高中数学:空间向量的数量积运算
新版高中数学《1.1.2 空间向量的数量积运算》教学设计
1.1.2空间向量的数量积运算 教学设计(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1.了解空间向量夹角的概念及表示方法,掌握空间向量数量积的计算方法、几何意义、性质及运算律2.通过学习空间向量的数量积运算,培养学生数学运算的核心素养;通过投影向量概念的学习培养学生直观想象和逻辑推理的核心素养二、教学重难点1.重点:空间向量的数量积的定义、性质、运算律及计算方法2.难点:空间向量的数量积的几何意义,运算律的证明三、教学过程1.类比平面向量,探究空间向量数量积的相关概念和性质1.1两个非零空间向量的夹角问题1:类比平面向量中所学,如何定义空间向量的夹角?【预设的答案】空间向量是自由向量,可以将两个向量平移到共起点的位置(动态演示空间向量平移过程)【定义】已知两个非零向量a ,b ,在空间任取一点O ,作OA→ = a ,OB → = b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉. 规定:〈a ,b 〉∈[0,π].特别地:当〈a ,b 〉= π2时,a ⊥b .【互动练习】(1)〈a ,b 〉=〈b ,a 〉成立吗?(2)〈a ,b 〉= ,则称a 与b 互相垂直,记作 .(3)〈a ,b 〉= 0时,a 与b 方向 ; 〈a ,b 〉= π时,a 与b 方向 .1.2 两个非零空间向量的数量积【定义】已知两个非零向量a ,b ,则|a| |b| cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b . 即 a ·b = |a| |b| cos 〈a ,b 〉.规定:零向量与任意向量的数量积都等于零.问题2:根据上述定义我们不难发现,空间向量数量积的定义和平面向量数量积定义一致,那么空间向量数量积的性质是否与平面向量中的一致呢?【预设的答案】一致【互动练习】(1)两个向量的数量积是数量还是向量?(数量,它的大小与两个向量的长度及其夹角有关.)(2)0 ·a = (选择0还是0). 零向量与任意向量的数量积为0.(3)对于两个非零向量a ,b ,a ⊥b ⟺ a ·b = (判断垂直关系)(4)a ·a =_____或|a |=a ·a (求模长)(5)若a ,b 同向,则 a ·b =_______;若反向,则a ·b =_______.(6)|a ·b | ____ |a |·|b |(7)若θ为a ,b 的夹角,则cos θ=_______.【设计意图】平面向量中关于数量积的性质可以直接类比到空间向量中来,从学生的口中叙述出来,一是为了巩固,也能让学生体会空间向量数量积定义与平面向量数量积定义的相通之处.【例1】如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求值: (1)EF →·BA →;(2)EF →·BD →;(3)EF →·DC →.【解】(1)EF →·BA →=12BD →·BA →=12|BD →||BA →|cos 〈BD →,BA →〉=12cos 60°=14.(2)EF →·BD →=12BD →·BD →=12|BD →|2=12.(3)EF ·DC →=12BD →·DC →=-12DB →·DC →=-12×cos 60°=-14.1.3 空间向量的数量积的几何意义问题3:在平面向量的学习中,我们学习了向量的投影.类似地,在空间,向量a 向向量b 的投影有什么意义?【预设的答案】将两空间向量平移至同一平面,转化为平面向量问题,找出投影向量.在空间中,由于向量a 与向量b 是自由向量,将向量a 与向量b 平移到同一平面内α内,进而利用平面上向量的投影,得到与向量b 共线的向量:||cos ,b c a a b b=<>追问: 空间中,向量a 能否向一条直线l 作投影?向量a 能否向一个平面β作投影?图1动态演示向量a 向向量b 投影注:图3中向量a 与投影向量的夹角就是向量a 所在直线与平面β所成的角【设计意图】投影向量概念的提出是为了让学生体会空间向量数量积的几何意义;另外,空间向量向直线投影、向平面投影也为后续学生对空间向量与空间角间的关系形成初步认识.1.4 空间向量的数量积的运算律问题4: 类比平面向量数量积的运算律,空间向量数量积满足哪些运算律?【预设的答案】结合律;交换律;分配律数乘向量与向量数量积的结合律(λa )·b =λ(a ·b ), λ∈R 交换律a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·c追问:你能否证明上述运算律?【教师分析】证明前两条运算律,可以将向量a 与向量b 平移至同一个平面当中,则证明过程与平面向量中的证明方法无异;证明分配律时则涉及到三个不共面的向量.分配律的证明:,,OA a OB b BC c ===令, 'OC OA OC 向投影,投影向量为,OC OA θ记与的夹角为()OA OB BC OA OC ∴=⋅+=⋅左边||||cos OA OC θ=|||'|OA OC ='OB OA OB 向投影,投影向量为,1OB OAθ记与的夹角为 ''BC OA B C 同理,向投影,投影向量为,2BC OAθ记与的夹角为 OA OB OA BC ∴=⋅+⋅右边12||||cos ||||cos OA OB OA BC θθ=+|||'||||''|OA OB OA B C =+ ||(|'||''|)OA OB B C =+|||'|OA OC ==左边图2动态演示向量a 向直线l 投影 图3 动态演示向量a 向平面β投影2. 对比思考,深入了解思考问题1: 对于三个均不为0的数a ,b ,c ,若ab=ac ,则b=c.对于非零向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?分析:由a ·b =a ·c ,有a·(b -c )=0. 从而有b =c 或a ⊥(b -c ).追问:能否从几何意义的角度举出反例?思考问题2: 向量有除法吗?分析:向量没有除法. 追问:ak 的结果唯一吗? 思考问题3: 向量数量积满足结合律吗?分析:两个向量的数量积为一个实数,(a ·b )c 和a (b ·c )分别表示与向量c 和向量a 共线的向量,它们不一定相等.向量的数量积运算没有结合律!【设计意图】通过三个问题的思考 ,与数字运算进行对比,深刻体会向量运算与数字运算的区别所在;学会用数形结合的思想解决问题,了解向量是与几何密切相关的工具.四、课堂小结(1)空间向量夹角的定义及范围;(2)空间向量数量积运算的定义、性质及几何意义;(3)空间向量数量积运算的运算律及简单计算.五、课后思考【变式训练1】例1条件不变,如何求AB →·CD →的值?【解】AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos 〈AB →,AD →〉-|AB →||AC →|cos 〈AB →,AC →〉=cos 60°-cos 60°=0.【设计意图】感受向量数量积的逆用,数量积运算的结果可以推导出夹角及位置关系. 思考:(1)能否利用空间向量的数量积证明空间中两条直线垂直?(2)能否利用空间向量的数量积求出空间中异面直线所成角?(3)能否利用空间向量的数量积解决更多的立体几何中的问题?。
向量的数量积运算的所有公式
向量的数量积运算的所有公式1.向量的数量积定义:对于两个向量u和v,它们的数量积表示为u·v,即:u·v = ,u,,v,cosθ其中,u,和,v,分别表示向量u和v的长度(或模),θ表示向量u和v之间的夹角。
2.向量的数量积性质:(a)u·v=v·u(交换律,数量积满足交换律)(b)u·u=,u,^2(自身与自身的数量积等于向量的长度的平方)(c) (ku)·v = k(u·v)(数量积与标量的乘积等于标量与数量积的乘积)(d)(u+v)·w=u·w+v·w(数量积的分配律)3.向量的数量积的计算公式:(a)对于二维向量u=(u₁,u₂)和v=(v₁,v₂):u·v=u₁v₁+u₂v₂(b)对于三维向量u=(u₁,u₂,u₃)和v=(v₁,v₂,v₃):u·v=u₁v₁+u₂v₂+u₃v₃4.向量的数量积的几何解释:(a)两个向量u和v之间的数量积u·v等于向量u在向量v方向上的投影长度乘以向量v的长度。
(b)如果u和v之间的夹角θ等于0度,则u·v=,u,,v,(数量积的最大值)(c)如果u和v之间的夹角θ等于90度,则u·v=0(数量积的最小值)5.向量的数量积与向量的垂直性:(a)如果u·v=0,则向量u和v垂直(正交)。
(b)如果u·v≠0,则向量u和v不垂直。
6.向量的数量积与向量的夹角的关系:(a) u·v = ,u,,v,cosθ(b)如果θ=0度,则u·v=,u,,v,(数量积的最大值)(c)如果θ=90度,则u·v=0(数量积的最小值)这些公式是向量的数量积运算的基本公式和性质,可用于求解向量的数量积问题,以及在几何和物理等领域中的应用。
高中数学空间向量的数量积运算
三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线 垂直,那么它也和这条斜线在平面内的射影垂直.
例2. 如图,m, n 是平面 内的两条相交直线, 如果l m, l n,求证:l .
分析:根据直线和平面垂直的定义可知, 要证明l ,只需证明l 垂直平面
的任意一条直线.
例1 在平面内的一条直线,如果和这个平面的一 条斜线的射影垂直,那么它也和这条斜线垂直.
已知:PO, PA分别是平面 的垂线 和斜线,AO是PA在平面 内 的射影,l , 且 l OA , 求证:l PA .
分析:设直线l 的方向向量为a,
只需证明 a PA=0,
PA=PO OA,
解:由题设可得AC AB,
D b b a D'
CA , BD 120,
CD CA AB BD,
A
B
| CD |2 | CA |2 | AB |2 | BD |2 2CA AB 2CA BD 2 AB BD
b2 a2 b2 2b2 cos120 a2 b2
性质3)是求向量的长度(模)的依据.
空间向量的数量积满足如下运算律
1) ( a) b (a b)
2) a b b a (交换律)
3) a (b c) a b a c (分配律)
思考题:课本第90页 注意:
数量积不满足结合律
(a b) c a (b c)
②零向量与任意向量的数量积等于零.
2
空间向量的数量积性质 对非零向量a , b 有:
1) a e a cos a, e (e为单位向量)
2) a b a b 0
空间向量的数量积
空间向量的数量积空间向量的数量积,又称为内积或点积,是向量分析中的重要概念。
它表示了两个向量之间的相似程度,并且在许多领域中都有广泛的应用。
本文将探讨空间向量的数量积的性质、计算方法以及其在几何和物理中的应用。
一、定义和性质在三维空间中,设有两个向量A和B,它们的数量积定义为A·B=|A||B|cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示它们之间的夹角。
可以看出,数量积是一个标量,没有方向,只有大小。
数量积具有以下性质:1. A·B=B·A,即数量积的顺序不影响结果;2. A·A=|A|^2,即向量A与自身的数量积等于它的模长的平方;3. 若A·B=0,则A与B垂直。
二、计算方法根据定义,我们可以通过向量的坐标或分量来计算数量积。
设A=(x1, y1, z1)和B=(x2, y2, z2),则有A·B=x1x2+y1y2+z1z2。
三、几何意义空间向量的数量积在几何中有重要的意义。
首先,两个非零向量的数量积等于它们的模长的乘积与夹角的余弦值的乘积。
通过计算数量积,我们可以判断两个向量之间的夹角大小,进而判断它们的相似程度。
此外,数量积还可以用来计算向量的投影。
设A为原点O到点P的向量,B为另一向量,其数量积A·B表示向量A在B方向上的投影长度。
这个概念在物理学中有广泛的应用,例如计算物体沿斜面下滑时的加速度分量等。
四、物理应用数量积在物理学中的应用非常广泛。
以力学为例,根据牛顿第二定律,物体受到的力可以表示为F=mA,其中F为力,m为物体的质量,A为物体的加速度。
如果我们知道物体的初速度v0和终速度v,可以计算出加速度A=(v-v0)/t,其中t为时间。
然而,如果我们只知道物体在运动过程中所受到的力F以及物体的速度v,我们也可以通过数量积计算出它们之间的夹角θ,进而得到加速度A=|F|cosθ/m。
此外,在电磁学中,数量积也有重要的应用。
2021年高中数学3.1.3空间向量的数量积运算学案含解析人教A版选修2_1
3.1.3 空间向量的数量积运算[目标] 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中一些简单的问题.[重点] 空间向量的数量积运算.[难点] 利用空间向量解决夹角、距离等问题.知识点一 空间向量的夹角[填一填]1.定义:(1)条件:a ,b 是空间的两个非零向量.(2)作法:在空间任取一点O ,作OA →=a ,OB →=b . (3)结论:∠AOB 叫做向量a ,b 的夹角,记作a ,b .2.范围:a ,b∈[0,π],其中,(1)当a ,b =0时,a 与b 的方向相同. (2)当a ,b =π时,a 与b 的方向相反. (3)当a ,b=π2时,a 与b 互相垂直,记作a ⊥b . [答一答]1.若a ,b 是空间的两个非零向量,则-a ,b =a ,-b =a ,b ,对吗?提示:不对.∵-a 与a ,-b 与b 分别是互为相反向量,∴-a ,b=a ,-b =π-a ,b .知识点二 空间向量的数量积[填一填]1.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则|a ||b |cos a ,b 叫做a ,b 的数量积,记作a ·b .即a ·b=|a ||b |cosa ,b .(2)运算律:①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 2.空间向量数量积的性质[答一答]2.类比平面向量,你能说出a ·b 的几何意义吗?提示:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |·cos θ的乘积. 3.对于向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?提示:不能,若a ,b ,c 是非零向量,则a ·b =a ·c 得到a ·(b -c )=0,即可能有a ⊥(b -c )成立.4.对于向量a ,b ,若a ·b =k ,能不能写成a =k b? 提示:不能,向量没有除法,k b无意义. 5.为什么(a ·b )c =a (b ·c )不一定成立? 提示:由定义得(a ·b )c =(|a ||b |cosa ,b )c ,即(a ·b )c =λ1c ;a (b ·c )=a (|b ||c |cos b ,c ),即a (b ·c )=λ2a ,因此,(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,所以(a ·b )c =a (b ·c )不一定成立.1.求两向量的数量积时,关键是搞清楚两个向量间的夹角,在求两个向量间的夹角时,可用平移向量的方法,把一个向量平移到另一个向量的起点.2.利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a ·a 求解即可.3.利用空间向量的数量积解决几何中的夹角垂直关系,其思路是将直线的方向向量用已知向量表示,然后进行数量积的运算.类型一 空间向量的数量积运算【例1】 如下图所示,已知正三棱锥A BCD 的侧棱长和底面边长都是a ,点E 、F 、G 分别是AB 、AD 、DC 的中点.求下列向量的数量积.(1)AB →·AC →;(2)AD →·BD →; (3)GF →·AC →;(4)EF →·BC →.【解】 (1)由题知|AB →|=|AC →|=a ,且〈AB →,AC →〉=60°, ∴AB →·AC →=a ·a ·cos60°=12a 2.(2)|AD →|=a ,|BD →|=a ,且〈AD →,BD →〉=60°. ∴AD →·BD →=a ·a ·cos60°=12a 2.(3)|GF →|=12a ,|AC →|=a ,又GF →∥AC →,∴〈GF →,AC →〉=180°.∴GF →·AC →=12a ·a ·cos180°=-12a 2.(4)|EF →|=12a ,|BC →|=a ,又EF →∥BD →,∴〈EF →,BC →〉=〈BD →,BC →〉=60°. ∴EF →·BC →=12a ·a ·cos60°=14a 2.在几何体中求空间向量的数量积,首先要充分利用向量所在的图形,将各向量分解成已知模和夹角的向量的组合形式;其次利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积;最后利用数量积的定义求解即可.注意挖掘几何体中的垂直关系或者特殊角.已知正四面体OABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →). 解:如图所示,(1)OA →·OB →=|OA →||OB →|cos ∠AOB =1×1×cos60°=12;(2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos60°-2×1×1×cos60°+1×1×cos60°+12-2×1×1×cos60°=1.类型二 利用数量积求夹角【例2】 如图,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.【分析】 求异面直线BA 1与AC 所成的角,可转化为求向量BA 1→与AC →所成的角,因此可先求BA 1→·AC →,再求|BA 1→|,|AC →|,最后套用夹角公式求得,但要注意两直线夹角与两向量夹角的区别.【解】 因为BA 1→=BA →+AA 1→=BA →+BB 1→,AC →=BC →-BA →,且BA →·BC →=BB 1→·BA →=BB 1→·BC →=0, 所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →)=BA →·BC →-BA→2+BB 1→·BC →-BB 1→·BA →=-1. 又|AC →|=2,|BA 1→|=1+2= 3.所以cos 〈BA 1→,AC →〉=BA 1→·AC→|BA 1→||AC →|=-16=-66.则异面直线BA 1与AC 所成角的余弦值为66.如图所示,在正方体ABCD A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.解:不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,a ·b =b ·c =c ·a =0,A 1B →=a -c ,AC →=a +b .∴A 1B →·AC →=(a -c )·(a +b ) =|a |2+a ·b -a ·c -b ·c =1.而|A 1B →|=|AC →|=2,∴cos 〈A 1B →,AC →〉=12×2=12,∴〈A 1B →,AC →〉=60°.∴异面直线A 1B 与AC 所成的角为60°. 类型三 利用数量积求距离【例3】 在正四面体ABCD 中,棱长为a .M ,N 分别是棱AB ,CD 上的点,且|MB |=2|AM |,|CN |=12|ND |,求|MN |.【分析】 转化为求向量MN →的模,然后将向量MN →分解,再根据数量积运算性质进行求解. 【解】 因为MN →=MB →+BC →+CN →=23AB →+(AC →-AB →)+13(AD →-AC →)=-13AB →+13AD →+23AC →,所以MN →·MN →=⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →·⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →=19AB →2-29AD →·AB →-49AB →·AC →+49AC →·AD →+19AD →2+49AC →2=19a 2-19a 2-29a 2+29a 2+19a 2+49a 2=59a 2. 所以|MN |=53a .求两点间的距离或某条线段的长度的方法:先将此线段用向量表示,然后用其他已知夹角和模的向量表示此向量,最后利用|a |2=a ·a ,通过向量运算去求|a |,即得所求距离.如下图,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使直线AB 与CD 成60°角,求B ,D 间的距离.解:∵∠ACD =90°, ∴AC →·CD →=0,同理BA →·AC →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或120°. ∵BD →=BA →+AC →+CD →, ∴BD →2=BA →2+AC →2+CD→2+2BA →·AC →+2BA →·CD →+2AC →·CD →=BA→2+AC→2+CD→2+2BA →·CD →=3+2·1·1·cos〈BA →,CD →〉=⎩⎪⎨⎪⎧4 〈BA →,CD →〉=60°, 2〈BA →,CD →〉=120°.∴|BD →|=2或2,即B ,D 间的距离为2或 2. 类型四 利用数量积证明垂直问题【例4】 如下图,正方体ABCD A 1B 1C 1D 1中,P 为DD 1的中点,O 是底面ABCD 的中心.求证:B 1O ⊥平面PAC .【分析】 本题考查利用a ⊥b ⇔a ·b =0求证线面垂直,关键是在平面PAC 中找出两相交向量与向量B 1O →垂直.【证明】 不妨设正方体的棱长为1,AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,a ·b=b ·c =a ·c =0.由题图得:PA →=PD →+DA →=-12AA 1→-AD →=-b -12c ,PC →=PD →+DC →=-12AA 1→+AB →=a -12c ,B 1O →=B 1B →+BO →=-c +12(-a +b )=-12a +12b -c .∵PA →·B 1O →=⎝ ⎛⎭⎪⎫-b -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=12a ·b -12b 2+b ·c +14a ·c -14b ·c +12c 2, PC →·B 1O →=⎝⎛⎭⎪⎫a -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=-12a 2+12a ·b -a ·c +14a ·c -14b ·c +12c 2,又∵|a |=|b |=|c |=1,a ·b =a ·c =b ·c =0,∴PA →·B 1O →=0,PC →·B 1O →=0.∴PA →⊥B 1O →,PC →⊥B 1O →. ∴PA ⊥B 1O ,PC ⊥B 1O .又∵PA ∩PC =P ,∴B 1O ⊥平面PAC .用向量法证明线面垂直,离不开线面垂直的判定定理,需将线面垂直转化为线线垂直,然后利用向量法证明线线垂直即可.已知空间四边形ABCD 中,AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC . 证明:如图.方法一:∵AB ⊥CD ,AC ⊥BD , ∴AB →·CD →=0,AC →·BD →=0.AD →·BC →=(AB →+BD →)·(AC →-AB →)=AB →·AC →+BD →·AC →-AB→2-AB →·BD →=AB →·AC →-AB→2-AB →·BD →=AB →·(AC →-AB →-BD →)=AB →·DC →=0. ∴AD →⊥BC →,从而AD ⊥BC .方法二:设AB →=a ,AC →=b ,AD →=c , ∵AB ⊥CD ,∴AB →·CD →=0,即AB →·(AD →-AC →)=0,a ·(c -b )=0,即a ·c =b ·a . ∵AC ⊥BD ,∴AC →·BD →=0,即AC →·(AD →-AB →)=0,b ·(c -a )=0, 即b ·c =b ·a .∴a ·c =b ·c ,c ·(b -a )=0, 即AD →·(AC →-AB →)=0,AD →·BC →=0. ∴AD →⊥BC →,从而AD ⊥BC.1.如图所示,正方体ABCD A 1B 1C 1D 1的棱长为a ,对角线AC 1和BD 1相交于点O ,则有( C)A.AB →·A 1C 1→=2a 2B.AB →·AC 1→=2a 2C.AB →·AO →=12a 2D.BC →·DA 1→=a 2解析:∵AB →·AO →=AB →·12AC 1→=12AB →·(AB →+AD →+AA 1→)=12(AB →2+AB →·AD →+AB →·AA 1→)=12AB →2=12|AB →|2=12a 2. 2.已知a ,b ,c 是两两垂直的单位向量,则|a -2b +3c |=( B ) A .14 B.14 C .4 D .2解析:|a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14,∴|a -2b +3c |=14.3.已知i 、j 、k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a·b 等于-2.解析:a·b =(2i -j +k )·(i +j -3k )=2i 2-j 2-3k 2=-2. 4.已知向量a 、b 、c 两两之间的夹角都为60°,其模都为1,则 |a -b +2c |等于 5.解析:(a -b +2c )2=a 2+b 2+4c 2-2a·b +4a·c -4b ·c =1+1+4-2cos60°=5,∴|a -b +2c |= 5.5.如图所示,已知△ADB 和△ADC 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:BD ⊥平面ADC .证明:不妨设AD =BD =CD =1,则AB =AC = 2. BD →·AC →=(AD →-AB →)·AC →=AD →·AC →-AB →·AC →,由于AD →·AC →=AD →·(AD →+DC →)=AD →·AD →=1,AB →·AC →=|AB →|·|AC →|cos60°=2×2×12=1.∴BD →·AC →=0,即BD ⊥AC ,又已知BD ⊥AD , ∴BD ⊥平面ADC .。
新教材高中数学第1章空间向量的数量积运算教案新人教A版选择性必修第一册
新教材高中数学教案新人教A 版选择性必修第一册:1.1.2 空间向量的数量积运算学习 目 标核 心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2.③cos〈a ,b 〉=a ·b|a ||b |.(3)数量积的运算律数乘向量与数量积的结合律(λa )·b =λ(a ·b )=a ·(λb )交换律 a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·ca b a b (2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a |a |. (2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =ka,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等.( )(2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos〈AB 1,BC 1〉=122×2=14.故选B.] 3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)]=13OB →+13OC →+13OA →. ∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2=13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. 3根据向量的方向,正确求出向量的夹角及向量的模. 4代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系【例2】 已知空间四边形OABC 中,∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ, 又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →)=12⎣⎢⎡⎦⎥⎤12OA →+12OB →+OC→=14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b )=14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0.∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:PA ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又PA →=PD →+DA →,∴PA →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即PA ⊥BD .夹角问题b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4;由余弦定理,得:cos∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14,又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3.即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC→+2BA →·CD →+2AC →·CD →=3+2×1×1×cos〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角αAB β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角αAB β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC的中点,则FG →·AB →=( )A .34 B .14 C .12 D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.] 2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b |a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________.0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →)=AB →·(CD →-CA →)+AD →·(BC →+CA →)=AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角αAB β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →,∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116,∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线;(2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值.[解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°.(1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0∴MN ⊥AB ,同理可证MN ⊥CD .∴MN 为AB 与CD 的公垂线.(2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a22-a22-a22]=14×2a 2=a22.∴|MN →|=22a ,∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a24+a22-a24=a22.又∵|AN →|=|MC →|=32a , ∴AN →·MC →=|AN →|·|MC →|·cos θ=32a ·32a ·cos θ=a22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23.从而异面直线AN 与MC 所成角的余弦值为23.。
高中数学向量的数量积与叉乘的意义及计算方法
高中数学向量的数量积与叉乘的意义及计算方法在高中数学中,向量是一个重要的概念,它不仅在数学中有广泛的应用,也在物理学、工程学等领域中发挥着重要的作用。
在向量的运算中,数量积和叉乘是两个常见且重要的操作。
本文将重点介绍向量的数量积与叉乘的意义以及计算方法,并通过具体的例题来说明其考点和解题技巧。
一、向量的数量积数量积又称为点积,是两个向量的乘积与它们夹角的余弦值的乘积。
数量积的计算方法如下:设有两个向量a和b,它们的数量积表示为a·b,计算公式为:a·b = |a| |b| cosθ其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b之间的夹角。
数量积的意义在于可以判断两个向量之间的关系。
当两个向量的数量积为正时,表示它们的夹角为锐角;当数量积为负时,表示夹角为钝角;当数量积为零时,表示夹角为直角或两个向量垂直。
例如,有向量a(3, 4)和向量b(1, 2),求它们的数量积。
解:首先计算向量a和b的模,|a| = √(3^2 + 4^2) = 5,|b| = √(1^2 + 2^2) = √5然后计算向量a和b之间的夹角的余弦值,cosθ = (3*1 + 4*2) / (5*√5) = 11 /(5√5)最后计算数量积,a·b = |a| |b| cosθ = 5 * √5 * (11 / (5√5)) = 11因此,向量a和b的数量积为11,表示它们的夹角为锐角。
二、向量的叉乘叉乘又称为向量积或叉积,是两个向量的乘积与它们夹角的正弦值的乘积。
叉乘的计算方法如下:设有两个向量a和b,它们的叉乘表示为a×b,计算公式为:a×b = |a| |b| sinθ n 其中,|a|和|b|分别表示向量a和b的模,θ表示向量a和b之间的夹角,n表示垂直于a和b所在平面的单位向量。
叉乘的意义在于可以得到一个新的向量,该向量垂直于原来的两个向量所在的平面,并且满足右手法则。
高中数学空间向量的向量积
空间向量的数量积本次课课堂教学内容要点一:空间向量的数量积1.两个向量的数量积.已知两个非零向量a 、b ,则|a |·|b |cos 〈a ,b 〉叫做向量a 与b 的数量积,记作a ·b ,即a ·b =|a |·|b |cos 〈a ,b 〉.要点诠释:①由于空间任意两个向量都可以转化为共面向量,所以空间两个向量的夹角的定义和取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同.①两向量的数量积,其结果是数而非向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定.①两个向量的数量积是两向量的点乘,与以前学过的向量之间的乘法是有区别的,在书写时一定要将它们区别开来,不可混淆.2.空间向量数量积的性质设是非零向量,是单位向量,则 ①; ①;①或;①;①3.空间向量的数量积满足如下运算律 ①(a )·b =(a ·b ); ①a ·b =b ·a (交换律);,a b e ||cos ,a e e a a a e ⋅=⋅=<>0a b a b ⊥⇔⋅=2||a a a =⋅||a a a =⋅cos ,||||a ba b a b ⋅<>=⋅||||||a b a b ⋅≤⋅λλ①a ·(b +c )=a ·b +a ·c (分配律). 要点诠释:①对于三个不为0的向量a 、b 、c ,若a ·b =a ·c ,则b =c ;对于三个不为0的向量,若不能得出,即向量不能约分.①若a ·b =k ,不能得出(或),就是说,向量不能进行除法运算. ①对于三个不为0的实数,a 、b 、c 有(a b )c =a (b c ),对于三个不为0的向量a 、b 、c ,有,向量的数量积不满足结合律. 要点二:空间两个向量的夹角1.定义:已知两个非零向量a 、b ,在空间任取一点D ,作,,则①AOB 叫做向量a 与 b 的夹角,记作〈a ,b 〉,如下图。
空间向量的数量积运算 高中数学新教材人教A版
若 ∙ =k,能不能写成 =
(或
解析:由 ∙ =k,不能写成 =
有除法运算
= )的形式?
(或 = )的形式,即向量没
知识点一 空间向量的投影
思考5
对于三个均不为0的数a,b,c,有(ab )c =a(bc).
对于向量,,,( − )=( − )成立吗?为什么?
(3)因为AA’ · AD=5×3×cos
2
15
60°= ,AD
2
· AB=3×4×cos 90°=0
所以 =(++’)
= 2 + 2 + ’ 2 +2(·+·’+’·)
15
2
=42 +32 +52 +2(0+10+ )=85,所以 = 85.
= + .
将上式两边分别与向量作数量积运算,得
⋅ = ⋅ + ⋅ ,
因为 ⋅ =0, ⋅ =0(为什么?),所以 ⋅ =0.所以 ⊥ .
这就证明了直线垂直于平面α内的任意一条直线,所以 ⊥平面α.
课堂检测
1.如图,在正三棱柱ABC-A1B1C1中,若AB= BB1,则AB1与
在平面β上的投影向量.这时,向量,A′B′的夹角就是向量α所在直线
与平面β所成的角.
β
’
图
(3)
’
空间向量的数量积满足如下的运算律:
()·=(·),∈R
·=·(交换律)
·(+)=·+·(分配律)
知识点一 空间向量的投影
思考3
高中数学《空间向量的数量积运算》公开课优秀教学设计
高中数学《空间向量的数量积运算》公开课优秀教学设计本文讲述了空间向量的数量积运算,该运算是从平面向量推广到空间向量的实例。
学生通过类比和归纳的方式,深刻理解空间向量的数量积运算本质,并逐步体会数量积运算在解决垂直等问题中的应用价值。
本节课的教学过程是核心素养落地生根的过程,是一次知识、方法、思想、素养的融会贯通之旅。
教学目标包括:通过小组合作、自主探究、交流分享,学生能进一步理解和掌握空间向量数量积的相关概念及运算;经历例1、2的分析、求解过程,学生能初步体验空间向量在解决立体几何有关问题中的重要价值,能基本掌握用数量积处理空间中线线、线面垂直问题;在解决具体问题的过程中,学生能强化数学应用意识,感悟数学思想(数形结合、化归转化等)的魅力。
学生在经历空间向量的概念及线性运算之后,已初步感受到空间向量与平面向量之间的内在联系,能体会并运用类比的方法研究空间向量及其运算,明白了“空间任意两个向量都是共面的”。
在平面向量的研究中,已经认识到平面向量的数量积在判定位置关系(垂直)、角与距离的计算中的应用价值,这为研究空间位置关系及相关度量提供了类比前提。
即在平面向量的夹角和向量长度概念的基础上,类比引入空间向量的夹角、长度的概念和表示方法,类比平面向量的数量积的运算得到空间两个向量的数量积运算、运算律及其应用价值。
空间向量的数量积运算及其应用2.引入问题:如何用空间向量表示几何元素?3.概念建构:通过类比归纳得出空间向量数量积运算的概念及运算律,理解空间向量的投影以及数量积的分配律4.例题赏析:注重引导学生建立“已知”与“待求”间的“关联”,借助向量工具适时转化难点,设置问题串适时突破难点5.渗透数形结合、化归转化的数学思想,将立体几何问题转化为向量计算问题6.课堂小结与感悟,让学生能对课堂所学有持续的思考,激发研究的热情,进一步增强教师引领的辐射作用7.强调以学定教,充分发挥学生主体作用,让学生“动起来”,让课堂“活起来”8.教学策略:师生课堂互动模型和研究金字塔模型的引导,突显“以学生为主体的教,在教师引导下的学”的授课模式本节课旨在通过明暗两条教学主线来实现教学目标。
空间向量的数量积运算-高中数学知识点讲解
空间向量的数量积运算1.空间向量的数量积运算【知识点的认识】1.空间向量的夹角→→→已知两个非零向量푎、푏,在空间中任取一点O,作푂퐴=→→푎,푂퐵=→→→→푏,则∠AOB叫做向量푎与푏的夹角,记作<푎,→푏>.2.空间向量的数量积→→→→→→→→→→→→→→(1)定义:已知两个非零向量푎、푏,则|푎||푏|cos<푎,푏>叫做向量푎与푏的数量积,记作푎•푏,即푎•푏=|푎||푏|cos→→푎,푏> <→→→→→→→→→→→(2)几何意义:푎与푏的数量积等于푎的长度|푎|与푏在푎的方向上的投影|푏|cosθ的乘积,或푏的长度|푏|与푎在푏的方→向上的投影|푎|cosθ的乘积.3.空间向量的数量积运算律空间向量的数量积满足交换律和分配律.→(1)交换律:(휆푎)⋅→→푏=λ(푎⋅→푏)=→→푎•(휆푏)→푎⋅→푏=→푏⋅→푎→→(2)分配律:푎⋅(푏+→푐)=→푎⋅→푏+→푎⋅→푐.4.数量积的理解→(1)书写向量的数量积时,只能用符号푎⋅→→푏,而不能用符号푎×→→→푏,也不能用푎푏(2)两向量的数量积,其结果是个实数,而不是向量,它的值为两向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值决定.→(3)当푎≠→→0时,由푎⋅→→→→→푏= 0不能推出푏一定是零向量,这是因为任一个与푎垂直的非零向量푏,都有푎⋅→푏=0【解题方法点拨】利用数量积求直线夹角或余弦值的方法:1/ 3利用数量积求两点间的距离:利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是先选择以两点为端点的向量,→将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|푎| =→푎⋅→푎求解即可.特别注意准确求解已知两向量之间的夹角大小.利用数量积证明垂直关系:→(1)向量垂直只对非零向量有意义,在证明或判断푎⊥→→푏时,须指明푎≠→→0,푏≠→0;→→→(2)证明两直线的垂直可以转化为证明这两直线的方向向量垂直,将两个方向向量表示为几个已知向量푎,푏,푐的线性形式,然后利用数量积说明两直线的方向向量垂直,进而转化为直线垂直.【命题方向】求直线夹角或余弦值、两点间的距离、证明垂直关系等问题最基本的是掌握数量积运算法则的应用,任何有关数量积计算问题都离不开运算律的运用.→例:已知 2푎+→→→→푏=(2,﹣4,1),且푏=(0,2,﹣1),则푎•푏=﹣7→分析:通过 2푎+→→→푏=(2,﹣4,1),且푏=(0,2,﹣1),求出向量푎的坐标,然后进行向量的数量积的坐标运算.→解答:∵2푎+→→푏=(2,﹣4,1),且푏=(0,2,﹣1),→∴푎=(1,﹣3,1),→→∴푎•푏= 1×0+2×(﹣3)+1×(﹣1)=﹣7;2/ 3故答案为:﹣7.点评:本题考查了空间向量的数量积的坐标运算,属于基础题.3/ 3。
高中数学(新人教A版)选择性必修一:空间向量的数量积运算【精品课件】
向量 b 的投影呢?向量 a 向向量 b 的投影呢?
Ԧ
如图1.1— 11 1 ,在空间,向量向向量
Ԧ
投影,由于它们是自由向量,
因此可以先将它们平移到同一平面内,进而利用平面上向量的投
Ԧ
Ԧ
影,得到与向量共线的向量
,
Ԧ Ԧ = Ԧ cos ,
Ԧ Ԧ
,向量称为向量
Ԧ
Ԧ
Ԧ
Ԧ
AB1 BC1 BB 1 BA BB 1 BC ,
BB 1 BA BC 1 2 2 cos 60 0,
2
AB1 BC1
C
A
B
2.已知a、b是异面直线,且a⊥b,e1、e2分别为取自直线a、b上的单位向
量,且a=2e1+3e2,b=ke1-4e2,a⊥b,则实数k的值为___.
6
解析
由a⊥b,得a·b=0,
∴(2e1+3e2)·(ke1-4e2)=0,
∴2k-12=0,∴k=6.
3.已知在平行六面体ABCD-A'B'C'D'中, AB=4, AD=3,AA'=5,
∠BAD=90°,∠BAA'=∠DAA'=60°, 求对角线AC'的长。
D'
解: | AC || AB AD AA |
空间向量的数量积运算
1.1.2 空间向量的数量积运算
学习目标
1.掌握空间向量的数量积,空间向量的夹角
2.掌握空间向量数量积的性质及运算律
3.能利用空间向量的数量积判断两个向量的
垂直及平行
知识回顾
1.平面向量的夹角:
1.1.2 空间向量的数量积运算
1.1.2 空间向量的数量积运算引言在空间解析几何中,空间向量是一个常见的概念。
空间向量的数量积运算是一种常用的计算方法。
本文将详细介绍空间向量的数量积运算,并给出相应的数学公式和示例。
数量积的定义空间中的向量a和b的数量积定义为两个向量的模长相乘再乘以它们的夹角的余弦值,表示为a·b。
数量积也被称为点积或内积。
两个向量a和b的数量积可以通过如下公式计算:a·b = |a| |b| cosθ其中,|a|和|b|分别表示向量a和b的模长,θ表示向量a 和b的夹角。
数量积的性质数量积具有如下一些性质:交换律对于任意向量a和b,有a·b = b·a。
结合律对于任意向量a,b和c,有(a·b)·c = a·(b·c)。
分配律对于任意向量a,b和c,有(a + b)·c = a·c + b·c。
零向量的数量积对于任意向量a,有a·0 = 0。
平行向量的数量积对于任意平行的向量a和b,有a·b = |a| |b|。
数量积的几何意义数量积可以用于计算两个向量之间的夹角。
具体来说,给定两个非零向量a和b,它们的数量积a·b的值是一个标量,它表示向量a在向量b方向上的投影,乘以向量b的模长。
数量积的计算方法计算两个向量的数量积可以使用向量的坐标表示方法。
假设向量a的坐标表示为(a1, a2, a3),向量b的坐标表示为(b1, b2, b3),则向量a和b的数量积可以计算为:a·b = a1b1 + a2b2 + a3b3示例下面以一个具体的示例来说明空间向量的数量积运算。
假设有两个向量a和b,它们的坐标分别为a(2, 3, 1)和b(4, -1, 2)。
首先计算向量a和向量b的模长:|a| = sqrt(2^2 + 3^2 + 1^2) = sqrt(14)|b| = sqrt(4^2 + (-1)^2 + 2^2) = sqrt(21)然后计算向量a和向量b的夹角的余弦值:cosθ = (2*4 + 3*(-1) + 1*2) / (sqrt(14) * sqrt (21)) ≈ 0.764最后计算向量a和向量b的数量积:a·b = sqrt(14) * sqrt(21) * 0.764 ≈ 9.101因此,向量a和向量b的数量积为9.101。
人教课标版高中数学选修2-1:《空间向量的数量积运算》教案-新版
3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。
高中数学空间向量公式大全
高中数学中,空间向量是一个重要的概念,与之相关的公式较多。
以下是一些主要的空间向量公式:
1.空间向量的模长公式:若向量a = (x1, y1, z1),则其模长|a| = √(x1² + y1² + z1²)。
2.空间向量的数量积公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的数
量积a·b = x1x2 + y1y2 + z1z2。
3.空间向量的夹角公式:cosθ = (a·b) / (|a||b|),其中θ是向量a和向量b之间的夹角,a·b
是它们的数量积,|a|和|b|分别是它们的模长。
4.空间向量的加法公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的和a +
b = (x1 + x2, y1 + y2, z1 + z2)。
5.空间向量的减法公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的差a - b
= (x1 - x2, y1 - y2, z1 - z2)。
6.空间向量的数乘公式:若向量a = (x, y, z),实数λ,则数乘λa = (λx, λy, λz)。
以上是空间向量的基础公式,通过这些公式,可以解决很多与空间向量相关的问题。
请注意,这些公式都基于向量的坐标表示,因此在实际应用中,需要首先确定向量的坐标。
此外,还有一些空间向量的性质,如共线向量、共面向量等,这些性质在解决空间几何问题时非常有用。
如果需要更详细的信息,建议查阅高中数学教材或相关资料。
高二数学(人教A版)《空间向量的数量积运算》【教案匹配版】最新国家中小学课程
高中数学
高中数学高二上册
追问(3) 平面向量的数量积是什么?你能类比平面向量,给出空间向量数
量积的运算吗?
平面向量的数量积
空间向量的数量积
由向量数量积定义,可以得到: 证明空间中的垂直关系 ① 若a,b是非零向量,a⊥b ⇔ a ·b=0;
求空间中线段的长度
② a ·a=a 2=|a||a|cos〈a,a〉=|a|2 .
高中数学高二上册
追问(5) 空间向量的数量积运算有哪些运算律?如何证明?
高中数学
平面向量的数量积运算律 空间向量的数量积运算律
① (λa) ·b=λ(a·b), λ∈R; ② a·b=b·a(交换律); ③ a·(b+c)=a·b+a·c(分配律).
高中数学高二上册
问题2 空间向量的数量积运算由平面向量的数量积运算推广而来,与
高中数学
高中数学高二上册
追问(4) 在平面向量中我们学习过投影向量的概念,什么是投影向量?你
能把它推广到空间向量中吗?
高中数学
高中数学高二上册
高中数学
平面向量的投影
两个非零向量a,b,AB =a,CD=b,过A和B分别做 CD所在直线的垂线,垂足分 别为A1和B1,得到A1B1 ,称 上述变换为向量a向向量b的 投影,A1B1 叫向量a在向量b 上的投影向量.
高中数学
平面向量的数量积运算律
① (λa)·b=λ(a·b), λ∈R; ② a·b=b·a(交换律); ③ a·(b+c)=a·b+a·c(分配律).
高中数学高二上册
追问(5) 空间向量的数量积运算有哪些运算律?如何证明?
高中数学
平面向量的数量积运算律 空间向量的数量积运算律
① (λa) ·b=λ(a·b), λ∈R; ② a·b=b·a(交换律); ③ a·(b+c)=a·b+a·c(分配律).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)空间向量的数量积性质
对于非零向量 a , b,有:
1) a e a cosa, e
2) a b a b 0
2
3) a a a
注意: ①性质2)是证明两向量垂直的依据; ②性质3)是求向量的长度(模)的依据;
5)空间向量的数量积满足的运算律
1) (a) b (a b)
2) a b b a (交换律) 3)a (b c) a b a c (分配律)
O
证明:由已知 OA BC,OB AC
所以 OA BC 0 , OB AC 0
OA (OC OB) 0
A
C
OB (OC OA) 0
B
所以 OA OC OA OB
OB OC OB OA 所以 OAOC OB OC 0
(OA OB) OC 0
BAOC 0
所以 OC AB
3.1.3空间向量的数量积运算
教学过程
一、几个概念
1) 两个向量的夹角的定义 同起点是关键
a
A
a
B
O
b
b
范围:0 a,b 在这个规定下,两个向 量的夹角就
被唯一确定了,并且 a,b=b, a
如果a,b ,则称a与b互相垂直,并记作:a b
2
2)两个向量的数量积
设OA a,则有向线段OA的长度叫做向量a的长度或模,记作:a 已知空间两个向量a,b,则 a b cosa,b叫做向量a,b的数量积, 记作:a b,即
点 O,连结 AO,求证:AO CD。
A'
D'
B'
C'
O
A B
D C
已知空间四边形 ABCD 的每条边和对角线的长都等于 a , 点 E、F、G 分别是 AB、AD、DC 的中点,求下列向量的 数量积:
(1) AB AC ; (2) AD DB ; (3) GF AC ; (4) EF BC ; (5) FG BA ; (6) GE GF .
D A
C B
2( AB AD AB AA AD AA) 42 32 52 2(0 10 7.5) 85
| AC | 85
1.已知线段 AB 、BD在平面 内,BD AB,线段 AC
,如果 AB a , BD b , AC c ,求 C 、D 之间的距离.
C
c
D
a
b
a2 b2
CD a2 b2
例4 已知在平行六面体 ABCD ABCD中,AB 4 ,
AD 3 , AA 5 , BAD 90 , BAA DAA 60,
求对角线 AC 的长。
D'
A'
B'
C' 解: AC AB AD AA
| AC |2 ( AB AD AA)2 | AB |2 | AD |2 | AA |2
A
B
解:∵
| CD |2 (CA AB BD)2 | CA |2 | AB |2 | BD |2 a2 b2 c2
CD a2 b2 c2
2.已知空间四边形 ABCD 的每条边和对角线的长都等于
a ,点 M、N 分别是边 AB、CD 的中点。
求证:MN AB , MN CD 。
m、n不平行,由共面向量定理
l
可知,存在唯一的有序实数对(x,y),
lm
g m
gn n
使
g=xm+yn, l·g=xl·m+yl·n ∵ l·m=0,l·n=0
∴ l·g=0
∴ l⊥g
∴ l⊥g
这就证明了直线l垂直于平面内的 任一条直线,所以l⊥
例2:已知:在空间四边形OABC中,OA⊥BC, OB⊥AC,求证:OC⊥AB
,求证:OA BC。
O
zxxkw
证明:∵
OA BC OA (OC OB)
OA OC OA OB
A
C
| OA | | OC | cos | OA | | OB | cos
| OA | | OB | cos | OA | | OB | cos
B
0
OA BC
4.如图,已知正方体 ABCD ABCD ,CD 和 DC相交于
巩固练习:利用向量知识证明三垂线定理
已知:PO, PA分别是平面的垂线,斜线,OA是PA
在内的射影,a , 且a OA
求证:a PA
证明:在a上取非零向量a
P
而PO , PO a PO a 0
OA a
又OA a,OA a 0 又P O, OA相交,得P O, OA不平行,由共面向量
a b a b cosa,b
注意: ①两个向量的数量积是数量,而不是向量. ②零向量与任意向量的数量积等于零。
A
a
A1
E
B1
b B
已知向量AB=b和a, 作点A在a上的射影A1 , 作 点B在a上 的 射 影B1, 则A1 B1叫 做b在a方 向 上的正射影,简称射影
A1B1 AB cosa, b
A
E B
F
D G C
课堂小结
1.正确分清楚空间向量的夹角。
2.两个向量的数量积的概念、性质和 计算方法。
C
F D
三、典型例题
例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且 l⊥m,l⊥n,求证:l⊥
分析:由定义可知,只需证l与平面内
任意直线g垂直。
l
lm
g m
gn n
要证l与g垂直,只需证l·g=0
而m,n不平行,由共面向量定理知, 存在唯一的有序实数对(x,y)使得 g=xm+yn
()
3) p2 q2 ( p q)2
()
4) p q p q p2 q2 ( )
全错
3.如图:已知空间四边形 ABCD的每条边和对角线长都 等于1,点E、F 分别是 AB、AD的中点。 计算:(1)EF BA (2) EF BD (3) EF DC (4) EF AC
A
E B
解:由 AC ,可知 AC AB .
C
由DBD 30知 CA , BD 120.
D
| CD |2 CD CD (CA AB BD)2
b
b D'
a
A
B
| CA |2 | AB |2 | BD |2 2CA AB 2CA BD 2AB BD
b2 a2 b2 2b2 cos120
注意: 数量积不满足结合律
(a b)c a (bc)
二、 课堂练习
1.已知a 2 2 , b 2 , a b 2 2
则a , b所 zxxkw 夹的角为____ | a b | ____
2.判断真假: 1)若a b 0,则a 0,b 0 ( )
2) (a b) c a (b c)
要证l·g=0,只需l·g= x而l·lm·+my=l·0n=,0 l·n=0
故 l·g=0
三、典型例题
例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且 l⊥m,l⊥n,求证:l⊥ 证明:在内作不与m、n重合的任一条
直线g,在l、m、n、g上取非零向
量l、m、n、g,因m与n相交,得向量
定理可知,存在唯一的有序实数对x, y,使
PA xPO yOA
PA a PO a OA a 0
a PA,即a PA.
课堂小结
1.正确分清楚空间向量的夹角。
2.两个向量的数量积的概念、性质和 计算方法。
例3 如图,已知线段 AB 在平面 内,线段 AC
,线段BD AB,线段 DD ,DBD 30 ,如 果 AB a , AC BD b ,求 C、D 之间的距离。
M B
A
证明:因为 MN MA AD DN
所以 AB MN AB (MA AD DN )
AB MA AB AD AB DN
D
1 a2 1 a2 1 a2 0CD
3.已知空间四边形OABC , OB OC , AOB AOC