电工学(第七版上册)秦曾煌主编资料

合集下载

电工学(第七版)上册秦曾煌

电工学(第七版)上册秦曾煌

Ia
a
Ra Ib Ic b Rb
Rc Y- 等效变换 C
Ia a
Rab
Ib
Rbc Rca
Ic b
C
电阻Y形联结
电阻形联结
等效变换的条件:
对应端流入或流出的电流(Ia、Ib、Ic)一一相等, 对应端间的电压(Uab、Ubc、Uca)也一一相等。
经等效变换后,不影响其它部分的电压和电流。
章目录 上一页 下一页 返回 退出
5
Rb
b +

12V
12V
解:将联成形abc的电阻变换为Y形联结的等效电阻
Ra
Rab
Rab Rca Rbc
Rca
48 Ω 448

44
84
Rb 4 4 8 Ω 1 Ω Rc 4 4 8 Ω 2 Ω
章目录 上一页 下一页 返回 退出
例2:计算下图电路中的电流 I1 。
I1 a
Ra Rb
Rb Rc Rc Ra Rb
Ra
Rab Rca Rab Rbc Rca
Rb
Rbc Rab Rab Rbc Rca
Rc
Rca Rbc Rab Rbc
Rca
章目录 上一页 下一页 返回 退出
2.2 电阻星形联结与三角形联结的等效变换
Ia
a
Ra Ib Ic b Rb
Rc Y- 等效变换 C
章目录 上一页 下一页 返回 退出
理想电流源(恒流源)
I
U
+
IS
U
RL
_
O
IS
I
特点: (1) 内阻R0 = ;
外特性曲线
(2) 输出电流是一定值,恒等于电流 IS ;

电工学(第七版上册)秦曾煌主编

电工学(第七版上册)秦曾煌主编

电路
电动势 E 电流 I 电流密度 J l 电阻 R S I + E R _
I E R E l S
l
S

F NI l Rm S
4. 磁路分析的特点 (1)在处理电路时不涉及电场问题,但在处理磁路时离 不开磁场的概念; (2)在处理电路时一般可以不考虑漏电流,但在处理磁 路时一般都要考虑漏磁通; (3)磁路欧姆定律和电路欧姆定律只是在形式上相似。 由于 不是常数,其随励磁电流而变,磁路欧姆定律 不能直接用来计算,只能用于定性分析; (4)在电路中,当 E=0时,I=0;但在磁路中,由于有 剩磁,当 F=0 时, 不为零;
7
例:环形线圈如图,其中媒质是均 匀的,磁导率为,试计算线圈内 部各点的磁感应强度。 解:半径为x处各点的磁场强度为 NI Hx lx NI I 故相应点磁感应强度为 Bx Hx
lx
N匝
x
Hx S
由上例可见,磁场内某点的磁场强度 H 只与电流 大小、线圈匝数、以及该点的几何位置有关,与磁 场媒质的磁性() 无关;而磁感应强度 B 与磁场媒 质的磁性有关。
磁路的欧姆定律是分析磁路的基本定律 1. 引例 环形线圈如图,其中媒质是均 匀的,磁导率 为, 试计算线圈内部 的磁通 。
解:根据安培环路定律,有
N匝 xBiblioteka H dl I设磁路的平均长度为 l,则有 B NI Hl l l S

S I
Hx
即有: Φ NI F
在例1(1),(2)两种情况下,如线圈中通有同样大 小的电流0.39A,要得到相同的磁通 ,铸铁材料 铁心的截面积和硅钢片材料铁心的截面积,哪一 个比较小? 【分析】 如线圈中通有同样大小的电流0.39A, 则铁心中的磁场强度是相等的,都是260 A/m。 查磁化曲线可得, B铸铁 = 0.05T、 B硅钢 =0.9T, B硅钢是B铸铁的18倍。 因 =BS,如要得到相同的磁通 ,则铸铁铁 心的截面积必须是硅钢片铁心的截面积的18倍。 结论:如果线圈中通有同样大小的励磁电流,要 得到相等的磁通,采用磁导率高的铁心材料,可 使铁心的用铁量大为降低。

电工学(第七版上册)秦曾煌主编讲解

电工学(第七版上册)秦曾煌主编讲解
第7章 磁路与铁心线圈电路
7.1 磁场的基本物理量 7.2 磁性材料的磁性能 7.3 磁路及其基本定律 7.4 交流铁心线圈电路 7.5 变压器 7.6 电磁铁
第7章 磁路与铁心线圈电路
本章要求:
1. 理解磁场的基本物理量的意义,了解磁性材料的 基本知识及磁路的基本定律,会分析计算交流铁 心线圈电路;
N
300
结论:如果要得到相等的磁感应强度,采用磁导率
高的铁心材料,可以降低线圈电流,减少用铜量。
在例1(1),(2)两种情况下,如线圈中通有同样大
小的电流0.39A,要得到相同的磁通 ,铸铁材料
铁心的截面积和硅钢片材料铁心的截面积,哪一 个比较小? 【分析】 如线圈中通有同样大小的电流0.39A, 则铁心中的磁场强度是相等的,都是260 A/m。
磁性物质不同,其磁滞回线
• O •Hc H •
和磁化曲线也不同。
磁滞回线
按磁性物质的磁性能,磁性材料分为三种类型: (1)软磁材料
具有较小的矫顽磁力,磁滞回线较窄。一般用来 制造电机、电器及变压器等的铁心。常用的有铸铁、 硅钢、坡莫合金即铁氧体等。 (2)永磁材料
具有较大的矫顽磁力,磁滞回线较宽。一般用来 制造永久磁铁。常用的有碳钢及铁镍铝钴合金等。 (3)矩磁材料
具有较小的矫顽磁力和较大的剩磁,磁滞回线接 近矩形,稳定性良好。在计算机和控制系统中用作记 忆元件、开关元件和逻辑元件。常用的有镁锰铁氧体 等。
7.3 磁路及其基本定律
7.3.1 磁路的概念
在电机、变压器及各种铁磁元件中常用磁性材料 做成一定形状的铁心。铁心的磁导率比周围空气或 其它物质的磁导率高的多,磁通的绝大部分经过铁 心形成闭合通路,磁通的闭合路径称为磁路。

电工学(第七版)上册秦曾煌第一章

电工学(第七版)上册秦曾煌第一章
产生磁场 储存磁场能量 L (电感性)
R
理想电路元件:电阻元件、电感元件、电容元件 和电源元件等。
电阻元件 电感元件 电容元件
章目录 上一页 下一页 返回 退出
今后分析的都是指电路模型,简称电路。 例:
I
开关 电 池 导线
手电筒电路
+ E
开关 + U R
灯 泡
R0
干电池
导线
灯泡
手电筒的电路模型
o
线性电阻的伏安特性
章目录 上一页 下一页 返回 退出
提示
(1) 方程式U/I=R 仅适用于假设正方向一致的情况。 (2) “实际方向”是物理中规定的,而“假设 正方向”则 是人们在进行电路分析计算时,任意假设的。 (3) 在以后的解题过程中,注意一定要先假定“正方向” (即在图中表明物理量的参考方向),然后再列方程 计算。缺少“参考方向”的物理量是无意义的. (4) 为了避免列方程时出错,习惯上把 I 与 U 的方向 按相同方向假设。
2. 理解电路的基本定律并能正确应用;
3. 了解电路的有载工作、开路与短路状态,理解
电功率和额定值的意义; 4. 会计算电路中各点的电位。
章目录 上一页 下一页 返回
退出
1.1 电路的作用与组成部分
电路是电流的通路,是为了某种需要由电工设备 或电路元件按一定方式组合而成。 1. 电路的作用 (1) 实现电能的传输、分配与转换
电压与电流参 考方向相反
电流的参考方向 与实际方向相反
章目录 上一页 下一页 返回 退出
线性电阻的概念: 遵循欧姆定律的电阻称为线性电阻,它表示该段 电路电压与电流的比值为常数。 U 即:R 常数 I 电路端电压与电流的关系称为伏安特性。 线性电阻的伏安特性 是一条过原点的直线。

电工学(第七版)上册秦曾煌第一章ppt课件

电工学(第七版)上册秦曾煌第一章ppt课件
(3) 根据计算结果确定实际方向: 若计算结果为正值,则实际方向与假设方向一致; 若计算结果为负值,则实际方向与假设方向相反。
.
章目录 上一页 下一页 返回 退出
例: 电路如图所示。
I = 0.28A I = – 0.28A
电动势为E =3V
+
方向由负极指向正极; E
3V
电压U的参考方向与实际方
向相同, U = 2.8V, 方向由
电动势 E
单位
A、 kA、 mA、 μA V、 kV、 mV、 μV
电 压 U V、 kV、 mV、 μV
实际正方向 正电荷移动的方向
电源驱动正电荷的 方向
(低 电 位 - 高 电 位 ) 电位降落的方向
(高 电 位 - 低 电 位 )
.
章目录 上一页 下一页 返回 退出
物理量正方向的表示方法
I
a

U
R

泡 R0
导线
手电筒电路
干电池 导线 灯泡 手电筒的电路模型
电源或信号源的电压或电流称为激励,它推动电
路工作;由激励所产生的电压和电流称为响应。
电路分析是在已知电路结构和参数的条件下,讨
论激励与响应的关系。
.
章目录 上一页 下一页 返回 退出
1.3 电压和电流的参考方向
电流
电路中的物理量 电压
电功率和额定值的意义; 4. 会计算电路中各点的电位。
.
章目录 上一页 下一页 返回 退出
1.1 电路的作用与组成部分
电路是电流的通路,是为了某种需要由电工设备
或电路元件按一定方式组合而成。
1. 电路的作用 (1) 实现电能的传输、分配与转换
发电机

电工学(第七版)-秦曾煌-全套完整-20门电路和组合逻辑电路

电工学(第七版)-秦曾煌-全套完整-20门电路和组合逻辑电路

(1) 由逻辑状态表写出逻辑式 取 Y = 1 ( 或Y = 0 ) 列逻辑式
Байду номын сангаас取Y= 1
A BC Y
0 00 0 0 01 1
0 10 1
一种组合中,输入变量 之间是“与”关系,
0 11 0 1 00 1
1 01 0 对应于Y = 1,若输入变量为 1 1 0 0
1 ,则取输入变量本身(如 A); 1 1 1 1
廊的A、B、C三地各有控制开关,都能独立进行控制。
任意闭合一个开关, 灯亮;任意闭合两个开关, 灯灭;
三个开关同时闭合,灯亮。设A、B、C代表三个开关
(输入变量);Y 代表灯(输出变量) 。
章目录 上一页 下一页 返回 退出
设:开关闭合其状态为 1 ,断开为 0
灯亮状态为 1 ,灯灭为 0
1. 列逻辑状态表
章目录 上一页 下一页 返回 退出
第20章 门电路和组合逻辑电路
本章要求:
1. 掌握基本门电路的逻辑功能、逻辑符号、真值 表和逻辑表达式。了解 TTL门电路、CMOS门电 路的特点;
2. 会用逻辑代数的基本运算法则化简逻辑函数; 3. 会分析和设计简单的组合逻辑电路; 4. 理解加法器、编码器、译码器等常用组合逻辑
证明: A AB A AB AB A+AB = A
A B( A A) A B
(5)AB ( AB ) A
对偶式
(6)( A B)( A B ) A
章目录 上一页 下一页 返回 退出
20. 5. 2 逻辑函数的表示方法
逻辑状态表 表示方法 逻辑式
逻辑图 卡诺图 下面举例说明这四种表示方法。 例:有一T形走廊,在相会处有一路灯, 在进入走

电工学(第七版)上册秦曾煌第四章

电工学(第七版)上册秦曾煌第四章
2.已知: I 10 60A
i 10 sin ( ω t 60 )A ?
最大值
4.已知:
U 100 15V
负号 U 100 V ?
U 100 e
j15
V?
退出
章目录 上一页 下一页 返回
例 1: 已知选定参考方向下正弦量的波形图如图 所示, 试写出正弦量的表达式。
章目录 上一页 下一页 返回 退出
设正弦量: u U msin( ω t ψ ) 电压的有效值相量 相量表示: Ue j ψ U ψ 相量的模=正弦量的有效值 U 相量辐角=正弦量的初相角 或: Um Ume jψ Um ψ 相量的模=正弦量的最大值 相量辐角=正弦量的初相角
下一页返回上一页退出章目录444242正弦量的相量表示法正弦量的相量表示法4444电阻电感与电容元件串联交流电路电阻电感与电容元件串联交流电路4141正弦电压与电流正弦电压与电流4343单一参数的交流电路单一参数的交流电路4545阻抗的串联与并联阻抗的串联与并联4848功率因数的提高功率因数的提高4747交流电路的频率特性交流电路的频率特性4646复杂正弦交流电路的分析与计算复杂正弦交流电路的分析与计算下一页返回上一页退出章目录44理解正弦量的特征及其各种表示方法
u/ V 250 200 u1 2 u2
60 30
O
t
解: u 200sin( t 60) V 1
u2 250sin( t 30) V
章目录 上一页 下一页 返回 退出
例 2: 已知同频率的正弦量的解析式分别为 i = 10sin(ωt + 30°), u 220 2 sin( t 45), 写出 电流和电压的相量 I、U , 并绘出相量图。 解: (1) 相量式 10 30 5 2 30 A I 2

电工学(第七版上册)秦曾煌主编汇总

电工学(第七版上册)秦曾煌主编汇总

4.旋转磁场的转速
旋转磁场的转速取决于磁场的极对数 p=1时
n0 60 f1 (转/分) 0 o 工频: f1 50 Hz
Im I m
i i A
i B iC
t
A
n0 3000 (转/分)
A Y C
N
Z Y B
A
S
C N
Z
Y B C
N
Z B
S
S
X
X
X
p=2时
C
X
Y
A
30

N
n (1 s )n0 异步电动机运行中: s (1 ~ 9)%
n0 n s 转差率s n 100% 0 转子转速亦可由转差率求得
例1:一台三相异步电动机,其额定转速 n=975 r/min,电源频率 f1=50 Hz。试求电动机的 极对数和额定负载下的转差率。 解: 根据异步电动机转子转速与旋转磁场同步转 速的关系可知:n0=1000 r/min , 即 p=3 额定转差率为
第8章 交流电动机
本章要求:
1. 了解三相交流异步电动机的基本构造和转动 原理。 2. 理解三相交流异步电动机的机械特性,掌握 起动和反转的基本方法, 了解调速和制动的 方法。 3. 理解三相交流异步电动机铭牌数据的意义。
第8章 交流电动机
电动机的分类: 同步电动机 交流电动机 电动机 直流电动机 异步电动机 三相电动机 单相电动机
8.2 三相异步电动机的转动原理
8. 2. 1 旋转磁场
1.旋转磁场的产生 定子三相绕组通入三 相交流电(星形联接)
iA
i A I m sint iB I m sint 120 iC I m sint 120

电工学(第七版上册)秦曾煌主编

电工学(第七版上册)秦曾煌主编

u
波形图
O
ωt
瞬时值表达式 u Umsin( t )
相量 U Uψ
必须 小写
重点
前两种不便于运算,重点介绍相量表示法。
2.正弦量用旋转有向线段表示(相互间一一对应)
设正弦量: y
u
Байду номын сангаас
Umsin(
t ψ)
u
u0ω
O
x
u1
U
O
m
ψ
ω t1
ωt
若:有向线段长度 = Um
有向线段与横轴夹角 =
初相位
(2)便于运算,同一频率的正弦量的和、差仍为 同一频率的正弦量,正弦量的求导和积分仍为同 一频率的正弦量;
(3)正弦量变化平滑,在正常情况下不会引起过 电压而破坏电器设备,有利于电器设备的运行;
4.1 正弦电压与电流
设正弦交流电流:
i
Im
i Im sin t
O
2
t
T
初相角:决定正弦量起始位置
ui u
i
O
ωt
ψ1 ψ2 90 电流超前电压90 (正交)
ui u i
O
ωt
90°
ψ1 ψ2 180
电压与电流反相
ui u i
O
ωt
注意:
① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关。
i i1
i2
O
t
② 不同频率的正弦量比较无意义。
4.2 正弦量的相量表示法
1.正弦量的表示方法
4.1.2 幅值与有效值
幅值:Im、Um、Em
幅值必须大写, 下标加 m。
有效值:与交流热效应相等的直流定义为交流

电工学(第七版上册)秦曾煌主编

电工学(第七版上册)秦曾煌主编

定子
匝数相同
发电机结构
三相绕组 空间排列互差120
转子 : 直流励磁的电磁铁
三相电动势瞬时表示式
eA Em sin t
eB Em sin( t 120 )
eC Em sin( t 120 )
相量表示
EA E EB E
0 E 120 E( 1 j
2
3) 2
EC E
120 E( 1 j 2
负载的相电压不对称。
2. 照明负载三相不对称,必须采用三相四线制供电
方式,且中性线上不允许接刀闸和熔断器。
5.3 负载三角形联结的三相电路
1. 联结形式
A
IA
+–
UAB
– UCA IB
B
+
UBC C–
+
IC
ICA
ZCA
IAB
ZBC ZAB
IBC
相电流: 流过每相负载的电流 IAB、IBC、ICA
线电流: 流过端线的电流 IA、IB、IC
三相负载的联接
三相负载也有 Y和 两种接法,至于采用哪种方 法 ,要根据负载的额定电压和电源电压确定。
三相负载连接原则 (1) 电源提供的电压=负载的额定电压; (2) 单相负载尽量均衡地分配到三相电源上。
电源 保险丝 A B C N
三相四线制 380/220伏
额定相电压为 额定线电压为 220伏的单相负载 380伏的三相负载
负载对称时,中性线无电流,
可省掉中性线。
UL 3UP
例1:一星形联结的三相电路,电源电压对称。设电
源线电压 uAB 380 2 sin(314 t 30)V 。 负载为
电灯组,若RA=RB= RC = 5 ,求线电流及中性线电

电工学上册(第七版)PPT 高等教育出版社,秦曾煌主编共42页

电工学上册(第七版)PPT 高等教育出版社,秦曾煌主编共42页
电工学上册(第七版)PT 高等教育出

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
版社,秦曾煌主编
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

电工学(第七版)上册秦曾煌第二章

电工学(第七版)上册秦曾煌第二章
章目录 上一页 下一页 返回 退出
(3)由计算可知,本例中理想电压源与理想电流源 都是电源,发出的功率分别是:
PU1 = U1IU1 = 10×6 = 60W
PIS = UISIS = 10×2 = 20W 各个电阻所消耗的功率分别是:
PR = RI 2 = 1×62 = 36W
PR1
=
R1
I
2 R1
=
1×(-4)2
=
16W
PR2 = R2 IS2 = 2 ×22 = 8W
PR3
=
R3
I
R
2 3
=
5 ×22
=
20W
两者平衡:
(60 + 20) W = (36 + 16 + 8 + 20)W
80W = 80W
P49 2.3.4 P75 2.3.6-7
章目录 上一页 下一页 返回 退出
2.4 支路电流法
(b) I U 20V 2 mA R 10kΩ
跳转
2.1.3 电阻混连电路的计算
例1:计算图示电路中a、b间的等效电阻Rab。
8
8 a
4
4
7
6 3
b 8
10 10
(a)
(b)
解: (a) Rab 8 // 8 6 // 3 6
(b) Rab 4 // 4 10 //10// 7 3.5
支路电流法:以支路电流为未知量、应用基尔霍夫
定律(KCL、KVL)列方程组求解。
I1
a
I2
R1
R2
E1
I3 R3
3
E2
1
2
对上图电路
b
支路数:b =3 结点数:n = 2 回路数 = 3 单孔回路(网孔) = 2

2024版电工学(第七版上册)秦曾煌主编PPT课件

2024版电工学(第七版上册)秦曾煌主编PPT课件
根据磁化曲线的不同特点, 铁磁性物质可分为软磁材 料、硬磁材料和矩磁材料 等。
26
铁心线圈电路模型和分析方法
铁心线圈电路模型
将铁心线圈等效为一个电阻和一个电 感的串联电路,其中电阻表示线圈的 铜损,电感表示线圈的磁损。
铁心线圈电路的特点
由于铁心的存在,铁心线圈电路具有 非线性、饱和性和磁滞性等特点,使 得电路的分析和计算变得复杂。
2024/1/28
无功功率
比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功 率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场, 就要消耗无功功率。
视在功率
在电工技术中是指将单口网络端钮电压和电流有效值的乘积。只有单口网络完全由电阻混联 而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也 就是说,视在功率不是单口网络实际所消耗的功率。
4
第七版上册内容结构
第七版上册主要包括电路的基本概念和基本定律、电阻电路的分析、动态电路的时域分析、正弦稳态电 路的分析、含有耦合电感的电路分析、三相电路、非正弦周期电流电路和信号的频谱分析等内容。
本册内容在编排上注重系统性、连贯性和实用性,通过大量的例题和习题帮助学生巩固所学知识,提高分 析问题和解决问题的能力。
在并联电路中,总电阻的倒数等于 各电阻倒数之和,即 1/R=1/R1+1/R2+…+1/Rn,同时 电压相等,电流分配与电阻成反比。
13
电源等效变换方法
电压源等效变换
将电压源转换为等效的电流源,使得二者在外部电路中具有相同的电压和电流 表现。具体方法是通过计算电压源的内阻和开路电压,得到等效电流源的电流 和内阻。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)便于运算,同一频率的正弦量的和、差仍为 同一频率的正弦量,正弦量的求导和积分仍为同 一频率的正弦量;
(3)正弦量变化平滑,在正常情况下不会引起过 电压而破坏电器设备,有利于电器设备的运行;
4.1 正弦电压与电流
设正弦交流电流:
i
Im
i Im sin t
O
2
t
T
初相角:决定正弦量起始位置
交流设备名牌标注的电压、电流均为有效值
4.1.3初相位与相位差 i i Imsin(ωt ψ)
相位: t ψ
反映正弦量变化的进程。 O
ωt
初相位: 表示正弦量在 t =0时的相角。
ψ ( t ) t 0
: 给出了观察正弦波的起点或参考点。
4.1.3 相位差 :
两同频率的正弦量之间的初相位之差。
e 旋转 90 因子: j90
ej90 cos 90 jsin90 j
设相量 A rejψ B
+j
a2 b2 arctan
b
复数的模 复数的辐角
a
A r cos ψ j r sin ψ r (cos ψ jsin ψ)
由欧拉公式:
ej ψ ej ψ
cos ψ
,
2
ej ψin ψ
(3) 指数式 A r ej ψ (4) 极坐标式 A r ψ
u
波形图
O
ωt
瞬时值表达式 u Umsin( t )
相量 U Uψ
必须 小写
重点
前两种不便于运算,重点介绍相量表示法。
2.正弦量用旋转有向线段表示(相互间一一对应)
设正弦量: y
u
Umsin(
t ψ)
u
u0ω
O
x
u1
U
O
m
ψ
ω t1
ωt
若:有向线段长度 = Um
有向线段与横轴夹角 =
初相位
有向线段以速度ω 按逆时针方向旋转
则:该旋转有向线段每一瞬时在纵轴上的投影即表示
相应时刻正弦量的瞬时值。
3. 正弦量的相量表示 实质:用复数表示正弦量
复数表示形式 设A为复数:
(1) 代数式A =a + jb
+j
b
r
0
A
a +1
式中: a r cos ψ b r sin ψ
(2) 三角式
r ψ
A a jb r cos j r sin rejψ r ψ
相量: 表示正弦量的复数称相量
设正弦量:u Umsin( ωt ψ)
相量表示:
U Ue j ψ U ψ 相量的模=正弦量的有效值
相量辐角=正弦量的初相角
电压的有效值相量
3.20
或:
Um Umejψ Um ψ
相量的模=正弦量的最大值 相量辐角=正弦量的初相角
4.1 正弦电压与电流
正弦量: 随时间按正弦规律做周期变化的量。通常是正
弦电压和正弦电流。 正弦交流电路:
含有正弦电源(激励)而且电路各部分所产生 的电压和电流(响应)均按正弦规律变化的电路。
ui
+ _
i
t
_
+
_u
R
i
+
_u R
_
正半周
负半周
正弦交流电的优越性:
(1)易于变换,可以利用变压器把正弦电压升高 或降低,便于传输;
ui u
i
O
ωt
ψ1 ψ2 90 电流超前电压90 (正交)
ui u i
O
ωt
90°
ψ1 ψ2 180
电压与电流反相
ui u i
O
ωt
注意:
① 两同频率的正弦量之间的相位差为常数, 与计时的选择起点无关。
i i1
i2
O
t
② 不同频率的正弦量比较无意义。
4.2 正弦量的相量表示法
1.正弦量的表示方法
相量图: 把相量表示在复平面的图形
可不画坐标轴
I
⑤相量的书写方式
U
• 模用最大值表示 ,则用符号:U m 、Im
• 实际应用中,模多采用有效值,符号: U 、I
如:已知 u 220 sin(ω t 45)V
则U m 220ej45V或 U 220 e j45V 2
⑥“j”的数学意义和物理意义
第4章 正弦交流电路
4.1 正弦电压与电流 4.2 正弦量的相量表示法 4.3 电阻元件、电感元件与电容元件 4.4 电阻元件的交流电路 4.5 电感元件的交流电路 4.6 电容元件的交流电路 4.7 电阻、电感与电容元件串联交流电路 4.8 阻抗的串联与并联
4.10 交流电路的频率特性 4.11 功率因数的提高
第4章 正弦交流电路
本章要求 1. 理解正弦量的特征及其各种表示方法; 2. 理解电路基本定律的相量形式及阻抗;
熟练掌握计算正弦交流电路的相量分析法, 会画相量图。; 3. 掌握有功功率和功率因数的计算,了解瞬时 功率、无功功率和视在功率的概念; 4.了解正弦交流电路的频率特性,串、并联谐 振的条件及特征; 5.了解提高功率因数的意义和方法。
注意:
电压的幅值相量
①相量只是表示正弦量,而不等于正弦量。
? i Imsin(ω t ψ) = Ime jψ Im ψ
②只有正弦(余弦)量才能用相量表示, 非正弦量不能用相量表示。
③只有同频率的正弦量才能画在同一相量图上。
U I
④相量的两种表示形式
相量式: U Uejψ U ψ U( cos ψ jsin ψ)
角频率:决定正弦量变化快慢
幅值:决定正弦量的大小
幅值、角频率、初相角成为正弦量的三要素。
4.1.1 频率与周期
周期T:变化一周所需的时间 (s)
频率f:
f1 T
(Hz)
角频率: ω 2π 2πf (rad/s)
T
i
O
T
t
* 电网频率:我国 50 Hz ,美国 、日本 60 Hz * 高频炉频率:200 ~ 300 kHZ * 中频炉频率:500 ~ 8000 Hz * 无线通信频率: 30 kHz ~ 30GMHz
4.1.2 幅值与有效值
幅值:Im、Um、Em
幅值必须大写, 下标加 m。
有效值:与交流热效应相等的直流定义为交流
电的有效值。
T
0
i2R dt
I 2RT
交流 直流
则有 I 1 T i 2dt
T0
有效值必
须大写
1 T
T 0
Im2 sin2
ωt
dt
Im 2
同理: U Um 2
E Em 2
注意: 交流电压、电流表测量数据为有效值
如:u Umsin( ω t ψ1 )
i Imsin( ω t ψ2 )
( t 1 ) ( t 2 )
ψ1 ψ2 若 ψ1 ψ2 0
电压超前电流
若 ψ1 ψ2 0
ui u i
O
ωt
电压滞后电流
ψ1 ψ2 0 电流超前电压
ui i
u
O
ωt
电压与ψ电1 流ψ同2 相 0
相关文档
最新文档