 一根弹簧原长为10cm ,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后发现弹簧伸长的长度与所挂物体的质量的变化规律为:每挂1kg 的物体弹簧伸长0.5cm .(1)求弹簧的总长度y (cm )与所挂物体质量x (kg )之间的关系式,并指出常量和变量; (2)当弹簧上挂4千克物体时,弹簧的长度为多少?中档题训练9.从甲市到乙市的寄包裹的邮资为0.9元/千克,每件另加手续费3元,则总邮资y (元)与包裹重量x (千克)之间的关系式为( ).A. y =0.90xB. y =0.9+xC. y =0.9x +3D. y =x +310.某种商品售价为20元/件时,每天可销售50件,调查发现若每件降价1元,每天可多销售10件,则该商品每天销售件数y (件)与降价x (元)的关系式为( ). A. y =50+10x B. y = x +50 C . y = -10x +250 D . y =10x -5011.多边形对角线的条数m 与多边形边数n 之间的关系是________________,其中常量是______________, 变量是___________________.12.面积为4的三角形中,一边为a , 这一边上的高为h ,则h 与a 关系式为____________________,当a =4时,h =_______________; 当h =16时,a =_________________.13.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是( ).(1) (2) (3) (4) 14.已知变量,,x y m 满足下列关系121,2,2y m x m =+=-+,求y 与x 的关系式.综合题训练15.一个弹簧原长(不挂重物)15cm ,弹簧总长L (cm)与所挂物体的质虽x (千克)的关系如下表:(1)求L 与x 之间的关系式;(2)请估计重物为5(千克)时弹簧总长L (cm)是多少?22.变量与函数(二)基础题训练1.在一个变化过程中,如果有两个变量x 与y .并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是__________________ ,y 是x 的__________________.2.汽车离开A 站5千米后以40千米/时的速度匀速行驶了t 小时,则汽车离开A 站的路程S (千米)与时间t (小时)的解析式为__________________ ,其中变量是__________________ ,自变量是_____________ ,其中_______________ 是_______________ 的函数.3.多边形的内角和S (度)与它的边数n 的函数关系式是___________________.其中常量是______________,自变量n 的范围是__________________.4.下列关系式中,y 不是x 的函数的是( ).A .1y x =+B .2y x = C. y x = D. y x = 5.下列变量之间不是函数关系的是( ).A .长方形的长一定,其面积与宽 B. 正方形的面积与周长 C .等腰三角形的面积与底边的长 D. 圆的面积与直径的长6.函数y =2x 中,自变量x 的取值范围是( ). A. 12x >B. 12x ≠ C. 0x ≠ D. x 为任何实数7.(2014.资阳)函数1y =x 的取值范围是___________________.8.(2014.济宁)函数y =中自变量x 的取值范围是( ) A. 0x ≥ B. 1x ≠- C. 0x > D. 0x ≥且1x ≠-9.甲市到乙市的寄包裹的邮资为每千克0.9无,每件另加手续费0.2元. (1)求总邮资y (元)与包裹重量x (千克)之间的函数解析式及自变量的范围. (2)求自变量为10千克时,总邮资为多少元?10. 一般地,海拔高度每上升1千米,温度下降6C ,某时刻地面温度为20C ,设高出地面x 千米处的温度为 y C(1)求y 与x 之间的函数解析式及自变量范围; (2)求高出地面2千米处的温度.中档题训练11.函数y =x 的取值范围是( ).A. 2x ≠B. 2x ≥C. 2x ≤D. 2x <12.(2013.衡阳)函数y =中自变量x 的取值范围是( ).A. 2x >-B. 2x ≥C. 2x ≠-D. 2x ≥-13. 已知21y x =-,当函数y 的取值范围是01y ≤≤.则x 的取值范围是_________________.14. 等腰三角形的周长为20cm ,(1)求底边长y (cm)与腰长x (cm)之间的函数解析式并写出自变量的x 取值范围. (2)若底边长为4cm ,求腰长.15. 如图,在靠墙(墙的长为18米)的地方围建一个长方形的鸡场,另三边用竹篱笆围成,如果竹篱笆的总长为35米,求鸡场的边长y (米)与x (米)的函数解析式,并写出自变量.x 的取值范围.y(墙)综合题训练16. 如图所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图所示. (1)求BC 的长; (2)求△ABC .的面积; (3)当y =5时,求x 的值.23.函数的图象(一)1. 一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的__________坐标和 ___________坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.2.如图是我市冬季某一天的气温随时间变化的图象,根据图中的信息,下列说法中错误的是( ).A. 这一天中凌晨4时的气温最低 B .这一天中中午13时的气温最高 C .从0时至4时气温随时间增加而下降 D .这一天中只有一个时间的气温为0℃3.小明从家中出发,到离家1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是( )A B C D时时间时间时间时间4.下列各点中,在函数y =1-2x 的图象上的点是( )A. (2,1)B. (0,2)C. (1,0)D. (1,-1)5.经过点(3,2)的函数是( )A. 35y x =-B. 21y x =+C. 1y x =-D. 1y x =+6.已知函数2y kx =+的图象经过点(-1,3),则k 的值为( ).A .1B .-1C .5D .-57.(1) 画出函数21y x =-的图象; 解:描点并连线.(2) 点( 2.5,4),(1,3),(2.5,4),A B C --点______________在函数21y x =-的图象上,点____________不在函数21y x =-.中档题训练8.(2014.德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又走到早餐店吃早餐,然后散步走回家.图中x 表示时间,y 表示张强离家的距离,根据图象提供的信息,以下四个说法中错误的是( ).A. 体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店1千米D .张强从早餐店回家的平均速度是3千米/小时2.51.5604530159.(2013.四川巴中)如图,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,S 与t 的大致图象是( )A B. C. D10. (1) 画出函数6(0)y x x=-<的图象;描点并连线.(2) 从图象可以看出,曲线从左向右________________,即当x 由小变大时,y 随之_______________.综合题训练11.周末小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y (km)与小明离家时间x (h)的函数图象.已如妈妈驾车的速度是小明骑车速度的3倍. (1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?AC (h )24.函数的图象(二)基础题训练1.画函数图象的一般步骤是 , , ,表示函数的方法有 , , .2.函数y =12x +1与x 轴的交点为 ,与y 轴的交点为 . 3.下列各点中,在函数y =2x -1的图象上的是( ). A .(-52,-4) B .(1,3) C .( 52,4) D .(0,1) 4.下列各图中y 不是x 的函数的是( ).5.爷爷每天坚持体育锻炼,某天他慢跑离家到中山公园,打了一会儿太极拳后搭公交车回家.下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( ).6.用列表法与解析式法表示n 边形的内角和m (单位:度)是边数n 的函数.解:列表如下:n 边形的内角和m 是边数n 的函数关系式为 . 7.用解析法与图象法表示等边三角形的周长l 关于边长a 的函数.解:等边三角形的周长l 是边长a 的函数关系式为: . 列表如下:描点并连线.中档题训练8.甲,乙两人沿相同的路线由A 地到B 地匀速前进,A ,B 两地间的路为20千米,他们前进的路程为s (千米),甲出发后的时间为t (小时),甲,乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法中正确的是( ).A .甲的速度是4千米/小时B .乙的速度是10千米/小时C .乙比甲晚出发2小时D .甲比乙晚到B 地3小时9.(2011武汉)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间后再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过多少分钟容器中的水恰好放完?10.已知一个等腰三角形的顶角为y ,底角为x ,试写出y 与x 之间的函数关系式,自变量x 的取值范围,并画出函数图解.解:∵ 三角形的内角和为180o ,且等腰三角形两底角相等, ∴ y 与x 之间的函数关系式为 . 自变量x 的取值范围是 . 列表如下:描点并连线综合题训练11.小聪和小明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆.图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程S (千米)与时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为 分钟,小聪返回学校的速度为 千米/分钟; (2)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?)小明小聪专题 函数的基本概念一、函数的基本概念1.一辆汽车以60km/h 的速度行驶,行驶的路程s (km )与行驶时间t (h )之间的函数关系 式为60s t =,其中变量是( )A .速度与路程B . 速度与时间C . 时间与路程D . 速度,时间,路程 2.已知圆柱的体积公式是2V r h π=,若h 为常数,则在这个公式中,变量是( ) A . V ,π B .V r π,, C . V , r D . V . h 3.在∆ABC 中,它的底边长是a ,底边高是h ,则三角形的面积12S ah =,当h 为定长时, 在此关系式中( )A . S ,a 是变量,h ,12是常量 B . S ,a ,h 是变量12是常量 C . h ,a 是变量,S ,12是常量 D .S ,是变量,a ,h ,12是常量4.以固定的速度o v 向上抛一个小球,小球的高度h 与小球的运动时间t 之间的关系式是 24.9o h v t t =-,在这个关系式中,变量,常量分别是( ) A . 4.9是变量,t ,h 是常量 B . o v 是常量,t ,h 是变量C .o v ,-4.9是常量,t ,h 是变量 D . 4.9是常量,t ,h 是变量二、自变量的取值范围5.在函数1y x =-中,自变量x 的取值范围是( )A .0x ≥B .1x ≠C .1x ≥D .全体实数6.在函数y =x 的取值范围是( )A .12x ≤B .12x <C .12x ≥D .12x > 7. (2014.遂宁)在函数11y x =-中,自变量x 的取值范围是( )A .1x >B .1x <C .1x ≠D .1x =8.在函数y =中,自变量x 的取值范围是( ) A .0x ≥ B .11x x <≠且 C .0x < D .01x x ≥≠且9.下列函数中,自变量x 的取值范围是( )A .11y x =- B .11y x =- C .y = D .y 10.函数112y x =-+中,函数y 的取值范围为y >0,则自变量x 的取值范围是( )A .1x <B .1x >C .2x <D .2x >11.函数21y x =-中,自变量x 的取值范围是1x >-,则函数y 的取值范围是( ) A .3y <- B .3y >- C .1y >- D .1y <-专题 根据实际问题确定函数图象1.(2013.益阳)在一个标准大气压下,能反映水在均匀加热过程中,水的温度T (o C )随加 热时间t 变化的函数图像大致是( )2.某厂家年初生产的一种饮料,在库存为m (m >0)的情况下,日销售量与产量持平,自5 月气温升高以来,饮料需求量猛增,在生产力不变的情况下,饮料一度脱销,一下表示2 009年初至脱销期间,库存量y 与时间t 之间的函数大致图像是( )3.小华同学放暑假乘坐大巴车去看望在外在外打工的妈妈,出发时大巴车的油箱装满油,匀 速行驶了一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的 地时油箱中还剩三分之一箱汽油,设油箱中所剩的汽油量为V (升),行驶时间为t ,则 V 与t 的大致图像是( )4.汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/小时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的关系用图像表示应为()5.如图,正方形ABCD的变长为4,P为正方形边上一动点,运动路线是A D C B A→→→→,设,P点经过的路线为x,以A,P,D为顶点的三角形面积是y.则下列图像大致能反映y与x 的函数关系是()25.正比例函数1.下列关系式中,表示y 是x 的正比例函数的是( ) A.6y x =B.6xy = C.1y x =+ D.22y x = 2.下列函数关系中,是正比例函数的是( )A. 圆的面积与它的半径B.路程一定时,行走的速度与时间C.正方形的周长与边长D.人的身高与年龄 3.函数(1)my m x =+是正比例函数,则m 的值为( )A.0B.-1C.1D.±1 4.下列各图中,表示的是正比例函数图像的是( )5.函数5y x =-的图像经过第 象限,经过点(0, )与点(1, ),y 随x 的增 大而6.(2013.陕西)下列四组点中,可以在同一个正比例函数图像上的一组是( ) A.(2,-3),(-4,6) B.(-2,3),(4,6) C.(-2,-3),(4,-6) D.(2,3),(-4,6)7.正比例函数(21)y k x =+的图像经过第一,第三象限,则k 的取值范围是8.已知正比例函数(0)y kx k =≠,点(2,-3)在函数图像上的解析式为y 随x 的增大而 (增大或减小)9.用你认为最简单的方法在同一直角坐标系中画出下列函数图像 (1)32y x = (2)3y x =-10.已知函数(3)y k x =+(1)k 为何值时,函数为正比例函数?(2)k 为何值时,函数图象经过第一,三象限? (3)k 为何值时,y 随x 的增大而减小? (4)k 为何值时,函数图像经过点(1,1)?11.下列各点中,在正比例函数y=-2x的图象上的是( ).A.(a,一a)B.(-a,-2a) C.(2a,-a) D.(2a,a) 12.(2014.贺州)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1_____y2(填“>”或“<”或“=”).13.一个函数的图象是经过原点的直线,并且这条直线过第四象限及点(2,a)和点(a,18).求这个函数的解析式.14.在函数y=-3x的图象上取一点P,过点P作PA⊥x轴于A点,已知P点的横坐标为-2.求△POA的面积.15.(1)已知y+5与3x+1成正比例,当x=1时.y=2,求y与x的函数关系式;(2)若(m,-2)在此函数图象上,求m的值.综合题训练16.如图,在平面直角坐标系中,正比例函数y=kx经过点P(m,rn),PA⊥x轴于A.(1)求k的值;(2)若P在直线y=kx上运动,设△APO的面积为S,求S与m的函数关系式;(3)若m为2,在坐标轴上是否存在点Q,使△POQ为等腰商角三角形?若存在,求Q的坐标;若不存在,请说明理由.26.一次函数(一)——一次函数的概念基础题训练1.下列函数中,是一次函数的是( ).A.y=-2x2B.y=一2x+1 C.y=2x+1 D.y=2x2.若函数y=(m+2)x|m|-1+m一2为一次函数,则m的值为( ).A.2 B.-2 C.±2 D.03.下列说法中,不正确的是( ).A.一次函数不一定是正比例函数B.正比例函数一定是一次函数C.常数项为0的一次函数是正比例函数D.正比例函数不是一次函数4.当m______时,函数y=(m+3)x+5是一个一次函数.5.函数y=(m-2)x+5-m是一次函数,则m满足的条件是_________,若此函数是正比例函数,则m的值为______________.6.要把一个长为80m,宽为60米的操场改建成一个正方形的操场,若长增加y(m),宽增加x(m),则y与x的函数关系式为________________,自变量的取值范围为___________.7.一个弹簧不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长2cm,则弹簧总长y(单位:cm)随所挂物体质量x(单位:kg)变化的函数关系式为_______________________.8.红星机械厂有煤80吨,每天需烧煤5吨,求工厂余煤量y吨与烧煤天数x天之间的函数关系式,指出y是不是x的一次函数,并求自交量x的取值范围.9.已知函数y=4x+5,(1)求当x=-3时y的值;(2)求当y=15时x的值.10.已知一次函数y=(5m-3)x2+m+n.(1)求m,n的值;(2)若函数的图象经过原点,求m,n的值.中档题训练11.y=(m-2)x|m-1|+m一4为一次函数,则m=_______________.12.已知一次函数y=kx+2,当x=5时,y=4,则k=______________.13.若一次函数y=x+b的图象过点A(1,-1),则b=_________________.14.一棵树高20cm,每年升高40cm,则这棵树的高度h cm与年数x的函数关系式为_____________,它是一次次函数吗?答:_______________.15.已知一次函数y=kx+b,当x=9时,y=0;当x=24时,y=20;求是k,b的值.16.离山脚高度30m处向上铺台阶,每上4个台阶升高1m.(1)求离山脚高度h m与台阶阶数n之间的函数解析式;(2)已知山脚至山顶的高为217m,求自变量n的取值范围.综合题训练17.A,B两城相距600千米,甲,乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度,千米27.一次函数(二)图象和性质基础题训练1.直线y =2x -4与x 轴交点A 坐标为(______);与y 轴交点B 坐标为(_______);△ABO 的面积是_______.2.⑴不画图象仅从函数解析式,判断直线y =3x 与y =3x -4的位置关系是________.直线y =3x 向_____平移_____个单位就可以得到y =3x -4.⑵不画图象仅从函数解析式,判断直线y =35x -4与y =35x +4的位置关系是_______ ,直线y =35x -4向___平移___个单位就可以得到y =35x +4. 3.⑴函数y =x +2的图象经过第_________象限;y 随x 的增大而_____. ⑵ 函数y =-x -2的图象经过第_________象限;y 随x 的增大而_____. ⑶ 函数y =2x -1的图象经过第_________象限;y 随x 的增大而_____. ⑷ 函数y =-2x +1的图象经过第_________象限;y 随x 的增大而_____. 4.关于函数y =-2x +1,下列结论正确的是()A .图象必经过点(-2,1)B .图象经过第一、二、三象限C .当x >12时,y <0 D .y 随x 的增大而增大 5.(2014·邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x +1图象上的两点,则a 与b 的大小关系是( ).A . a>bB .a=bC .a<bD .以上都不对6.一次函数y =ax +b 的图象如图所示,则下面结论中正确的是( )A .a <0,b <0B . a <0,b >0C . a >0,b >0D . a >0,b <07.一次函数y =kx +b 的图象经过第一、二、三象限,则( ) A .k >0,b >0 B .k <0,b <0 C .k >0,b <0 D .k <0,b >08.在同一平面坐标系中画出下列函数的图象,并指出他们的共同之处:⑴y=4x;⑵y=4x+1;⑶y=-4x+1;⑷y=-4x-1.解:列表9.对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象与x轴的交点坐标是(0,4) C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象不经过第三象限10.(2014.汕尾)已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过( ).A.第一象限B.第二象限C.第三象限D.第四象限11.已知直线y=9(m-1)x+1-3m,(1)当m为何值时,直线经过原点?(2)当m为何值时, 直线与y轴相交于点(0,2)?(3)当m为何值时, 直线与x轴相交于点(2,O)?(4)当m为何值时,y随x的增大而减小?12.在同一直角坐标系中,画出直线y=x+3与y=-x+1的图象,(1)求出两条直线与x轴的两个交点A.B间的距离;(2)求两条直线.y=x+3与y=-x+1的交点C坐标;(3)求△ABC的面积.综合题训练13.如图,直线y = 2x+2与x轴交于点A,与y轴交于点B.(1)求点A和点B的坐标;(2)若点P为正比例函数y=kx上一点,是否存在这样的k值,使得△AOP与△BOP的面积之比为12?若存在,求k的值;若不存在,说明理由.28. 一次函数(三)待定系数法基础题训练1. 一次函数经过点(1,2),则b 的值为( ) A .0B .-1C .1D .22. 已知一次函数中,当时,,则k 的值为()A .-1B .1C .2D .3. 将直线向下平移3个单位所得直线的解析式为( ) A . B . C . D .4. 函数的图像可看作由直线向( )得到.A .上平移5个单位B .下平移5个单位C .左平移5个单位D .右平移5个单位5.(2014.泰州)将一次函数y=3x -1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为 .6.(2014.怀化)设一次函数y=kx +b (k ≠0)的图象经过A(l ,3),B (0,-2)两点,试求一次函数解析式.7. 已知一次函数1y kx =+,当x =2时y 的值为4,求这个函数的解析式.8. 已知一条直线与直线23y x =-平行,且经过点(2,7),求直线的解析式.y x b =+2y kx =+2x =4y =1213y x =133y x =+133y x =-+133y x =-133y x =--63y x =-+62y x =--9. 如图,在直角坐标系中,直线l 过(1,3)和(3,1)两点,且与x 轴.y 轴分别交于A .B 两点.⑴求直线l 的函数关系式; ⑵求△AOB 的面积.中档题训练10. 已知直线经过点(k ,2)和(1,k ),则k 的值为( ) AB .CD .11. 直线1y kx =+向右平移1个单位,再向上平移2个单位后恰好经过(-2,1),则k =__________.12. (2014.毕节)如图,函数y=2x 和y=ax +4的图象相交于点A(m ,3),求不等式2x ≥ax +4的解集.13. 直线2y kx =+与两坐标轴所围成的三角形的面积是4个单位面积,求k .y kx b =+14. ⑴如图,已知点A (,0).B (0,1),则直线AB 的解析式为_____________; ⑵若将⑴中的直线向下平移3个单位长度,再向左平移1个单位长度后,得到直线的解析式为_____________;⑶求出⑴中的直线关于y 轴对称的直线的解析式.综合题训练15. 如图,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 得坐标是(1,2). ⑴写出点A .B 的坐标;⑵求直线MN 多对应的函数关系式; ⑶求出AB 关于MN 对称的直线解析式.1229. 一次函数(四)分段函数基础题训练1.(2013重庆)万州某运输公司的一艘轮船在长江上航行,往返于万州.朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货.装货.加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x (小时),轮船距万州的距离为y (千米),则下列各图形中,能够反映y 与x 之间函数关系的大致图象是( )ABCD2. (2013黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间(小时)之间的函数图象是( )ABCD3.若小强购买香蕉x 千克,(x 大于40千克)付了y 元,则y 与x 的函数关系式为( ) A . B . C . D . 4. 一个实验室在0:00~2:00保持20℃的恒温,在2:00~4:00匀速升温,每小时升高5℃.写出实验室问题T (单位:℃)与时间t (单位:时)之间的函数解析式,并画出图像.6y x =520y x =+460y x =+4220y x =+5.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示,求y 与x的函数关系式.中档题训练6.(2013·吉林)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别为,.(填写序号)(2)请你为剩下的函数图象写出一个适合的情境.7.(2013·广州)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分则按每吨2.8元收费,设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?综合题训练8.(2014·泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速真线运动的模型。
人教版八年级数学下册《一次函数》复习PPT
谢谢
x
2
2
B
y2
1 2
x
1
E 1, 3
C
1D 2
A
-2
O1
4
x
1 问题4 ⑴请在平面直角坐标系中再画直线 y2 2 x 1
⑵根据图象,你能设计出哪些题目?请在组里交流.
试一试
y1
1 2
x
2
C
-2
y
2
B
y2
1 2
x
1
E 1, 3
1D 2
A
O1
4
x
1.你能否说出求这两条直线交点E的坐标的方法?
2. (1)你会求出图中哪些三角形的面积?
当k<0时,图象过二、四象限;y随x的增大而减小.
活动2 辨析旧知 解决问题
1、已知一次函数 y (m1)x(3-m)
(1)若函数图象过原点,则m=___3_____. (2)若函数图象与y轴交点为(0,2)则m=__1_____.
(3)若函数图象经过第一,三,四象限,则m取值
范围是__m__>_3___.
式kx-3>2x+b的解集是__x__<_4_____.
图2
活动五:实践应用 深化旧知
甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙 地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间 的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h) 之间的函数关系.根据图象,解答下列问题: (1)轿车在途中停留的时间是_________小时;
(2)你会求四边形OAED的面积吗?
3.观察图象回答:当x分别满足什么条件时, (1)y1=y2 (2)y1<y2(3)y1>y2
八下一次函数知识点总结
八下一次函数知识点总结一次函数知识点总结(人教版八年级下册)一、函数的概念。
1. 变量与常量。
- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。
例如,在行程问题中,速度v不变时,路程s = vt,其中t(时间)和s(路程)是变量,v是常量。
2. 函数的定义。
- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
例如,y = 2x+1,对于x的每一个值,都能通过这个式子确定唯一的y值。
二、一次函数的概念。
1. 一次函数的定义。
- 形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是特殊的一次函数。
2. 确定一次函数的条件。
- 需要确定k和b的值。
通常会给定函数图象上的两个点的坐标,将其代入y = kx + b中,得到关于k和b的方程组,解方程组即可求出k和b。
三、一次函数的图象与性质。
1. 一次函数的图象。
- 一次函数y = kx + b(k,b是常数,k≠0)的图象是一条直线。
通常通过找两点来画直线,例如,当x = 0时,y=b,得到点(0,b);当y = 0时,kx + b=0,解得x =-(b)/(k)(k≠0),得到点(-(b)/(k),0)。
- 正比例函数y = kx(k为常数,k≠0)的图象是过原点(0,0)的直线。
2. 一次函数的性质。
- 增减性。
- 当k>0时,y随x的增大而增大。
例如,y = 2x+1,k = 2>0,随着x的增大,y的值也增大。
- 当k<0时,y随x的增大而减小。
例如,y=-3x + 2,k=-3<0,随着x的增大,y的值减小。
- 倾斜程度。
- k的绝对值越大,直线越靠近y轴,即直线越陡;k的绝对值越小,直线越靠近x轴,即直线越平缓。
2020-2021学年八年级数学人教版下册 期末复习:一次函数实际应用(一)
2020-2021学年八年级数学人教版下册期末复习:一次函数实际应用(一)1.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)本次上学途中,小明一共行驶了米.一共用了分钟.(3)在整个上学的途中最快的速度是米/分.(4)小明当出发分钟离家1200米.2.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离y(千米)与轿车行驶时间x(小时)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离;(3)请求出两车出发多久后相距10千米.3.小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?4.小明从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,小明的家、体育场、文具店在同一条直线上.如图是小明离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离小明家千米.(2)小明在文具店逗留了分钟.(3)求小明从文具店到家的速度是千米/时.5.如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明草菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?6.深圳校服已成为城市的一张名片,也成了在外游子“认亲”的凭证.夏季来临,深圳某校服生产厂为提高生产效益引进了新的设备来生产夏季校服,其中甲表示新设备的产量y (万套)与生产时间x(天)的关系,乙表示旧设备的产量y(万套)与生产时间x(天)的关系.(1)由图象可知,新设备因工人操作不当停止生产了天;(2)旧设备每天生产万套夏季校服,新设备正常生产每天生产万套夏季校服.(3)在生产过程中,x=时,新旧设备所生产的校服数量相同.7.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)8.新冠病毒防疫期间,草莓摊主小钱为避免交叉感染的风险,建议顾客选择微信支付,尽量不使用现金,早上开始营业前,他查看了自己的微信零钱;销售完20kg后,他又一次查看了微信零钱,由于草莓所剩不多,他想早点卖完回家,于是每千克降价10元销售,很快销售一空,小钱弟弟根据小钱的微信零钱(元)与销售草莓数量(kg)之间的关系绘制了下列图象,请你根据以上信息回答下列问题:(1)图象中A点表示的意义是什么?(2)降价前草莓每千克售价多少元?(3)小钱卖完所有草莓微信零钱应有多少元?9.某长途客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需支付相应的行李费.设x表示行李的质量(kg),y表示行李费(元),y与x的函数关系如图所示,请写出x,y变化过程中的实际意义.10.A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.11.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B 地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)甲与乙同时出发后,直接写出经过多长时间他们相距20千米?12.某天,甲组工人为灾区加工棉衣,工作中有一次停产检修机器,然后继续加工,由于任务紧急,乙组工人加入与甲组工人一起加工棉衣,甲停产前后各保持匀速生产,乙在工作时间内保持匀速生产,两组各自加工棉衣的数量y(件)与甲组工人加工时间x(小时)的函数图象如图所示.(1)求乙组加工棉衣的数量y与时间x之间的函数关系式;(2)直接写出甲组加工棉衣总量a的值.(3)如果要求x=8时,加工棉衣的总数量为480件,求乙组工人应提前多长时间加工棉衣.13.四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?14.明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y(单位:m)与所用时间x(单位:min)之间的对应关系.请根据相关信息,解决下列问题:(Ⅰ)填表:离开家的时间/min 2 5 8 11离家的距离/m400 600(Ⅱ)填空:①明明家与书店的距离是m;②明明在书店停留的时间是min;③明明与家距离900m时,明明离开家的时间是min.(Ⅲ)当6≤x≤14时,请直接写出y与x的函数关系.15.A,B,C三地在同一条公路上,C地在A,B两地之间,且与A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地停留1小时后以原速度继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回A地停止;乙车经C地到达A地停止,且比甲车早1小时到达A地.两车距B地的路程y(km)与所用时间x(h)的函数关系如图所示.请结合图象信息解答下列问题:(1)A,B两地的路程为km,乙车的速度为km/h;(2)求图象中线段GH所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)两车出发后经过多长时间相距120km的路程?请直接写出答案.参考答案1.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;(3)由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500﹣600)÷(14﹣12)=450米/分钟,故答案为:450;(4)设t分钟时,小明离家1200米,则t=6或t﹣12=(1200﹣600)÷450,得t=13,即小明出发6分钟或13分钟离家1200米.故6或13.2.解:(1)根据图象可得当x=1.5小时时,离甲地的距离是90千米,当x=2.5小时时,离甲地的距离是0千米,∴轿车在返回甲地过程中的速度为:90÷(2.5﹣1.5)=90(千米/小时),答:轿车在返回甲地过程中的速度为90千米/小时;(2)设货车离甲地的距离y(千米)与轿车行驶时间x(小时)的的函数解析式是y=kx+b,则2k=90,解得:k=45,则函数解析式是y=45x(0≤x≤2);设轿车在返回甲地过程中离甲地的距离y(千米)与轿车行驶时间x(小时)的的解析式是y=mx+b,则,解得:,则函数解析式是y=﹣90x+225.根据题意得:﹣90x+225=45x,解得:x=,则轿车从乙地返回甲地的途中与货车相遇时,相遇处到甲地的距离是45×=75(千米).答:当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离是75千米;(3)设两车出发a小时相距10千米轿车到达乙地前,(90÷1.5﹣45)a=10,解得:a=;轿车到达乙地后与货车相遇前:﹣90a+225﹣45a=10,解得:a=;轿车到达乙地后与货车相遇后:45a﹣(﹣90a+225)=10,解得:a=;答:两车出发小时或小时或小时后相距10千米.3.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分钟),30﹣=(分钟),故他比实际情况早到分钟.4.解:(1)由图象可知,体育场离小明家2.5千米.故答案为:2.5;(2)由图象可知,小明在文具店逗留了:65﹣45=20(分钟).故答案为:20;(3)1.5÷=(km/h),即小明从文具店到家的速度为km/h.故答案为:.5.解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).6.解:(1)由图象知,新设备因工人操作不当停止生产了2天,故答案为:2.(2)旧设备每天生产:1.4÷7=0.2(万套),新设备每天生产:0.4÷1=0.4(万套),故答案为:0.2,0.4;(3)①0.2x=0.4,解得x=2;②0.2x=0.4(x﹣2),解得x=4;故答案为:2或4.7.解:(1)由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是:14﹣8=6(分钟);故答案为:1280;6;(2)小华的速度为:1280÷(20﹣4)=80(米/分),小明从广场跑去学校的速度为:(1280﹣560)÷(20﹣14)=120(米/分);(3)560÷80=7(分),40+4+7=51(分),答:小华在广场看到小明时是7:51;(4)1280÷(560÷8)=(分),20﹣=(分),,答:在保证不迟到的情况下,小明最多可以讲解1次.8.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.9.解:∵y是x的一次函数,∴设y=kx+b(k≠0)由图可知,函数图象经过点(40,6),(60,10),,∴函数表达式为y=0.2x﹣2,将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,所以,旅客最多可免费携带行李的质量为10kg;当x>10,即当行李质量超过10kg时,超出部分的行李每千克需要加收0.2元.10.解:(1)当0h时,甲车和乙车距C地为180km,∴两地的路程为:180+180=360km,设甲车经过180km用了xh,则:x+x+x+1=5.5,∴x=1.5,则甲车速度为:180÷1.5=120(km/h);(2)设乙车从C地到A地的过程中y与x的函数关系式为:y=kx+b(k≠0),将(3,0),(6,180)代入y=kx+b(k≠0),得:,解得:,∴乙车从C地到A地的过程中y与x的函数关系式为:y=60x﹣180;(3)由图可知,分别在3个时间段可能两车在途中距C地路程之和为180km,①甲车从A地到C地,乙车从B到C,﹣120x+180+60x+180=180,解得:x=1;②甲车从C到B,乙车从C到A,﹣120x﹣300+60x﹣180=180,记得:x=;③甲车从B到C,乙车从C到A,﹣120x+660+60x﹣180=180,解得:x=5.总上所述:分别在1h,h,5h这三个时间点,两车在途中距C地的路程之和为180km.11.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x =90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.12.解:(1)设y乙=kx+b(k≠0),将(4.5,0),(8,252)代入得:,解得,∴y乙=72x﹣324;(2)把x=7代入y乙=72x﹣324,得y乙=72×7﹣324=180,当4≤x≤8时,设甲组加工棉衣的数量y与时间x之间的函数关系式为y甲=mx+n,将(7,180),(4,90)代入得:,解得,∴y甲=30x﹣30(4≤x≤8),将x=8代入,得y甲=30×8﹣30=210,即a=210;(3)由图象可知,乙组工人加工252件棉衣所用时间为:8﹣4.5=3.5(小时),∴乙的加工速度为:252÷3.5=72(件/小时),∵480﹣210=270(件),270÷72=3.75(小时),∴3.75﹣3.5=0.25(小时),即乙组工人应提前0.25小时加工棉衣.13.解:(1)由图象可得,甲队在队员受伤前的速度是:2÷=4(千米/时),甲队骑上自行车后的速度为:(10﹣2)÷(2﹣1)=8(千米/时),故答案为:4,8;(2)由图象可得,乙队的速度为:10÷(2.4﹣)=5(千米/时),令5×(t﹣)=2,解得t=0.8,即当t=0.8时,甲乙两队第一次相遇,故答案为:0.8;(3)由题意可得,[5×(t﹣)]﹣[2+8(t﹣1)]=1或[2+8(t﹣1)]﹣[5×(t﹣)]=1或[5×(t ﹣)]=10﹣1,解得t=1或t=或t=,即当t≥1时,1小时、小时或小时时,甲乙两队相距1千米.14.解:有图象可知,明明从家到学校分四段,当0≤x≤6时,图象经过(0,0)和(6,1200),∴解析式为:y1=200x;当6<x≤8时,设函数解析式为:y2=kx+b,∵图象经过(6,1200)和(8,600),∴,解得:,∴函数解析式为:y2=﹣300x+3000;当8<x≤12时路程没有变化说明明明在书店停留,∴y3=600;当12<x≤14时,设函数解析式为:y4=ax+m,∵图象经过(12,600)和(14,1500),∴,解得:,∴函数解析式为:y4=450x﹣4800;Ⅰ∵x=5时属于第①钟情况,∴y=1000(m),∵x=11时属于第③种情况,∴y=600(m);Ⅱ①由图象知明明家书店的距离是600m;②明明在书店停留的时间为:12﹣8=4(min);③从图象上可知x在0~6,6~8,12~14时可以距家900m,当0≤x≤6时,当y=900时,即200x=900,∴x=(min),当6<x≤8时,当y=900时,即﹣300x+3000=900,∴x=7(min),当12<x≤14时,当y=900时,即450x﹣4800=900,∴x=(min),∴明明与家距离900m时,明明离开家的时间为min或7min或min;Ⅲ由上面解法知:y=.故答案为:Ⅰ、1000,600;Ⅱ、①600,②4,③或7或.15.解:(1)∵C地在A,B两地之间,且与A,B两地的路程相等,且E、F纵坐标为180,∴A、B两地距离为180×2=360(km),又P横坐标为6,∴乙车速度为360÷6=60(km/h),故答案为:360,60;(2)∵乙车经C地到达A地停止,且比甲车早1小时到达A地,∴H(7,360),∵甲车到达C地停留1小时后以原速度继续前往B地,∴甲车行驶的时间一共6小时,即甲车行驶360km需要3小时,∴甲车速度为120km/h,G(4,0),设GH的解析式为y=kx+b,将H(7,360)、G(4,0)代入得:,解得:,∴GH的解析式为y=120x﹣480;(3)有三个时刻两车距120km,①刚出发t小时两车距120km,则360﹣(120t+60t)=120,解得:t=(h),②甲车停1小时后重新出发,设经过的时间是x小时两车相距120km,则120(x﹣1)+60x﹣120=360,解得:x=(h),③甲4小时达到B地,此时乙所行路程为4×60=240(千米),即两车此时距240千米,设再过y小时二车相距120千米,则120y﹣60y=240﹣120,解得y=2,∴两车第三次相距120千米,经过的时间是4+y=6(h),综上所述,两车出发后相距120km的路程,时间分别是小时、小时、6 小时.。
八年级数学复习资料:一次函数
八年级数学复习资料:一次函数八年级数学复习资料:一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k 为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
八年级下册数学期末复习资料一次函数知识点及典型例题复习
一次函数知识点一次函数知识网络图考点一:变量、常量及函数定义1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 典型例题:1、下列函数关系式中不是函数关系式的是( ) A. 21y x =+ B. 21y x =+ C. 1y x x=+D. 22y x = 2、下列各图中表示y 是x 的函数图像的是 ( )考点二、自变量取值范围:一般的,一个函数的自变量允许取值的范围。
确定函数自变量取值范围的方法: (1)必须使关系式成立。
①当关系式为整式时,自变量取值范围为全体实数;②当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零; ③关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;A B D(2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。
(3)当函数关系表示一个图形的变化关系时,自变量的取值范围必须使图形存在。
典型例题: 1、函数32x --=x y 的自变量x 的取值范围是 2、函数()220x y x -=++的自变量x 的取值范围是3、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值范围.考点三、函数的图像与解析式的关系 1、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
期末备考 第十九章《一次函数》 实际应用选择专项(三)2020-2021学年 人教版八年级数学下册
八年级数学人教版下册期末备考:第十九章《一次函数》实际应用选择专项(三)1.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm 3.2021年自贡环青龙湖半程马拉松的赛程是21.0975公里,甲乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:①第1小时两人都跑了10千米;②起跑1小时过后,甲在乙的后面;③在起跑后的0.5至1.5小时,甲比乙跑得更慢;④乙比甲先到达终点.其中正确的说法有()A.1个B.2个C.3个D.4个4.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距km.其中正确的结论是()A.①③B.①④C.②③D.②③④5.在我国川西高原某山脉间有一河流,当河流中的水位上升到一定高度时因河堤承压有溃堤的危险.于是水利工程师在此河段的某处河堤上修了一个排水的预警水库联通另一支流.当河流的水位超过警戒位时就有河水流入预警的水库中,当水库有一定量的积水后,就会自动打开水库的排水系统流入另一支流.当河流的水位低于警戒位时水库的排水系统的排水速度则变慢.假设预警水库的积水时间为x分钟,水库中积水量为y吨,图中的折线表示某天y与x的函数关系,下列说法中:①这天预警水库排水时间持续了80分钟;②河流的水位超过警戒位时预警水库的排水速度比进水速度少25吨/分;③预警水库最高积水量为1500吨;④河流的水位低于警戒位时预警水库的排水速度为30吨/分.其中正确的信息判断是()A.①④B.①③C.②③D.②④6.杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y(单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数 1 2 3 4x/cm 1 2 4 7y/kg0.80 1.05 1.65 2.30A.第1组B.第2组C.第3组D.第4组7.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒8.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A.5000 B.5500 C.6000 D.6500 9.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1 B.2 C.3 D.411.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C站,乙车由B 地驶往A地,两车同时出发,匀速行驶甲、乙两车离C站的距离y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论:①A、B两地相距360千米;②甲车速度比乙车速度快15千米/时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.其中正确的结论有()A.1 B.2个C.3个D.4个12.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地13.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④14.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d,d2与t的函数关系如图.下列说法:1①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④15.甲、乙两辆摩托车同时从相距40km的A、B两地出发,相向而行、图中l1,l2、分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.6小时甲摩托车行驶到A、B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离B地km16.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了7小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是().A.4 B.3 C.2 D.117.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则下列说法中错误的是()A.每分钟进水5LB.每分钟出水3.75LC.容器中水为25L的时间是8min或14minD.第2或min时容器内的水恰为10升18.有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④19.有一个进水管和一个出水管的容器,从某时刻开始5分钟内只进水不出水,在随后的20分钟内既进水又出水,在第25分钟开始只出水不进水,每分钟的进水量和出水量是两个常数,容器内水量(L)与时间(min)之间的函数关系如图所示,求在第33分钟时,容器内剩余水量为()A.8 B.10 C.12 D.1420.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米参考答案1.解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12﹣3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800﹣(3+22.5)×60=270米,故④正确,故选:D.2.解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.3.解:由图象可得,第1小时两人相遇,都跑了10千米,故①正确;由纵坐标看出,起跑后1小时后,甲在乙的后面,故②正确;由纵坐标看出,起跑后0.5小时,甲在乙的前面,起跑后1小时,乙追上甲,起跑后1.5小时,乙在甲的前面,所以在起跑后的0.5至1.5小时,甲比乙跑得更慢,故③正确;④起跑后2小时,乙到达终点,2小时后,甲才到达终点,所以乙比甲先到达终点,故④正确;故选:D.4.解:由图可得,乙车出发1.5小时后甲已经出发一段时间,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是40÷3=(km/h),故③正确;当乙车出发2小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故④正确;故选:D.5.解:由图象得:0~10分,水库开始积水,10~30分,水库有一定量的积水,水库的排水系统打开,30~80分时,水库停止进水,只排水,这天预警水库排水时间持续了80﹣10=70分钟,故①错误;=25(吨/分),也就是水位超过警戒位时预警水库的排水速度比进水速度少25吨/分,②正确;从图象看出预警水库积水量为1500吨时停止进水,并不能反映出预警水库的最高积水量,③错误;从图象看出河流的水位低于警戒位时预警水库的排水速度为1500÷(80﹣30)=30(吨/分),④正确.故选:D.6.解:设y=kx+b,把x=1,y=0.80,x=2,y=1.05代入可得:,解得,∴y=0.25x+0.55,当x=4时,y=0.25×4+0.55=1.55,∴第3组数据不在这条直线上,当x=7时,y=0.25×7+0.55=2.30,∴第4组数据在这条直线上,故选:C.7.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.8.解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x﹣1)×100×0.5+20×(2﹣x)×100×0.5+40×(5﹣x)×100×0.5=﹣2500x+11500,∵﹣2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=﹣2500×2+11500=6500;当2<x≤5时,w=10×(x﹣1)×100×0.5+20×(x﹣2)×100×0.5+40×(5﹣x)×100×0.5=﹣500x+7500,∵﹣500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=﹣500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.9.解:由题意可得:甲步行的速度为=40(米/分);故①结论正确;由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故②结论错误;由函数图象可得:当y=90时,有4个时刻甲乙两人的距离为90米,故③结论正确;设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;∴乙走完全程的时间==20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故④结论错误;故正确的结论有①③④共3个.故选:C.10.解:由图可得,甲乙两地的距离为150×3=450(千米),故①正确;∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),故②错误;货车的速度为:[450÷3﹣30]÷2=60(千米/小时),故③错误;轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),故④正确;由上可得,正确的是①④,故选:B.11.解:①A、B两地相距=360+80=440(千米),故①错误,②甲车的平均速度==60(千米/小时),乙车的平均速度==40(千米/小时),∴甲车速度比乙车速度快60﹣40=20(千米/小时),故②错误•,③440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,④设t小时相遇,则有:(60+40)t=440,∴t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:B.12.解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王浩月的速度为:24÷1﹣8=16(km/h),王浩月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.13.解:①300÷(180÷1.5)=2.5(小时),所以甲车从A地到达B地的行驶时间是2.5小时,故①错误;②设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴y与x之间的函数关系式是y=﹣100x+550,故②正确;③5.5﹣2.5=3,∴甲车返回时用了3个小时,故③正确;④乙车的速度为(300﹣180)÷1.5=80(千米/小时),300÷80=3.75,x=3.75时,y=﹣100×3.75+550=175千米,所以乙车到达A地时甲车距A地的路程是175千米,故④错误,所以②③正确,故选:B.14.解:乙船从B到C共用时3小时,走过路程为120千米,因此乙船的速度是40千米/时,①正确;乙船经过0.6小时走过0.6×40=24千米,甲船0.6小时走过60﹣24=36千米,所以甲船的速度是36÷0.6=60千米/时,开始甲船距B点60千米,因此经过1小时到达B点,②正确;航行0.6小时后,甲乙距B点都为24千米,但是乙船在B点前,甲船在B点后,二者相距48千米,因此③错误;开始后,甲乙两船之间的距离越来越小,甲船经过1小时到达B点,此时乙离B地40千米,航行2.5小时后,甲离B地:60×1.5=90千米,乙离B地:40×2.5=100千米,此时两船相距10千米,当2.5<t≤3时,甲乙的距离小于10,因此④正确;综上所述,正确的说法有①②④.故选:C.15.解:由图象可得,乙摩托车的速度较快,故选项A正确;经过0.6小时甲摩托车行驶到A、B两地的中点,故选项B正确;甲车的速度为40÷1.2=(km/h),乙车的速度为:40÷1=40(km/h),故甲乙两车相遇的时间为:=(小时),故选项C错误;当乙摩托车到达A地时,甲摩托车距离B地×(1.2﹣1)=km,故选项D正确;故选:C.16.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论正确;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴,,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是3个.故选:B.17.解:A.每分进水的速度为:20÷4=5(L/min);B.出水管的出水速度是每分钟5﹣==3.75(L/min);C.设当4≤x≤12时,求y与x的函数解析式为y=kx+b,根据题意得,解得,∴y=x+15(4≤x≤12);设tmin时该容器内的水恰好为25升,根据题意得,t+15=25或30﹣3.75×(t﹣12)=25,解得t=8或.即容器中水为25L的时间是8min或min;D.设m分钟时该容器内的水恰好为10升,根据题意得,5m=10或30﹣3.75×(m﹣12)=10,解得m=2或,即第2或min时容器内的水恰为10升.故说法中错误的是C.故选:C.18.解:由题意可得,m表示甲车,m2表示乙车,故①正确;1甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>4+2,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.19.解:当5≤x<25时,设y=kx+b,将(5,30),(15,40)代入得,解得:,故y=x+25,当x=25时,设y=25+25=50,当25≤x<35时,设y=k1x+b1,将(25,50),(35,0)代入,解得:,故y=﹣5x+175,当x=33时,设y=﹣5×33+175=10,故选:B.20.解:由图象可知,小明从家步行到学校共用了20分钟,故A正确;根据图象,小明从家步行到学校共用了20分钟,所以小明的平均速度为1800÷20=90(米/分),故B正确;当1<8时,小明走的路程为960米,速度为960÷8=120(米/分),s与t的函数解析式是s=120t,故C正确;当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D错误.故选:D.。
八下数学一次函数知识点归纳及练习
一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数.当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(8分)如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式.
2.(9分)如图,面积为8的矩形ABOC的边OB、OC分别在x轴、y轴的正半轴上,点A在双曲线y=的图象上,且AC=2.
(1)求k值;
(2)矩形BDEF,BD在x轴的正半轴上,F在AB上,且BD=OC,BF=OB.双曲线交DE于M点,交EF于N点,求△MEN的面积.
3.(本题8分)武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示
(1) 求甲、乙两种收费方式的函数关系式;
(2) 当印刷多少份学案时,两种印刷方式收费一样?
4.如图,直线l
1的解析式为y=﹣x+2,l
1
与x轴交于点B,直线l
2
经过点D
(0,5),与直线l
1
交于点C(﹣1,m),且与x轴交于点A
(1)求点C的坐标及直线l
2
的解析式;
(2)求△ABC的面积.
5.(8 分)如图,在平面直角坐标系中,一次函数y=kx+b 的图象与反比例函数
m
y
x
(x>0)的图象交于点P(n,2),与x 轴交于点A(-4,0),与y 轴交于点B,PC⊥x 轴于点C,且BA=B C.
(1)求一次函数、反比例函数的表达式.
(2)反比例函数图象上是否存在点D,使四边形BCPD 为菱形?如果存在,直接写出点D 的坐标;如果不存在,请说明理由.
6.如图,在平面直角坐标系中,直线AB 与x 轴交于点A,与y 轴交于点C (0,2),且与反比例函数y =-8
的图象在第二象限内交于点B,过点B 作BD⊥x
x
轴于点D,OD=2.
(1)求直线AB 所对应的函数表达式.
(2)若点P 是线段BD 上一点,且△PBC 的面积为 3,求点P 的坐标.
7.甲、乙两车分别从M、N 两地同时出发相向而行,并以各自的速度匀速行驶,
甲车途经P 地时休息一小时,然后按原速度继续前进到达N 地;乙车从N 地直接到达M 地.下图是甲、乙两车和N 地的距离y(千米)与出发时间x(时)的函数图象.
(1)直接写出a、m、n 的值.
(2)求甲车与N 地的距离y 与出发时间x 的函数关系式.
(3)当两车相距 120 千米时,求乙车行驶了多长时间.
8、某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴)。
(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘
9.从甲地到乙地,先是一段上坡路,然后是一段平路.小明骑车从甲地出发,
到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进.已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h 后,到达离乙地y km 的地方,图中的折线ABCDEF 表示y 与x 之间的函数关系.
(1)小明骑车在平路上的速度为_km/h,他在乙地休息了h﹒
(2)分别求线段AB、EF 所对应的函数表达式﹒
(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程﹒
10.甲、乙两车均由 A 地向 B 地沿同一路线匀速行驶,甲车先出发,一段时间后乙车再出发.甲车到达 B 地后,立即按原路以另一速度匀速返回,直至两车相遇.设两车之间的路程为y(千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示.
(1)甲车从A 地到B 地的速度是千米/时,乙车的速度是千米/时.
(2)当甲车由B 向A 地返回至两车相遇时,求y 与x 之间的函数关系式.
(3)甲车到达B 地后,再行驶多长时间与乙车相遇?。