重四级杆质谱仪原理整合完整版
四极杆飞行时间质谱仪原理
四极杆飞行时间质谱仪原理
四极杆飞行时间质谱仪是一种常用于质谱分析的仪器。
其原理基于带电粒子在磁场中受到洛伦兹力以及电场力的作用,从而确定粒子的质量和电荷比。
该仪器由四根平行排列的金属杆(四极杆)组成,杆之间存在一定的电势差,形成一个电场。
在四极杆的两端还有一个均匀的磁场作用,形成一个向前加速粒子的区域。
当带电粒子进入仪器后,首先会在电场中加速,并沿着四极杆飞行。
同时,磁场会对粒子施加一个垂直于杆的洛伦兹力,使其偏离原来的路径。
由于电场和磁场力的施加方向不同,使得粒子在四极杆内做着动态的偏转运动。
根据四极杆飞行时间质谱仪的工作原理,可以将不同质量和电荷比的粒子分离出来。
因为不同质量和电荷比的粒子会受到不同大小的洛伦兹力和电场力的影响,从而在四极杆内拥有不同的飞行时间。
通过测量粒子飞行时间和飞行距离的关系,可以计算出粒子的质量和电荷比。
四极杆飞行时间质谱仪在实际应用中具有广泛的用途。
它可以用来分析和鉴定各种物质的成分和结构,包括有机化合物、无机离子、生物大分子等。
同时,该仪器还可以进行质量测定、同位素分析以及反应动力学等研究。
总结起来,四极杆飞行时间质谱仪的工作原理是基于带电粒子在电场和磁场的共同作用下进行运动,通过测量粒子的飞行时
间来确定其质量和电荷比。
这种仪器具有高分辨率、高灵敏度和广泛的应用领域。
三重四级杆液相色谱质谱联用仪原理
三重四级杆液相色谱质谱联用仪原理
三重四级杆液相色谱质谱联用仪的结构由三个四级杆(Q1,Q2,Q3)
组成,其作用分别为:Q1作为入口四级杆,通过调整电压和磁场来选择
特定的前驱离子(precursor ion)进入系统;Q2作为碰撞池,用于离子
的碰撞解离和选择性筛选;Q3作为出口四级杆,根据质量/荷电比(m/z)对产生的离子进行进行分离和检测。
1.采样和预处理:样品通过进样系统进入色谱柱进行分离。
在进样之前,可以对样品进行前处理,如样品制备、固相萃取等。
3. 离子化:分离后的化合物分子进入质谱部分,通常采用电喷雾(electrospray ionization,ESI)或大气压化学电离(atmospheric pressure chemical ionization,APCI)等离子化方式进行离子化。
离子
化过程中,化合物分子失去或获得一个或多个电子而变成带电离子。
4. 离子的选择性解离:离子进入Q2碰撞池后,在与碰撞气体(collision gas)碰撞的过程中发生解离反应。
这些反应是高度选择性的,只能发生在特定离子对中。
5.质谱分析:环境中的离子经过Q3四级杆的分离后,根据其质量/荷
电比(m/z)和强度进行检测。
通过对质谱图的分析,可以确定样品中存
在的化合物种类和含量。
总之,三重四级杆液相色谱质谱联用仪通过液相色谱和质谱的联用,
结合分离和离子化技术,实现了复杂样品的分离、检测和分析。
其原理和
操作流程相对复杂,但能够提供高灵敏度和高选择性的分析结果,广泛应
用于食品安全、环境监测、药物分析等领域。
三重四级杆气相色谱质谱联用仪原理
三重四级杆气相色谱质谱联用仪原理
三重四级杆气相色谱质谱联用仪是一种分析仪器,结合了气相色谱(GC)和质谱(MS)技术,用于分析复杂样品中的组分。
三重四级杆气相色谱质谱联用仪的工作原理如下:
1. 气相色谱(GC)分离:样品经过预处理后,通过进样口注
入气相色谱柱中。
然后,样品在高温条件下挥发,并通过气流带动进样口中的挥发物进入气相色谱柱。
在气相色谱柱中,样品中的成分会因为不同的亲和性而在柱上发生分离。
2. 离子化与分析:GC柱分离出的组分进入质谱部分。
首先,
离子源将分离出的化合物离子化,通常使用电子轰击(EI)或化学电离(CI)方法。
离子化后的化合物会形成离子云。
3. 气体四级杆质量分析器:离子云被引入到四级杆质量分析器中,在四级杆中通过运动激发进行质量分析。
通过调节四级杆中的偏压和交变电场的频率,只有质量-电荷比(m/z)在指定
范围内的离子可以穿过四级杆,其他离子则被排除。
4. 超过磁扇质谱仪:离子从四级杆进一步进入超过磁扇质谱仪。
在这里,离子会被分离成不同的mm/z比。
质谱仪会测量这些
离子的强度,从而得到样品中的各种成分及其相对丰度。
5. 数据分析和识别:质谱仪测量得到的数据可以通过计算机进行分析和识别。
根据谱图中离子的相对强度和m/z比,可以确定各个组分的存在和相对丰度。
通过气相色谱质谱联用仪的工作原理,可以实现对复杂样品中微量成分的快速准确分析和鉴定。
三重四级杆质谱仪原理详解
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可能 不是最低同位素质量。注意这个变化是同位素分布,它将影响你分析 的结果。
4
质量分析器的性能特点
分辨率= M/ΔM 分辨率为200时,准确率是~2000ppm 分辨率为2500时,准确率是~100ppm
5
准确率(PPM级误差的例子)
6
一个单四极杆质谱仪
7
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
8
四极杆质量过滤器如何工作的?
9
四极杆质量过滤器稳定性图表
马修稳定图
10
选择性离子监测与全扫描对比
11
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最 好的仪器。
式具有最好的灵敏性和准确性。 三重四极杆不是最好的获取质谱图的仪器,平行测量的质谱系统 会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) • 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那
么 有说服力(定性)
49
质量分析器的性能特点
• 质量范围 – 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
38
内容
• 质量分析 – 基础知识 – 质量分析器的性能特点 • 分辨率 • 准确率 • 质量范围
• 多级质量分析 – 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式 • SRM • MRM
• QQQ的优点(选择性、灵敏度和速度
39
质量分析: 基本基础知识
• 在质量分析器里所产生的离子是根据他们的质荷 比(m/z).进行分离的
三重四级杆质谱仪原理(全)
酸性氯代除草剂的基本知识
• 常用于除去草地和谷类农作物中阔叶杂草 • 潜在的地下水污染物 • 公众的误用 • 需要对痕量级别定量
传统方法
• 液-液萃取 • 重氮甲烷衍生化 • 气相色谱方法和选择性检测器(例如电子捕获检测器) • 仪器二次运行确认 • 存在问题 • 溶剂的过量使用 • 问题数据的解释 • 甲基化试剂的安全关注
三重四级杆质谱仪原理
内容
质量分析
– 基础知识 – 质量分析器的性能特点
• 分辨率 • 准确率 • 质量范围
多级质量分析
– 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
• SRM • MRM
QQQ的优点(选择性、灵敏度和速度)
质量分析: 基本基础知识
在质量分析器里所产生的离子是根据他们的质荷比(m/z). 进行分离的
三重四极杆不是最好的获取质谱图的仪器,平行测量 的质谱系统会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) • 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那么
有说服力(定性)
质量分析器的性能特点
• 质量范围
– 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性 最好的仪器。
– 在质谱应用领域里三重四极杆在执行中性丢失扫描和 母子扫描模式具有最好的灵敏性和准确性。
三重四级杆质谱仪原理(全)
描述质谱仪同时检测不同浓度范围离子的能力。
关键参数设置方法及影响分析
离子源参数
包括电离方式、电离能量、气体流量等,影响离子产生效率和碎 片化程度。
质量分析器参数
如扫描速度、分辨率设置等,直接影响质谱图的获取质量和速度。
检测器参数
包括增益、偏置电压等,影响离子信号的检测和转换。
优化实验条件提高分辨率和灵敏度
THANKS FOR WATCHING
感谢您的观看
质量分析器类型
01
三重四级杆质谱仪采用串联的三个四级杆质量分析器,用于筛
选和分离不同质荷比的离子。
离子筛选
02
通过调节四级杆上的直流和交流电压,形成特定的电场分布,
使得只有特定质荷比的离子能够通过。
离子分离
03
经过多级筛选和分离,不同质荷比的离子被依次传输到检测器
进行检测。
检测器信号转换与放大
01
02
03
检测器类型
常用电子倍增器或离子阱 检测器等,用于将离子信 号转换为电信号。
信号转换
离子撞击检测器表面产生 二次电子,经过多级倍增 后形成可测量的电流信号。
信号放大
通过放大器对电流信号进 行放大处理,提高信噪比 和灵敏度。
数据处理系统简介
数据采集
将检测器输出的模拟信号转换为数字信号,并进 行实时采集和存储。
随着技术的不断进步,三重四级杆质谱仪的性能将不断提升,满 足更高层次的应用需求。
应用领域持续拓展
随着新方法和新技术的开发,三重四级杆质谱仪的应用领域将持续 拓展,覆盖更多行业和领域。
智能化和自动化水平提高
人工智能和自动化技术的引入将进一步提高三重四级杆质谱仪的智 能化和自动化水平,简化操作流程和提高工作效率。
三重四级杆质谱仪原理详解
质量分析器的性能特点
• 分辨ห้องสมุดไป่ตู้= M/ΔM 分辨率为200时,准确率是~2000ppm 分辨率为2500时,准确率是~100ppm
准确率(PPM级误差的例子)
一个质量为1000 道尔顿的化合物
1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)
空间串联的多级质谱:通过QQQ质量分析器完成
• 空间串联的多级质谱分析通过连续的质量分析 器 实现,例如QQQ。
空间串联多级质谱:QQQ
• 必须通过连续放置多个分析器来实 现空间串联的多级质谱分析。
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最 好的仪器。
– 在质谱应用领域里三重四极杆在执行中性丢失扫描和 母子扫描模式具有最好的灵敏性和准确性。
QQQ多级质谱:单个反应监测(SRM)
选择某一质量的母离子,Q2碰撞单元产生碎片离子。 Q3只分析一个碎片离子。此过程产生一个简单的单个离 子碎片谱图。
QQQ多级质谱:多反应监测
Q1选择某一质量的母离子,碰撞单元产生碎片离子。 Q3用于搜寻多个选择反应监测,这就是多重反应监测 (MRM)。
采集类型:QQQ质谱仪
四级杆质谱原理
四级杆质谱原理
四级杆质谱(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,简称FT-ICR MS)是一种高分辨质谱技术,主
要用于分析复杂的化学样品。
它利用磁场中离子的旋转和振荡来分离和测量不同荷质比的离子。
该技术具有极高的分辨率和灵敏度,能够检测到极微量的化合物。
FT-ICR MS的核心部分是四级杆磁铁,其结构类似于一个罗
氏飞轮。
离子在四级杆磁场中做旋转和振荡运动,其运动速度和频率与离子的质荷比相关。
通过调节外加的垂直电场和磁场的强度,可以让具有不同质荷比的离子在四级杆中保持稳定的运动。
在质谱仪中,高频电场会扰动离子的径向运动,使其振荡。
当电场频率与离子的固有振荡频率匹配时,离子会吸收能量,从而产生共振。
这就是离子循环共振(ion cyclotron resonance,ICR)的原理。
共振频率与质量和电荷有关,因此可以根据吸
收信号的频率确定离子的质量。
FT-ICR MS的核心原理是将离子的振荡信号转换成电信号,
并利用Fourier变换将时域信号转换成频域信号。
通过对频域
信号进行分析,可以得到离子的精确质量,并进一步推断出其组成和结构。
由于Fourier变换的特性,FT-ICR MS具有极高
的分辨率和灵敏度,能够检测到质量差异非常细微的分子。
总之,FT-ICR MS利用四级杆磁铁中离子的旋转和振荡运动,通过离子循环共振和Fourier变换来实现对离子质量的精确测
量。
这种技术在生物医学、环境分析、材料科学等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 对于QQQ,每个分析器有以下单独的作用: – 第一个四极杆(Q1)根据设定的质荷比范围扫描和选择所需的离 子。 – 第二个四极杆(Q2) ,也称碰撞池,用于聚集和传送离子。在所 选择离子的飞行途中,引入碰撞气体,例如氮气等。 – 第三个四极杆(Q3)用于分析在碰撞池中产生的碎片离子。
2000ppm 分辨率为2500时,准确率是~
100ppm
可编辑ppt
5
准确率(ppm级误差的例子)
一个质量为1000 道尔顿的化合物
1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最好 的仪器。
– 描模
在质谱应用领域里三重四极杆在执行中性丢失扫描和母子扫 式具有最好的灵敏性和准确性。
三重四极杆不是最好的获取质谱图的仪器,平行测量的质谱 系统
会更好些:
(定性)
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏
谱图那么
或 空间串联的质谱/质谱
可编辑ppt
17
时间串联多级质谱分析:通过离子阱质量分析器实现
时间串联多级质量分析是通过同一个分析器实现的,分
离出所需的离子,使之断裂,并分析碎片离子。
可编辑ppt
18
时间串联的多级质谱: 离子阱(质谱n)
• 离子在离子阱中静电捕获(无线电频率场见下图) • 通过改变阱里的电场,从而选择特定的离子留在阱里,把
可编辑ppt
23
空间串联多级质谱:QQQ
• QQQ质谱仪对于液相色谱-质谱/质谱应用来说是权威 的分析工具,特别是需要精确定量时。
• 可以通过三重四极杆质谱仪可以进行如下几类试验: – 子离子扫描 – 母离子扫描 – 中性丢失扫描 – 单个反应监测 – 多重反应监测
可编辑ppt
24
QQQ多级质谱:子离子扫描
撞诱 导解离(CID)。
• 对所得的碎片离子进行质量分析。 • 碎片离子被用于对原来的分子离子的结构判断。 • 多质谱分析可用于缩氨酸顺序,碳水化合物的结构特性,
低聚核苷酸以及酯类药物类的分子等的测定。
可编辑ppt
15
什么是碰撞诱导解离(CID)?
这是一个通过中性分子的碰撞把能量传递给离子的过程。 这种能量传递足以使分子键断裂和所选择的离子重排。
• 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质
有说服力(定性)
可编辑ppt
12
质量分析器的性能特点
• 质量范围 – 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
可编辑ppt
13
多级质量分析
质谱/质谱方式的介绍
可编辑ppt
14
多级质量分析
• 通常通过由惰性气体分子,例如氮气,氩气或氦气,碰撞 所选择的分子离子来实现的。这个过程就是所谓的碰
可编辑ppt
6
一个单四极杆质谱仪
可编辑ppt
7
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
可编辑ppt
8
四极杆质量过滤器如何工作的?
可编辑ppt
9
四极杆质量过滤器稳定性图表
可编辑ppt
马修稳定图
10
选择性离子监测与全扫描对比
可编辑ppt
11
三重四极杆与其他液相/质谱联用技术的比较
三重四级杆质谱仪原理
可编辑ppt
1
内容
• 质量分析 – 基础知识 – 质量分析器的性能特点
• 分辨率 • 准确率 • 质量范围
• 多级质量分析 – 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
• SRM • MRM
• QQQ的优点(选择性、灵敏度和速度
可编辑ppt
2
质量分析: 基本基础知识
• 在质量分析器里所产生的离子是根据他们的质荷 比(m/z).进行分离的
可编辑ppt
3
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可能不 是最低同位素质量。注意这个变化是同位素分布,它将影响你分析的结果。
可编辑ppt
4
质量分析器的性能特点
• 分辨率= M/ΔM 分辨率为200时,准确率是~
❖ 为什么它那么重要?
在70年代初期McLafferty (JACS, 95, 3886, 1973) 论证了从离子观测得的键断裂和重排,表明了CID是中性 分子的分子结构的典型代表。 ❖ 结构阐述
用主要的分裂机理方式解释CID谱图。
可编辑ppt
16
多级质谱分析
两种型号的质谱/质谱 时间串联的质谱/质谱
• 因为空间电荷效应的影响,离子阱的 动态范围有限。因为 如果过多的离子积累在阱里,它们的电荷相斥会对仪器的 分辨率和定量分析造成有害的影响。
可编辑ppt
21
空间串联的多级质谱:通过QQQ质量分析器完成
• 空间串联的多级质谱分析通过连续的质量分析器 实现,例如QQQ。
可编辑ppt
22
空间串联多级质谱:QQQ
• 质谱/质谱试验能快速进行。
• 离子阱允许对碎片离子和碎片片段进 行多重质谱/质谱(aka MSn)实验,以 获得更多的结构信息。
• 另外一个优点就是它们能够富集离 子,以提供更好的离子信号。
可缺点
• 缺乏三重四极杆(QQQ)类型的母离子扫描和和中性丢失 扫描的高灵敏度。
• Q1选择了某一特定质量的母离子,Q2碰撞池产生碎片离 子,然后在Q3中分析。此过程产生典型的质谱质谱碎片 谱图。
第一个四极杆在选择性离子监测模式,第二个在全扫描监测模式
可编辑ppt
25
QQQ多级质谱:母离子扫描
• 在母离子扫描中,Q1测定母离子,Q3测定某个特定的 碎片离子,因此可在非常复杂的混合物中监测某种特 定的分子。
其他的排除出离子阱。 • 在与惰性气体原子(氦,氩或者氮)碰撞后,所选择的离
子被激活,所产生的更大动能使它们变成碎片。 • 所得的碎片离子通过分析后,得到碎片离子谱图。
可编辑ppt
19
时间串联的多级质谱:优点
• 离子阱的一个优点就是它们能够分离 出某种离子,把其他的离子排除出离 子阱。
• 被分离的离子能够通过CID的方式变 成碎片然后被测定。