数字图像处理系统毕业设计论文
基于Matlab的数字图像处理系统设计_毕业论文设计 精品推荐
论文(设计)题目:基于MATLAB的数字图像处理系统设计基于MATLAB的数字图像处理系统设计摘要MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。
笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。
上述功能均是在MA TLAB 语言的基础上,编写代码实现的。
这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。
关键词:MATLAB 数字图像处理图像处理工具箱图像变换第一章绪论1.1 研究目的及意义图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。
MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。
MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。
它编写简单、编程效率高并且通俗易懂。
1.2 国内外研究现状1.2.1 国内研究现状国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。
数字图像处理相关论文
数字图像处理相关论文“数字图像处理”是一门利用计算机解决图像处理的学科。
并且,现代多媒体计算机中又广泛采用了数字图像处理技术。
下面是店铺给大家推荐的数字图像处理相关论文,希望大家喜欢!数字图像处理相关论文篇一浅谈“数字图像处理”课程教学改革实践摘要:数字图像处理技术是一种发展迅速且应用广泛的新兴技术,就“数字图像处理”课程的特点,从教学内容、教学手段和方法、教学理论和实践等方面进行改革与实践,增强了学生的实践创新能力,提高了教学质量,收到良好的教学效果。
关键词:数字图像处理;教学手段;实践作者简介:刘忠艳(1975-),女,黑龙江依安人,黑龙江科技学院计算机与信息工程学院,副教授;周波(1963-),男,黑龙江绥化人,黑龙江科技学院计算机与信息工程学院,教授。
(黑龙江哈尔滨 150027)一、“数字图像处理”概述数字图像处理技术是集微电子学、光学、应用数学和计算机科学等学科的一门综合性边缘技术。
[1,2]是当今信息社会中发展迅速且应用广泛的新兴科学技术。
数字图像处理技术广泛应用到通信、计算机、交通运输、军事、医学和经济等各个领域,在各个领域发挥着越来越重要的作用。
随着计算机技术的迅速发展,图像处理的技术和理论不断完善和丰富,新的理论、技术也不断涌现,并逐渐进行应用。
面对这样一门理论与实际紧密结合的课程,在学习过程中,学生常常会遇到很多问题,既为数字图像处理技术应用的广泛前景所吸引,也时常对课程的抽象理论感到苦恼,渐渐失去学习兴趣。
为了激发学生的学习兴趣,提高教学质量,对该课程进行教学改革,势在必行。
经过两年半的教学改革与实践,取得了一定的教学效果。
二、教学改革措施为了提高“数字图像处理”课程的教学质量,激发学生学习本课程的兴趣,对本门课程进行改革,采取以下措施:1.整合教学内容随着计算机技术的迅速发展,数字图像处理技术也得到快速发展。
近几年来,有很多新的应用点和研究涌现出来,在“数字图像处理”课程中加入新技术的介绍,对于学生了解国际的研究和应用热点,尽快地投入相应的研究与应用中去大有益处。
基于matlab的数字图像处理本科毕业设计论文
毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
数字图像处理论文
数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
数字图像处理系统毕业设计论文
毕业设计说明书基于ARM的嵌入式数字图像处理系统设计学生姓名:张占龙学号: 0905034314学院:信息与通信工程学院专业:测控技术与仪器指导教师:张志杰2013年 6月摘要简述了数字图像处理的应用以及一些基本原理。
使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。
该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。
应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。
整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。
在此基础上还会对系统进行不断地完善。
关键词:linnux 嵌入式图像处理边缘检测AbstractThis paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve.Keywords:linux embedded system image processing edge detection目录第一章绪论 (1)1.1 数字图像处理概述 (1)1.2 数字图像处理现状分析 (5)1.3 本文章节简介 (8)第二章图像处理理论 (8)2.1 图像信息的基本知识 (8)2.1.1 视觉研究与图像处理的关系 (8)2.1.2 图像数字化 (10)2.1.3 图像的噪声分析 (10)2.1.4 图像质量评价 (11)2.1.5 彩色图像基本知识 (11)2.2 图像变换 (13)2.2.1 离散傅里叶变换 (13)2.2.2 离散沃尔什-哈达玛变换(DWT-DHT) (20)2.2.3 离散余弦变换(DCT) (21)2.2.4 离散图像变换的一般表达式 (23)2.3 图像压缩编码 (24)2.3.1 图像编码的基本概念 (24)2.4 图像增强和复原 (24)2.4.1 灰度变换 (24)2.4.2 图像的同态增晰 (26)2.4.3 图像的锐化 (27)2.5 图像分割 (27)2.5.1 简单边缘检测算子 (27)2.6 图像描述和图像识别 (28)第三章需求分析 (28)3.1 系统需求分析 (28)3.2 可行性分析 (28)3.3 系统功能分析 (29)第四章概要设计 (29)4.1 图像采集 (30)4.2 图像存储 (31)4.3 图像处理(image processing) (31)4.4 图像显示 (32)4.5 网络通讯 (32)第五章详细设计 (32)5.1 Linux嵌入式系统的构建 (33)5.1.1 启动引导程序的移植 (33)5.1.2 Linux内核移植 (33)5.1.3 根文件系统的移植 (34)5.2 图像处理功能的实现 (34)5.2.1 彩色图像的灰度化 (34)5.2.2 灰度图的直方图均衡化增强 (35)5.2.3 图像二值化 (35)5.2.4 边缘检测 (36)第六章调试与维护 (36)附录 A (37)参考文献 (43)致谢 (44)第一章绪论1.1 数字图像处理概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理毕业设计
安徽建筑大学毕业设计(论文)毕业设计 (论文)专业电子信息工程班级学生姓名学号课题数字图像处理方法研究与实现——基于VC++的图像增强实现指导教师摘要图像在传送和转换时会造成图像的某些降质,所以有必要对降质的图像进行改善处理。
其中的一种方法是不考虑图像质量降低的原因,只将图像中感兴趣的特征有选择的突出,从而衰减次要信息。
这种方法能够提高图像的可读性,改善后的图像不一定逼近原始图像,但能够突出目标的轮廓、衰减各种噪声、将黑白图像转换成色彩图形等。
这类方法通常称为图像增强技术。
图像增强技术通常有两种方法:空间域法和频率域法。
空间域法主要是在空间域中对图像像素灰度值直接进行运算处理。
本文围绕空间域法,对数字图像的增强处理进行了研究,着重介绍其中的直方图、直方图均衡化及图像平滑处理中的邻域平均和中值滤波。
并利用VC++实现上述方法对图像的处理。
关键词:图像增强;直方图;图像平滑;邻域平均;中值滤波AbstractThe image in the transmission and conversion cases will cause some blurred image, so,it is necessary for the image to have an improved treatment. One way is to not consider the reasons for degradation of image quality, the characteristics of the image selected outstanding, thereby attenuating less important information. This method can improve the readability of the image, the image after improvement is not necessarily approximate to the original image, such as highlighting the outline of the target, the attenuation of noise, the black and white images into color graphics. This kind of method is usually called the image enhancement technology.Image enhancement technology usually has two kinds of methods: spatial domain and frequency domain method. The spatial domain method is direct computation of pixel gray values in the spatial domain. This paper focuses on the spatial domain method, enhancement of digital image processing are studied, emphatically introduces the histogram equalization and histogram of image smoothing, neighborhood averaging and median filtering. And VC++ is used to realize the method for image processing.Keywords:Image Enhancement; Histogram; Image smooth; Neighborhood averaging; Median filtering目录摘要 (II)Abstract (III)1 绪论 (1)1.1课题背景 (1)1.2 图像增强的研究及发展现状 (2)1.3 论文组织结构 (3)2 图像增强的基本理论 (4)2.1 数字图像的基本理论 (4)2.1.1数字图像的表示 (4)2.1.2图像的灰度 (4)2.1.3灰度直方图 (4)2.2 数字图像增强概述 (4)2.3 图像增强概述 (6)2.3.1图像增强的定义 (6)2.3.2常用的图像增强方法 (6)2.4 图像增强流程图 (8)2.5本章小结 (8)3 图像增强方法与原理 (9)3.1 直方图变换 (9)3.1.1直方图修正基础 (9)3.1.2直方图均衡化 (10)3.2 图像平滑 (11)3.2.1图像平滑 (11)3.2.2邻域平均 (11)3.2.3中值滤波 (12)3.4本章小结 (12)4 VC++6.0以及图像增强的实现 (13)4.1 VC++6.0简介 (13)4.1.1 VC++6.0 简介 (13)4.1.2开发环境 (13)4.1.3 图片应用程序的创建 (14)4.2图像增强实现方法 (14)4.2.1灰度修正的实现 (14)4.2.2邻域平均的实现 (18)4.2.3中值滤波的实现 (19)4.3本章小结 (21)5总结与展望 (22)5.1总结 (22)5.2展望 (22)参考文献 (23)致谢 (24)附录 (25)部分程序代码 (25)1.读入图片 (25)2.绘制直方图 (25)3.灰度直方图 (26)4.直方图均衡化 (27)安徽建筑大学毕业设计(论文)数字图像处理方法研究与实现——基于VC++的图像增强实现电子与信息工程学院电子信息工程 10电子1班胡水清 10205010107指导老师宋杨1 绪论数字图像处理是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。
2024年数字图像处理论文doc
2024年数字图像处理论文doc标题:2024年数字图像处理论文doc一、引言随着技术的不断发展,数字图像处理在各个领域中的应用越来越广泛。
本文旨在探讨2024年数字图像处理领域的发展趋势,以及相关算法和技术的应用。
通过对数字图像处理的研究,希望能够为相关领域的发展提供一定的参考和帮助。
二、数字图像处理的基本原理数字图像处理是一种利用计算机对图像进行加工、处理和分析的技术。
数字图像处理的基本原理是将图像转换为数字信号,然后利用计算机对数字信号进行处理和分析。
数字图像处理技术包括图像增强、图像变换、图像滤波、图像恢复、图像分析等。
三、数字图像处理的应用范围数字图像处理技术的应用范围非常广泛,包括医学影像、安防监控、智能交通、工业生产、环境监测等领域。
随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
四、数字图像处理的热点问题和研究方向目前,数字图像处理的热点问题和研究方向包括深度学习、人工智能、虚拟现实等。
其中,深度学习在数字图像处理中的应用已经得到了广泛的认可,其在图像识别、目标检测、人脸识别等方面的应用已经取得了显著的成果。
此外,人工智能在数字图像处理中的应用也在不断发展,包括机器学习、神经网络等。
虚拟现实技术在数字图像处理中的应用也在逐渐增加,其在虚拟现实游戏、电影制作等方面的应用已经得到了广泛的应用。
五、数字图像处理的发展趋势和未来前景随着技术的不断发展,数字图像处理的应用范围将会更加广泛。
未来,数字图像处理技术将会更加智能化、自动化和人性化,其在各个领域中的应用将会更加深入。
同时,数字图像处理技术也将会面临更多的挑战和机遇,包括如何提高图像处理的精度和速度、如何解决图像处理中的隐私和安全问题等。
六、总结本文对2024年数字图像处理领域的发展趋势进行了探讨,并介绍了相关算法和技术的应用。
数字图像处理技术已经成为各个领域中不可或缺的一部分,其未来的发展前景非常广阔。
希望本文能够对相关领域的发展提供一定的参考和帮助。
数字图像处理技术论文
数字图像处理技术论文数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
下面是店铺整理的数字图像处理技术论文,希望你能从中得到感悟!数字图像处理技术论文篇一数字图像处理技术研究[摘要]数字图像处理技术是研究采用计算机和其他数字化技术对图像信息进行处理的新技术。
图像处理科学与技术已经成了工程学、计算机科学、通信科学、信息科学、军事、公安、医学等众多学科学习和研究的对象。
本文从数字图像处理的基本概念,研究内容为出发点,重点探讨了数字图像复原技术,最后介绍了数字图像处理系统,但由于数字图像处理技术领域内容极其广泛,与其他很多学科都有着千丝万缕的联系,所以对这项技术的研究还需要人类的进一步努力。
[关键词]数字图像处理技术数字图像处理主要研究中图分类号:IP391.41 文献标识码:A 文章编号:1009-914X(2015)05-0280-011 引言“图”是物体透射光或反射光的分布,“像”是人的视觉系统对图的接收在大脑中形成的印象或认识。
前者是客观存在的,而后者为人的感觉,图像应是两者的结合。
图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求。
人类获取外界信息有视觉、听觉、触觉、嗅觉、味觉等多种方法,但绝大部分(约80%)是来自视觉所接受的图像信息,即所谓“百闻不如一见”。
因此,图像处理技术的广泛研究和应用是必然的趋势。
2 图像数字化2.1 基本概念一幅黑白静止平面图像(如照片)中各点的灰度值可用其位置坐标(x,y)的函数f(x,y)来描述。
显然f(x,y)是二维连续函数,有无穷多个取值。
这种用连续函数表示的图像无法用计算机进行处理,也无法在各种数字系统中传输或存贮,必须将代表图像的连续(模拟)信号转变为离散(数字)信号。
这样的变换过程,称其为图像数字化。
图像数字化的内容包括两个方面:取样和量化。
2.2 取样点数和量化级数的选取假定一幅图像取M×N个样点,对样点值进行Q级分档取整。
基于MATLAB的数字图像处理毕业设计论文含源文件
毕业设计(论文)任务书课题名称基于MATLAB的数字图像处理毕业设计(论文)的主要容及要求:1. 掌握数字图像处理的基本概念,了解数字图像处理的特点及其应用,了结图像的文件格式。
2. 掌握MATLAB仿真软件的基本知识和编程方法。
3. 掌握主要的图像处理方法及其原理(如图像增强,二值图像处理等),并通过MATLAB设计图像处理的程序来实现图像处理。
4. 翻译5000字英文资料。
5. 撰写毕业论文,并进行毕业答辩。
指导教师签字:摘要图像信息是人类获取信息的重要来源及利用信息的重要手段,图像处理科学技术是科学研究、社会生产及人类生活中不可缺少的强有力工具。
在信息社会中,数字图像处理科学在理论或实践上都存在着巨大的潜力。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
数字图像处理技术已经在各个领域上都有了比较广泛的应用。
图像处理的信息量很大,对处理速度的要求也比较高。
MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。
本文介绍了MATLAB软件,基于MATLAB的数字图像处理环境和如何利用MATLAB及其图像处理工具箱进行数字图像处理。
主要论述了利用MATLAB实现二值图像分析、图像增强、图像复原等图像处理。
关键词:MATLAB,数字图像处理,图像增强,二值图像,图像复原AbstractThe image information is a very important source for people to get the information and the important means of information, image processing technology is a powerful tool for scientific research, social production and human life.In the information society, the digital image processing science exists great potential both in theory or practice.Digital image processing is a computer using a certain algorithm for graphics and image processing technology. Digital image processing technology has been in various areas have a relatively wide range of applications.Image processing large amount of information, the speed of processing requirements are relatively high. MATLAB powerful computing and graphics display function, which makes image processing become more simple and intuitive.This paper introduces the MATLAB software and the MATLAB-based digital image processing environment, describes how to use the MATLAB Image Processing Toolbox for its digital image processing.Mainly discusses the use of MATLAB for image enhancement, the two value image analysis, image restoration and other image processing technologies.Keywords: MATLAB, digital image processing,image enhancement,two value image ,image restoration目录第1章绪论错误!未定义书签。
DIP毕业设计(数字图像处理)
毕业设计(论文)题目:基于visual c++的图像处理软件设计A系别信息工程系专业名称电子信息工程班级学号学生姓名指导教师二O一O 年五月毕业设计(论文)任务书I、毕业设计(论文)题目:基于visual c++的图像处理软件设计AII、毕业设计(论文)使用的原始资料(数据)及设计技术要求:本系统以visual c++作为工具,开发一个图像处理软件,系统。
主要进行图像处理的常用算法。
本系统由以下模块组成。
1.图像增强:包括平滑、锐化功能模块;2. 图像加噪:包括对图像加各种形式的噪声;3.图像滤波:包括中值滤波、最大最小值滤波、均值滤波功能模块;4.图像镜像、转置、反色等操作;该毕业设计要求对面向对象语言和图象处理算法有相当程度掌握;工作量偏大。
翻译一篇相关的英文资料。
III、毕业设计(论文)工作内容及完成时间:第1 ~ 3周:查阅资料、方案论证、英文资料翻译、开题报告撰写;第 4 ~8周:完成系统维护、图像增强、图像加噪模块;第9 ~11周:完成图像滤波、其它图像操作模块;第12 ~14周:系统整体调试;第 15 ~18周:撰写论文和答辩。
Ⅳ、主要参考资料:[1] 章毓晋.图象工程(上册) 图象处理和分析[M].北京:清华大学出版社.2000年[2] 谢凤英;赵丹培.Visual C++数字图像处理[M].北京:电子工业出版社.2008年[3] 何斌马天予.VISUAL C++数字图像处理 [M]. 北京:电子工业出版社.2001.[4] 王占全等.精通VISUAL C++数字图像处理技术与工程案例[M].北京:人民邮电出版社.2009年[5] 求是. VISUAL C++数字图像处理典型算法及实现[M].北京:人民邮电出版社.2006[6] 王锋,阮秋琦.基于灰度期望值和二值化高精度图像处理算法[J].铁路计算机应用.2001年10卷第07期信息工程系电子信息工程专业类0682051 班学生(签名):填写日期:20010年 05 月 20 日指导教师(签名):助理指导教师(并指出所负责的部分):信息工程系主任(签名):学士学位论文原创性声明本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。
基于MATLAB的数字图像处理系统的研究毕业设计论文
摘要数字图像处理是近几年来新兴的研究领域,受到越来越多的学者的高度重视。
因为图像在生成、传递、压缩、储存、变换等诸多过程中,会受到不利成分的影响。
比方分别在不一样的照明情况下操作,会引起图像亮度的转变;操作设备时,不可避免地会发生抖动,这样做的话就会引起图像位移;捕获到的图像对比度较低或是位置不契合等等。
所以想要获得清晰的图像就要对图像进行数字图像的处理。
本文主要从图像增强、图像复原、图像编码的Matlab仿真以及GUI板块的设计四个角度进行研究。
在本文中图像增强主要深入讨论了使用灰度变换函数去拉伸图像的对比度,使用直方图均衡化去合理分配图像的灰度,使用空域滤波和频域滤波使图像变得越发清晰。
图像编码主要简述的就是编码冗余、空间冗余以及不相关信息,通过以上图像编码的三种方法可以减小图片的冗余度和加大数据压缩比等等。
图像复原主要概述的是维纳滤波、最小二乘法滤波以及L-R滤波三种滤波方法,这三种滤波方式可以达到过滤掉图像中模糊部分的目的。
通过可视化界面达到了将以上三种图像处理方法结合在一起的目的。
在GUI 界面中,只要选定一种处理方式并按下“开始”按钮就能够执行相应的处理方法,而且会同时得到原始图像与处理后的图像。
关键字:图像增强;图像压缩;图像复原;Matlab;GUIAbstractDigital image processing is the emerging research field in recent years, by more and more scholars attach great importance.Because the image in the generation, transmission, compression, storage, transformation and many other processes, will be affected by the adverse effects.For example, in the case of different lighting operations, will cause the image brightness changes; operating equipment, it will inevitably jitter, so it will cause image displacement;The captured image is low or the position is not fit and so on. So you want to get a clear image of the image is necessary to digital image processing.This paper mainly studies image enhancement, image restoration, Matlab simulation of image coding and GUI design.In this paper, the image enhancement mainly discusses the contrast of using the gray scale transformation function to stretch the image, and uses the histogram equalization to rationally distribute the gray scale of the image. The use of spatial filtering and frequency domain filtering makes the image become more and more clear.Image coding is mainly described in the coding redundancy, spatial redundancy and irrelevant information, through the above image encoding of the three methods can reduce the redundancy of the picture and increase the data compression ratio and so on.Image restoration is mainly summarized in the Wiener filter, least squares filtering and L-R filter three filtering methods, these three filtering methods can be filtered to filter out the purpose of the fuzzy part of the image.Through the visual interface to achieve the above three kinds of image processing methods together for the purpose. In the GUI interface, as long as the selection of a processing method and press the "start" button to be able to perform the appropriate processing methods, and will also get the original image and processed images.Key words: image enhancement; image compression; image restoration; Matlab; GUI第1章绪论1.1 课题研究背景及意义当今这个时代,信息传播迅速,大家也从各种渠道上获取信息,时刻掌握世界的动态。
数字图像处理毕业论文
数字图像处理毕业论文目录第一章绪论 (3)1.1论文研究的背景与意义 (3)1.2数字图像评价研究现状及关键技 (3)第二章基本原理 (4)2.1 直方图均衡化 (4)2.2 小波变换 (4)第三章数字图像评价的原理 (5)3.1主观评价方法 (5)3.2客观评价方法 (6)3.3本章小结 (7)第四章数字图像处 (8)4.1数字图像处理系统基本组成 (8)4.2图像变换 (8)4.2.1:傅立叶变换 (8)4.2.2、其他常见变换概述 (9)4.3 数字图像处理容 (9)4.3.1、图像增强 (9)4.3.2、图像恢复 (10)4.3.3、图像压缩 (10)4.3.4、图像分割 (11)第五章总结和展望 (11)5.1总结 (11)5.2对未来的展望 (11)致谢 (13)参考文献 (14)第一章绪论1.1论文研究的背景与意义随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。
作为数字图像处理重要环节的图像评价技术的研究也受到广泛关注,在图像处理各项技术,如图像采集,图像压缩,图像增强与复原,以及图像去模糊等算法中,图像质量评价都起到了非常重要的作用。
总的来说,图像质量评价的主要应用有以下几方面:运用于图像或视频系统,使其能够获得最佳图像;作为图像系统的一项基准指标,用以评价图像或视频质量;作为反馈量,优化算法中的各项参量,改善系统性能等[1]。
由此可见,数字图像评价的研究具有重要意义。
数字图像评价是图像处理的重要技术,随着研究的不断深入,视频监控成为了现在数字图像处理很重要的一个研究方向,而且在实际的应用当中非常有实用价值。
如在由于车辆的牌照在交通道口经常会受到对面车灯强光等或外部光源的照射,使得摄像机拍摄出来的车牌照片反光,人眼根本无法识别的情况下,通过进行处理而不断改善图像质量,提取有效信息,从而分辨汽车牌照;又如通过数字图像评价系统的研究,改善摄像机对于一些由于逆光、弱光、暗光、偏色或综合因素影响的监控质量等等。
基于MFC的数字图像处理系统毕业设计论文
基于MFC的数字图像处理系统开发摘要:随着信息技术的蓬勃发展,尤其是计算机技术的日新月异,为数字图像处理的发展提供了广阔的空间。
该数字图像处理系统是基于Windows平台的图像处理系统,实现了对灰度级图像的编辑,可以进行图像导入和导出,视图设置,可以调整图片尺寸,旋转和翻转图片,图片增强优化,图像边缘检测与分割,图像编码以及打印输出图片。
本文主要介绍了数字图像处理系统的设计和实现过程,系统设计运用MFC的设计思想,通过VC++和OpenCv的运用实现系统框架,简化了软件的开发,提高了软件系统的灵活性、可扩展性和重用性,并运用其实现了图像平滑、梯度锐化、区域生长、图像提取的功能。
同时系统所有的操作设计得十分简单方便,无需具备有专业的知识,也能对图片完成编辑操作。
关键词:MFC; VC++; 灰度图像; OpenCv;The development of digital image processing system basedon MFCAbstract:With the rapid development of information technology, especially in the progress of computer technology, it provides wide space to the application of Digital Image Processing. Digital image processing system is an image processing system based on the Windows platform. To realize the image editor of gray level, import and export images, view settings, you can adjust picture size, rotate and flip images Enhance the optimization and print output picture.The analysis and the implementation procedure of Digital Image Processing System were introduced in this paper. The design idea of MFC was used and the system structure was implemented by VC++ and OpenCv, and to use their implements image smoothing, gradient sharpening, region growing, image extraction function.So the development of software can be predigested and flexibility, expansibility and reusability of software system can be improved.Key words: MFC; VC++; Grayscale image; OpenCv;独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。
毕业设计(论文)-数字图像处理与分形理论
摘要分形理论是现代非线性科学中的一个重要分支,是科学研究中一种重要的数学工具和手段。
通过对分形理论的认识和相关定理的理解,做出了一些比较典型的分形图形并实现了自己想象中的一批奇特的图形。
运用分形理论描述图像纹理特征,通过分析不同纹理图像及图像边缘处的分形参数,得到一种新的边缘检测分形特征,从而提出一种基于分形特征的图像边缘检测方法。
在讨论边缘提取时讨论算法的简单迅速,并具有良好的抗噪性能,并且简要了分形理论边缘提取方法简述了分形理论在图像中应用原理,讨论分形编码的特点,采用分形理论的方法,进行图像边缘的检测,Matlab强大的计算机软件的介入,能够实现不同图像的仿真更好的去理解图像知识。
关键词:分形matlab分形特征边缘提取ABSTRACTModern fractal theory is an important branch of the nonlinear science, is a kind of important scientific research of mathematical tools and methods. Based on fractal theory knowledge and understanding of the related theorem, made some typical fractal graph and realized the batch of strange oneself imagination of graphics. Using fractal theory describe image texture feature, through analyzing different texture image and image edge fractal parameters, get a new edge detection, and the fractal features is proposed based on the fractal characteristics of image edge detection methods. The introduction of the adaptive threshold, can realize the different image edge detection. The algorithm is simple rapidly, and has good robust performance, and briefly the fractal theory edge extraction method described in the image fractal theory, discuss the application principle of fractal coding, with the characteristics of fractal theory, the method of image edge detectionKeywords: fractal matlab Fractal characteristic Edge extraction摘要1ABSTRACT (1)前言3第一章绪论 (3)1.1分形理论的发展........................................................................................................................................... 3 1.2分第二章数字图像处理技术 (7)2.1数字图像处理的简介 (7)2.2数字图像处理的应用 (8)第三章分形理论在图像处理中的应用 ..................................................................................................... 11 1 3.1分数布朗随机场. (11)3.2边缘检测分形特征的提取 (12)4 分形在图像边缘的提取思想 (13)4.1经典的边缘检测算子 (13)4.2 现代信号处理技术提取图像边缘方法 (18)结论20致谢20参考文献 (20)附录源程序清单 (21)前言自然界是复杂和美丽的。
数字图像处理毕业论文
目录摘要ﻩ错误!未定义书签。
Abstractﻩ错误!未定义书签。
第1章绪论ﻩ错误!未定义书签。
1.1自动识别课题背景ﻩ错误!未定义书签。
1.2机器视觉ﻩ错误!未定义书签。
1.2.1 机器视觉的发展概况 ...................... 错误!未定义书签。
1.2.2 机器视觉与图像处理 ...................... 错误!未定义书签。
1.3 图像处理与识别技术 ·························错误!未定义书签。
1.4 图像处理与识别系统ﻩ错误!未定义书签。
1.4.1关于计算机图像处理系统 ............ 错误!未定义书签。
1.4.2图像处理与识别系统的构成ﻩ错误!未定义书签。
1.5斑马线自动识别系统课题研究内容······错误!未定义书签。
第2章图像处理与识别及图像理解 ............ 错误!未定义书签。
2.1二值图像分析ﻩ错误!未定义书签。
2.1.1 阈值运算ﻩ错误!未定义书签。
2.2 图像区域分析ﻩ错误!未定义书签。
2.2.1区域与边缘ﻩ错误!未定义书签。
2.3 图像处理与识别及图像理解所研究的内容··错误!未定义书签。
2.3.1 图像处理技术 ..................................... 错误!未定义书签。
2.3.2 图像识别技术 ....................................... 错误!未定义书签。
2.3.3 图像理解ﻩ错误!未定义书签。
2.4 图像处理与识别及图像理解的关系ﻩ错误!未定义书签。
数字图像处理技术简述论文(2)
数字图像处理技术简述论文(2)数字图像处理技术简述论文篇二《浅谈数字化图像处理系统》[摘要]随着计算机技术和光电技术的飞速发展,数字图像处理技术得到了迅速发展和广泛应用,其中数字图像检测就是其重要应用。
采用这种自动成像检测系统能克服人工检测带来的不利因素,提高检测精度和效率,降低生产成本。
[关键词]数字图像处理;数字图像检测;精度;效率随着工业技术的高速发展,零部件尺寸检测和质量评价已成为工业生产中极为重要的一个环节,而且对尺寸检测技术水平的要求也越来越高。
一、数字图像处理技术研究背景当前,工业零部件尺寸有多种测量方法,但检测过程中都存在一些问题。
工业零部件的加工质量直接影响工业的正常生产,由于尺寸的检测缺陷,会影响生产并产生安全隐患。
因此如何采用一种行之有效的尺寸检测方法,是目前急需解决的问题,这不仅要求检测效果好,而且还要求检测速度快。
二、数字图像处理系统概述数字图像处理的英文名称为“Digital Image Processing”。
通常所说的数字图像处理是指用计算机进行的处理,因此也称为计算机图像处理(Computer Image Processing)。
数字图像处理就是利用数字计算机或者其他数字硬件,对从图像信息转换而得的电信号进行某些数学运算,以提高图像的使用性。
总的来说,数字图像处理包括以下几项内容:1.点运算。
主要是针对图像的像素进行加、减、乘、除等运算。
图像的点运算可以有效地改变图像的直方图分布,这对提高图像的分辨率以及图像均衡都是非常有益的。
2.几何处理。
主要包括图像的坐标转换,图像的移动、缩小、放大、旋转,多个图像的配准以及图像扭曲校正等,几何处理是最常见的图像处理手段,几乎任何图像处理软件都提供了最基本的图像缩放功能。
图像的扭曲校正功能可以将变形的图像进行几何校正,从而得出准确的图像。
3.图像增强。
图像增强的作用主要是突出图像重要的信息,同时减弱或者去除不需要的信息。
常用方法有直方图增强和伪色彩增强等。
数字图像处理相关论文(2)
数字图像处理相关论文(2)数字图像处理相关论文篇二《现代数字信号处理课程的教学改革与实践》摘要:针对现代数字信号处理的课程特点,开展课程的教学改革与实践,建立基于MATLAB实现的教学示例,并应用于课堂与实践教学,有助于提高教学质量,培养学生的研究能力和创新能力,且促进课程由传统课堂教学向研究型教学转化。
关键词:现代数字信号处理;教学;MATLAB;教学示例中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)06-0093-02随着计算机和微处理器技术的迅速发展,学科间的交叉与融合,数字信号处理技术得到了飞速发展,出现了以现代滤波器技术、现代谱分析理论、智能信息处理方法等为标志的现代数字信号处理理论及技术,并广泛应用于现代通信、新型雷达、精确遥测、医疗等众多领域。
目前,现代数字信号处理课程主要面向研究生层次学生开设。
由于该课程的理论性和实践性都很强,且其基本原理和方法已广泛应用于各领域,因此教师教好和学生学好该课程都很重要。
一、课程特点及传统教学中存在的困难现代数字信号处理课程具有数学理论推导较多、内容广泛、概念抽象等特点。
由于工科研究生的数学理论水平普遍不高,同时课程的学时有限,若教学方法不当,学生一方面在学习过程中常感到枯燥乏味,难以理解和掌握;另一方面易造成学生畏惧学习的心理,失去学习兴趣。
现代数字信号处理同时是一门以算法为核心,实践性很强的课程,其算法的应用实现主要基于计算机的数值计算。
如果教师采用传统的教学方式,主要讲授基础理论和算法的推导,学生则主要利用大量的公式、算法及推导进行学习和解题,而忽视让学生采用计算机动手设计、调试和分析课程中大量的、应用性较强的内容,会使得学生感觉该课程是一门数学理论课,不利于他们深层次理解数学概念中所蕴含的物理和工程意义,从而造成课后实践受到很大限制,不利于学生以后从事有关信号处理领域的研究工作。
因此,如何提高学生学习的兴趣和主动性,增强他们对知识的理解和掌握,培养学生综合应用所学知识解决实际问题的实践能力是本课程教学所要解决的关键问题。
图像处理的毕业设计
毕业设计(论文)摘要数字图像中的轮廓提取,是数字图像模式识别中最常用的图像处理方法之一,其主要是通过对二值图像内部的逐点扫描及排除,以得出图像的具体几何特征的。
轮廓提取中需要的图像是预先处理过的,常用的图像预处理手段包括图像大小的修改、图像浓度的扩展,图像由彩色差到灰度的转变、图像二值化、图像的锐化处理及图像平滑处理等方法。
目前来看,数字图像处理中模式识别的应用已经非常广泛,其主要应用有车牌号识别、指纹识别、汉字识别、细胞种类识别等,已经渗透到医学治疗、工业制造、交通管理、航空航天、科学研究、军事领域、互连网应用等各行各业,我相信,这项技术必然会在人类历史中发挥巨大的作用。
本文以大量的文字以及具体的实例,通过使用经典编程语言介绍图像轮廓提取的步骤是怎样完成的。
文章主要分为四部分,其中,文章的开头简单介绍了数字图像应用的发展过程,介绍了到目前为止计算机上流行的几种图像存储格式,包括jpg、bmp、gif等,还对本文应用的编程语言C语言以及VC开发工具的发展进行简单讲述。
文章的第二部分主要针对bmp图像的存储结构进行了具体的介绍,还对图像的打开与关闭进行了详细说明。
第三部分讲的是图像的预处理技术,其中包括很多经典的图像处理算法,包括图像平滑、锐化、图像灰度转换以及二值转换等,每个算法都进行了具体的讲解,并通过具体的程序进行了实现。
本文的第四部分、用Visual C++编程工具设计一个完整的应用程序,实现经典的图像几何变换功能。
程序大概分为两大部分:读写BMP图像,和数字图像的几何变换。
即首先用Visual C++创建一个多文档应用程序框架,在实现任意BMP图像的读写,打印,以及剪贴板操作的基础上,完成经典的图像几何变换功能。
图像几何变换的Visual C++编程实现,为校内课题的实现提供了一个实例。
关键字:图像处理;几何变换;BMP图像;Visual C++AbstractThe geometrical transformation is the most popular image processing method. We can get an exact image from a distorted image through the geometrical emendation. The transforming methods in common use including translation, mirror, rotation, or transpose an image. Since thedomain of digital image processing application has becoming wider and wider, it penetrates into many fields. Such as industry, aviation, military, and has become much more important in every aspects of our life.Being an important part of digital image processing, the work introduced in this article is about how to design an integrated application program using Visual C++ to implement the classic geometrical transformation. The program can be divided into two parts: read or write a BMP image, and the geometrical transformation for it. So I designed a multiple document interface first, on the basic of read, write, print, and the clipboard operation of an image, then carry out the function of geometrical transformation finally.The implementation of geometrical transformation using Visual C++ is a good example for carrying out intramural problems.Keywords: Image processing; Geometrical transformation; BMP image; Visual C++目录第一章绪论 (1)1.1何谓数字图像处理 (1)1.1.1 图像的概念 (1)1.1.2图像处理 (1)1.2图像处理学的内容和其他相关学科的关系 (2)1.2.1 图像处理学的内容 (2)1.2.2 图像处理学与相关学科的关系 (2)1.3数字图像处理的特点及其应用 (2)1.3.1 数字图像处理的特点 (2)1.3.2 数字图像处理的应用 (3)1.4V ISUAL C++ (4)1.4.1 Visual C++简述 (4)1.4.2 将Visual C++应用于数字图像的几何变换 (4)第二章数字图像处理的基本概念 (5)2.1图像和调色板 (5)2.1.1 图像的显示 (5)2.1.2 调色板 (5)2.1.3 色彩系统 (6)2.1.4 灰度图 (7)2.2GDI位图 (7)2.2.1 从资源中装入GDI位图 (8)2.2.2 伸缩位图 (8)2.3设备无关位图(DIB) (8)2.3.1 BMP文件中DIB的结构 (9)2.3.2 DIB访问函数 (11)2.3.3 使用DIB读写BMP文件 (12)第三章图像的几何变换 (14)3.1图像的平移 (14)3.1.1 理论基础 (14)3.1.2 Visual C++编程实现 (15)3.2图像的镜像变换 (19)3.2.1 理论基础 (19)3.2.2 Visual C++编程实现 (20)3.3图像的转置 (23)3.3.1 理论基础 (23)3.3.2 Visual C++编程实现 (24)3.4图像的缩放 (26)3.4.1 理论基础 (26)3.4.2 Visual C++编程实现 (27)3.5图像的旋转 (30)3.5.1 理论基础 (31)3.5.2 Visual C++编程实现 (31)3.6本程序基本类对象之间的相互访问关系 (35)第四章结论与展望 (37)4.1结论 (37)4.2展望 (37)致谢 (39)参考文献 (40)第一章绪论1.1 何谓数字图像处理数字图像处理(Digital Image Processing),就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计说明书基于ARM的嵌入式数字图像处理系统设计学生姓名:张占龙学号: 0905034314学院:信息与通信工程学院专业:测控技术与仪器指导教师:张志杰2013年 6月摘要简述了数字图像处理的应用以及一些基本原理。
使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。
该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。
应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。
整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。
在此基础上还会对系统进行不断地完善。
关键词:linnux 嵌入式图像处理边缘检测AbstractThis paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve.Keywords:linux embedded system image processing edge detection目录第一章绪论 (1)1.1 数字图像处理概述 (1)1.2 数字图像处理现状分析 (5)1.3 本文章节简介 (8)第二章图像处理理论 (8)2.1 图像信息的基本知识 (8)2.1.1 视觉研究与图像处理的关系 (8)2.1.2 图像数字化 (10)2.1.3 图像的噪声分析 (10)2.1.4 图像质量评价 (11)2.1.5 彩色图像基本知识 (11)2.2 图像变换 (13)2.2.1 离散傅里叶变换 (13)2.2.2 离散沃尔什-哈达玛变换(DWT-DHT) (20)2.2.3 离散余弦变换(DCT) (21)2.2.4 离散图像变换的一般表达式 (23)2.3 图像压缩编码 (24)2.3.1 图像编码的基本概念 (24)2.4 图像增强和复原 (24)2.4.1 灰度变换 (24)2.4.2 图像的同态增晰 (26)2.4.3 图像的锐化 (27)2.5 图像分割 (27)2.5.1 简单边缘检测算子 (27)2.6 图像描述和图像识别 (28)第三章需求分析 (28)3.1 系统需求分析 (28)3.2 可行性分析 (28)3.3 系统功能分析 (29)第四章概要设计 (29)4.1 图像采集 (30)4.2 图像存储 (31)4.3 图像处理(image processing) (31)4.4 图像显示 (32)4.5 网络通讯 (32)第五章详细设计 (32)5.1 Linux嵌入式系统的构建 (33)5.1.1 启动引导程序的移植 (33)5.1.2 Linux内核移植 (33)5.1.3 根文件系统的移植 (34)5.2 图像处理功能的实现 (34)5.2.1 彩色图像的灰度化 (34)5.2.2 灰度图的直方图均衡化增强 (35)5.2.3 图像二值化 (35)5.2.4 边缘检测 (36)第六章调试与维护 (36)附录 A (37)参考文献 (43)致谢 (44)第一章绪论1.1 数字图像处理概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理的主要研究内容包括以下几个方面:图像变换、图像编码压缩、图像增强和复原、图像分割、图像描述、图像分类(识别)。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也随之不断扩大,在航天和航空技术、生物医学工程、通信工程、工业和工程、军事与安全、文化艺术等方面获得越来越广泛的应用。
数字图像处理的发展始于20世纪60年代初期,首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功绘制出月球表面地图,获得了巨大成功。
这位人类登月创举奠定了坚实的基础,在以后的航空技术中,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。
数字图像处理取得的另一个巨大成就是在医学上的应用。
1972年英国EMI 公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,简称CT(Computer Tomograph)。
CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,成为图像重建。
1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类做出了划时代的贡献。
于此同时,图像处理技术在许多其它应用领域受到广发重视并取得了重大的开拓性成就,属于这些领域的有工业检测、机器视觉、公安司法、军事制导、文化艺术等,是图像处理成为一门引人注目、前景远大的新型学科。
从20世纪70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
很多国家,特别是发达国家投入更多地人力、物力研究计算机视觉(图像理解)领域,取得了不少重要的研究成果。
其中代表性的成果是20世纪70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想[1]。
图一-1 基于Marr视觉计算理论的方框图Marr视觉计算理论主要涉及描述三维物体的几何表示问题。
Marr理论认为描述三维物体有三个层次(图一-2):(1)图像特征(基元图)。
它反映了二维图像的重要特征。
是以原始图像中抽取如边缘、角点、纹理、线条、不连续点等基本特征,这些特征的集合称为基元图。
(2)2.5维图,又称为intrinsic图像。
它在以观察点为中心的坐标系统中,由输入图像和基元图恢复场景可见部分的深度、法线方向、轮廓等,这些信息包含了深度信息,但不是真正的物体三维表示,因此称为二维半图。
从图像特征恢复得到2.5维图,可以有很多方法,如立体图、从图像序列、从阴影至形状从纹理至形状、从x至形状(其中x为新研究的方法)等方法恢复得到2.5维图。
(3)三维模型表示。
在以物体为中心的坐标系中,描述了三维物体的形状和它们在空间的结构基元是体积的或表面面积的基元。
Marr计算视觉理论框架虽然还不十分完善,许多方面还有争议,如该理论建立的视觉处理框架基本上是从上至下,而没有考虑反馈的作用;此外,该理论没有重视知识引导作用。
但是,它至今仍然是可接受的基本框架,它不仅推动了计算机视觉这门科学的形成和发展,也为计算机视觉领域提供了许多研究的起点。
计算机视觉是模仿人的视觉,由于人们对视觉机理的研究还没有突破性的进展,因此计算机视觉研究是一项艰巨而长远的任务。
尽管目前已有了不少图像理解的理论、方法、算法和初级图像理解系统,但真正能在实际应用中可以取代人的视觉功能的还不多见。
当前科学技术的发展使得许多领域迫切需要应用图像处理和理解,因此,应当在计算机视觉领域中,加强新理论与方法的探索和研究,使之有可能较大的降低视觉理解的难度,而仍然能解决不少有意义的实际问题。
近来兴起的“有目的、定性、主动地视觉”、基于CAD的视觉、距离图像的理解、多传感器融合等都是一些有代表性的研究方向。
这里特别要指出,从20世纪90年代,计算智能信息处理技术获得飞速的发展,它在数字图像处理和计算机视觉领域中获得了越来越广泛的应用,取得了许多引人注目的突破性成果。
这些成果不仅推动了计算智能信息处理技术的进一步发展,而且给数字图像处理和计算机视觉开辟了不少新的研究领域。
在计算机智能信息处理技术中,如模糊集与模糊逻辑、神经网络、小波分析、进化计算(遗传算法)、分形等,在图像编码、增强、分割、特征提取、描述以及识别等方面都有广泛的应用,获得了不少新方法、新算法。
另外,一些新的数学方法,如数学形态、粗糙集理论等数学工具在数字图像处理中也有成功的应用,引起了人们极大的关注。
可以相信,视觉作为人类最重要的一种感知,是人类智能活动不可缺少的。
因而,研究图像处理和理解将永远是一个挑战性的研究课题,无论存在多大的困难,总会取得突破性进展,并给人类社会各个方面的实际应用带来越来越多的效益。
下面就数字图像处理主要的几个方面作简要介绍:1)图像变换由于图像阵列很大,直接在空间与中进行处理,设计计算量很大。
因此,往往采用各种图像变换的方法,如傅里叶变换、哈尔变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,这不仅可以减少计算量,而且可获得更有效的处理(如傅里叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效地应用。
2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少存储器容量。